Theses Doctoral

Silicon Modulators, Switches and Sub-systems for Optical Interconnect

Li, Qi

Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.


  • thumnail for Li_columbia_0054D_13097.pdf Li_columbia_0054D_13097.pdf application/pdf 10.6 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Bergman, Keren
Ph.D., Columbia University
Published Here
January 6, 2016