
SMILE/lVIARVEL: Two Approaches to
Knowledge-Based Programming Environments

Gail E. Kaiser
Peter H. Feiler·

October 1986

Abstract

CUCS-227-86

This technical report consists of three related papers in the area of intelligent assistance for
software development and maintenance. Intelligent Assistance without Artificial Intelligence
describes SMll.E, a software engineering environment that assists teams of programmers without
using AI technology. An Architecture for Intelligent Assistance in Software Development
presents an AI approach to generalizing the capabilities of SMll.E. Granularity Issues in a
Knowledge-Based Programming Environment briefly describes MARVEL, an intelligent assistant
based on this AI approach, and compares it to SMll.E.

The development and maintenance of SMll.E is supported in part by the United States Anny,
Software Technology Development Division of CECOM COMMIADP, Fort Monmouth, NJ and
in part by ZTI-SOF of Siemens Corporation, Munich, Germany. The designs of the architecture
and MARVEL were conducted while Dr. Kaiser was a Visiting Computer Scientist at the
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA. ·Dr. Feiler's ad­
dress is the Software Engineering Institute, Carnegie-Mellon University, 580 South Aiken
A venue, Pittsburgh, P A 15232.

:

Intelligent Assistance
without Artificial Intelligence

Gail E. Kaiser·

Columbia University

Department of Computer Science

New York, NY 10027

Peter H. Feiler

Carnegie-Mellon University

Software Engineering Institute

Pittsburgh, PA 15213

28 August 1986

Abstract

SMILE is a distributed, multi-user software engineering environment that behaves as an
intelligent assistant SMll...E presents a 'flleless environment', derives and transfonns data to
shelter users from entering redundant infonnation, automatically invokes programming tools,
and actively participates in the software development and maintenance process. Unlike other
intelligent assistants, SMILE is not a rule-based environment: its knowledge of software objects
and the programming process is hardcoded into the environment We describe SMll..E's
functionality and explain how we achieved this functionality without reliance on artificial
intelligence technology.

Copyright © Peter H. Feiler and Gail E. Kaiser

The development and maintenance of SMILE is supported in pan by the United States Anny,
Software Technology Development Division of crCOM COM}vfJ ADP, Fort Monmouth, NJ and
in pan by zrI-SOF of Siemens AG, Munich, Gennany. ·This paper was written while Dr.
Kaiser was a Visiting Computer Scientist at the Software Engineering Institute, Carnegie-Mellon
University, Pittsburgh, PA.

Final version to appear in Thirty-Second IEEE Computer Society International Conference, San Francisco, CA.

February, 1987.

1

1. Introduction
In 1973, Winograd discussed his dream of an intelligent assistant for programmers [29]. More

recently, artificial intelligence researchers have extended programming languages and

environments (primarily Lisp environments) with knowledge about the relationships among

program units [26] and the rules governing the software development process [3, 1, 22] in an

attempt to turn the dream into reality. The resulting systems support 'exploratory programming'

by an individual programmer very well [21], but they do not provide the assistance necessary to

manage large-scale development and maintenance. However, as AI projects, such as 'expert

systems', have become larger and commercially viable, researchers have turned their efforts

towards developing this kind of assistance [11, 18], and we believe they will produce excellent

results.

In the meantime, it is possible to build production-quality software engineering environments

that provide seemingly intelligent assistance without requiring new breakthroughs in AI

research. There is already (at least) one such system-the Software Management and

Incremental Language Editing system (SMll..E)-that provides seemingly intelligent, interactive

suppOrt for teams of software developers and maintainers. SMll..E does not use artificial

intelligence techniques: it is not even written in Lisp. SMll..E was written in C and runs on

Unix™.

Although SMll..E is several years old, it has not been discussed in the literature, except in

acknowledgements by researchers who used it to develop their own systems). SMll..E was

developed by one of the authors, starting in 1979, originally as a tool for developing research

prototypes for the Gandalf project [16]; it has been used extensively by both authors and by

many others since 1980. SMll..E has been relied on by the Gandalf and Gnome [7] projects at

CMU and by the Inscape project [17] at AT&T Bell Labs; it has been distributed to at least forty

~ites. SMll..E passes the crucial test of supponing its own maintenance. The purpose of this

paper is to present the goals of SMILE and explain how they were achieved.

The original, high-level goals of SMILE were as follows .

• To hide the file system and the operating system from the users. SMILE presents a
'meless environment'; that is, SMILE exposes its users only to the logical structure
of the target software system. The nonnal alternative is for users to deal with the
physical storage of the software in tenns of directories and files, which often do not
correspond nicely to the logical structure .

.. To shelter the users from the tedious task of maintaining redundant infonnation.

.;

2

SMILE requires its users to enter each item of information only once: it automatically
transfonns the data as needed by tools. SMILE derives necessary information that
can be calculated from the data supplied by users .

• To automate invocation of tools at appropriate points. SMILE assists the users by
automatically performing trivial software development activities such as calling
grep. lint, cc, make, and other Unix utilities [12] with the appropriate arguments at
appropriate times. In some cases, the tool is invoked as soon as its input is ready; in
other cases, the tool is not called until its results are required, such as to answer a
user query or to provide input to another tool. SMILE hides the particularities of
Unix and presents a unifonn programming model different from the model imposed
by Unix .

• To actively participate in the software development and maintenance process.
SMILE is an interactive system, and all programming activities take place within the
environment. In addition to calculating auxiliary information and automatically
invoking tools, SMILE anticipates the consequences of user actions and
automatically presents appropriate warning messages. .

• To be sufficiently robust and reliable for supporting relatively large academic
development projects. It automatically recovers from inconsistent states after user­
initiated abortS and machine crashes; it also stores information redundantly to
support recovery from disk errors or its own bugs.

All of these goals have been achieved. SMILE maintains source code, object code and other

software development information in a database mapped onto the Unix file system. Knowledge

of software objects and a model of the software development process are hardcoded into S~ffi.E's

commands. SMILE incprporates a large collection of Unix utilities, plus several special tools

developed as part of the Gandalf research. SMII...E has supported the simultaneous activities of at

least seven programmers, and the largest software system developed and maintained in SMILE

has appro:illnately 61,000 lines of source code [13].

The following sections present the goals and achievements of SMILE in more detaiL Section 2

explains SMILE's external architecture. Section 3 describes how SMn..E assists individual

programmers, while Section 4 describes the facilities oriented towards projects involving many

programmers and long lifetimes. Section 5 discusses SMILE's implementation and current status.

Section 6 compares SMILE to other software engineering environments. We conclude by

summarizing the significance of SMILE as an example of intelligent assistance without artificial

in telligence.

3

2. Architecture
SMll..E is intended for use by small teams of programmers (5 to 20) developing and

maintaining medium-size software systems (10,000 to 250,000 lines of source code) written in

C, taking maximum advantage of the Unix me system and utilities.

2.1. GC

GC (Gandalf C) [28] is an enhancement of C that lists the types of fonnal parameters within

the argument list (as in Pascal) and provides a module interconnection language (Mll..). The

Mil.. defInes modules consisting of four types of source code objects (called items): procedures,

variables, types, and macros. Each module has an import list indicating the items required from

other modules and an export list indicating the items accessible to other modules. GC was

adopted by the Gandalf project for all implementation efforts. SMILE supports GC, but

automatically transfonns source and header flies from standard C to GC and vice versa as needed

to import existing source code and to take advantage of C-specific programming tools.

Throughout the rest of this paper, we mean "GC" when we say "C".

2.2. Databases

SMILE maintains all information about a software system in a database similar to the

'objectbases' of more recently developed programming environments [2, 15]. Each object has

several attributes, representing auxiliary information, and is typed, enabling SMILE to provide

object-oriented commands that apply type-specific tools.

A database consists of one or more 'projects', each representing a distinct software system.

Most databases contain exactly one project, so we say 'database' and 'project' interchangeably.

A project contains a number of 'modules' corresponding to GC modules. Each module contains

a set of procedures, a set of variables, a set of type defmitions, a set of macros, a list of import

items, and a list of export items, as illustrated in Figure 2-1. The source text of procedures,

variables, types, and macros are written in Gc. Each module and item is attributed with status

infonnation, such as whether or not it has been compiled since it was last modified. Modules

also contain object code, but this is never explicitly visible to users.

;

2.3. User Interface

I MO~UI& 1 I
I Module n I

exportti,t: PI,tl, ...
mDM blt: PS Irem ~3, ...

Figure 2·1: Database of Software Objects

SMILE's user interface is script-oriented, and does not take advantage of windows or menus. l

However, some tools included in S~m..E, e.g., screen-oriented editors, behave differently for

biunapped screens than for dumb terminals.

The user interface is 'friendly' and includes on-line help facilities. It is not necessary to

remember either commands or arguments. The user can type a carriage-return after entering any

part of the command line, and SMll.E will prompt, one at a time, for remaining arguments; each

prompt indicates a default value based on the user's most recent activities, and the user types a

carriage-return to accept this default If the user types "?" at any point, SMn...E lists the currently

valid alternatives according to the user's context If the user instead enters "help", then SMILE

explains the selected command and its argument The user can also hit the interrupt key to any

prompt to abort the current command. SMTI...E permits the user to abbreviate commands and

arguments of commands to the shortest unambiguous form, and prompts with the possible

choices if an abbreviation is ambiguous.

IThe workstation implementations of SMIU do support windows. In particular, a user can modify a database in
one window while browsing through the database in a second. read-only window; see Section S.

--

5

3. Programming Assistance
SMILE assists individuals in writing programs. It maintains C source code, object code, and

the status of these objects in its database, and automatically performs menial development

activities. For example, it warns the programmer of the implications of changing the

specifications of source code items, and it automatically recompiles after changes.

3.1. Browsing

SMn.E helps the user navigate through a software system. The user selects a particular

module-the user'sfocus-which is then indicated in SMILE's top-level prompt. SMILE assumes

that further commands refer to this module and its contents until a different module is selected.

Browsing is object-oriented, in the sense that SMll...E automatically invokes the appropriate

viewing tool according to the type of the selected object. For C source code, this is normally a

screen-oriented text editor, an earlier version of SMll...E also provided a syntax-directed editor.

Although SMILE assumes all commands are with respect to the current focus, it can shift focus

automatically as the need arises. For example, if the user asks to visit an item that is not in the

current module but is in some other module, SMILE changes the focus before invoking the

appropriate viewer tool~

SMn.E also supports general searches. A query can apply to an individual item, a module, or

the entire database and SMILE can further filter the results of queries to display only items of a

particular type (import item, procedure, variable, etc.) or only items that match some pattern.

Pattern matching can be applied to the name of an item or to its source text, and a search can be

applied to either the definition or usage of items, or SMILE can generate a full cross-reference

table. The results of queries are displayed on the screen in the form of a transcript, which can be

scrolled if SMILE is run from within a text editor that supports user shells. SMILE can also direct

its answe~ to an external me or a printer. SMILE remembers past activities on a user-by-user

basis; this supports, for example, a special option for the printer to spool only those items that

have changed since last printed by the particular user.

6

3.2. Editing

SMILE creates and deletes modules and items within modules. If the user asks to remove an

item that is in another module. SMILE requests confmnation before automatically changing focus

to the other module to carry out the command. Thus, SMILE is forgiving of minor user errors.

The add command requires the type of the new item; if this is not given, SMTI...E prompts for the

missing argument. SMILE invokes the type-specific tool, and the low-level commands provided

by the tool are used to construct the content of the item. If the user enters a command to write,

save, save-and-exit, etc., then the new item is stored in the database; if the user tells the tool to

abort or exit (without saving), etc., SMILE aborts the original add command. Sl-tffi..E does this by

monitoring the tool; no changes to the tools themselves are required.

Similarly, an existing item can be added or removed from the impons or expons list of the

current module. When a new item is created, SMILE automatically asks the user whether or not it

should be added to the exports list. When an item is removed from the exports, S~ffi.E warns the

user if it is imported by other modules and requests confmnation; if confmnation is given, it

automatically removes these impons as well. When a user tries to delete an existing item, SMILE

reminds the user if it is exported and requests confmnation before removing the corresponding

item from the export list.

The user can make changes to items through the edit and change commands: SMTI...E invokes

the appropriate editing tool. Edit restricts the user to making local changes to the body of an

item, whereas change allows the user to make changes to both the specification and the body,

which may have side effects on other items. For example, edit invokes the editor tool only on

the body of a C procedure: if the tool supports multiple windows, then the header of the

. procedure is displayed for reference in another, read-only window. In the case of a C variable,

edit pennits the user to modify the initialization, but not the actual declaration. The edit

command does not apply to types and macros, because any modifications can affect usages.

Sometimes changing the specification of an item has implications beyond those anticipated by

the user. Therefore, SMTI...E always informs the user of potential problems before the damage is

done. When the user selects the change command, SMILE queries its database to fmd all the

other items that may be affected by the proposed change and informs the user of the extent of

this change, in terms of how many other items might subsequently have to be modified to

maintain consistency; it displays the actual dependencies on request. The user can abort or go

ahead with the change with full knowledge of the implications.

.

7

3.3. Error Detection and Error Reporting

After a user adds, removes, or modifies an item, SMILE supplies rapid feedback regarding

static semantic errors. The semantic analysis is applied only to the changed item rather than to

other items affected by the change. SMTI..E propagates the change by updating the status

information for dependent items. If the user requests it, SMILE submits these for analysis; this is

explained in the following section.

The analysis is performed in a background process, so that the user does not have to wait for

the tool to complete before continuing other. activities. When processing completes, all error or

warning messages are saved as an attribute of the current module (the focus), and the prompt is

changed to indicate the errors. The user can ignore the errors, or ask SMILE to display the

messages; thus, SMILE separates error detection from error reporting. Both the messages and the

visual cue in the prompt remain until the user edits the offending item, so the user does not need

to remember the particular errors or even the fact that there are errors within the particular

module. It is less intrusive to indicate errors by appending a notice to the prompt than to display

the errors themselves. An earlier version of SMTI..E dumped all the error messages on the user's

screen as soon as the tool completed. This behavior was judged unacceptable because it

interrupted the user's activities; the us~r was forced to read the messages then and remember

them, because they were not stored.

3.4. Bookkeeping

SMILE maintains status information for each item. For example, each C item has a status field

that indicates whether or not its static semantic analysis is up to date, whether the analysis was

successful, or whether analysis is in progress in the background. S?-.ULE maintains the correct

value for the status field. Furthermore, SMILE automatically propagates changes to items by

updating the status field of other items that might be affected by the change. The user can

examine the status information for any item or display all items with a particular status. A user

might use this information, for example, to request re-analysis of a particular item or all items

affected by a change or to look for items that still have errors and need correction.

SMILE performs code generation by compiling at the granularity of a module. Therefore, it

maintains a status field for each module indicating whether or not its object code is up to date, or

being generated in the background. After compiling a module, SMILE indicates the resulting

status in' this status field. SMILE invalidates generated code by setting the status field

accordingly under anyone of several conditions:

8

• a new item is added to the module;

• an existing item is moved between modules, removed, edited or changed;

• an item is added to or removed from the importlist, and this item is actually
referenced by an item of the module;

• an exported item is changed, and this item is imported into another module, where it
is actually referenced by an item in the importing module.

3.5. Code Generation and Linking

SMILE recompiles modules and relinks the system as needed. It recognizes several alternative

notions of 'as needed'. There is a tradeoff between recompiling immediately after a item of a

module changes and delaying until the user requests system execution: Late recompilation

requires the user to wait, but early recompilation may be wasted due to funher changes to the

same module; it also affects response time after each change. An earlier version of S~fILE

automatically recompiled as soon as an item changed, but recompiled only the item rather than

the entire module. This was changed because the time and space overhead was unacceptable.

The processing performed by the compilation tool after every modification led to slower

response .due to the cycles taken by the background job. Space was a problem because a separate

object code me was generated for each item. SMll..E now compiles an entire module rather than

individual items. This optimization was done without affecting the interaction with the user.

SMILE automatically generates a makefile, including the appropriate command lines, and

invokes make to construct an executable system. If a me name is given as an argument, the

executable code is placed in this me; otherwise, standard Unix practice is followed and the

output goes to the "a.out" me in the current working directory.

3.6. Modes

Modes permit the user to control and adapt SMILE's behavior. Users can set modes explicitly

with a command or implicitly in their SMll..E profiles. Every mode has a type and a default

value. The boolean Autocompilation mode permits the user to indicate to SMILE whether it

should temporarily refrain from automatically carrying out analysis and code generation. This is

a desirable fearure when the user starts making major changes to the application. Another

boolean mode related to compilation indicates whether or not the compiler should generate more

elaborate debugging information. The Verbose mode indicates the level of verbosity of SMILE's

warnings and suggestions;

9

Somes modes are used to tailor SMll..E to a particular operating environment. C!vfU mode

permits SMll.E to take advantage of some special CMU utilities. Home mode defines SMILE's

home directory in the local flle system, and Print mode names the local tool for spooling to the

printer. SMll..E is also tailored by the search paths and other environment variables defined in the

user's Unix proflle.

4. Development and Maintenance Assistance

SMILE assists software teams with their long-term developQ1ent and maintenance activities. It

coordinates simultaneous activities by multiple users, encourages reuse of existing code, and

logs source code changes.

4.1. Reservations

SMILE prevents multiple users from modifying the same module at the same time by requiring

the user to reserve a module before making changes to the module. If a user tries to modify a

component of a module that is not reserved, SMll..E explains that reservation is necessary. Only

one user can reserve a module at a time. If another user attempts to reserve a previously reserved

module, SMll..E infonns the user about who has reserved the module; users can also query

reservation status explicitly.

SMILE helps users avoid making incompatible changes. If a user tries to change the

specification of an exported item, SMILE checks to make sure that that all the modules that

import this item are also reserved by the same user. If not, SMll.E informs the user of their

reservation status.

4.2. Experimental Databases

Reservations are always made with respect to a private workspace called an experimenral

database. Figure 4-1 shows the relationship between experimental databases and the public

database, which contains the baseline version of the software system. The modules in the public

database are available to all members of the software team, while the contents of an experimental

database are private to its owner. An experimental database is a logical copy of the public

database; SMll..E employs a copy-on-write strategy to conserve space. Only modules reserved in

the current experimental database can be modified. Additional modules can be reserved at any

time, provided they are not already reserved by another user. SMILE automatically pre links non­

reserved modules (in a background process) to improve the response time of system generation.

10

Public Database

DOD
DOD

Figure ~-1: Experimental and Public Databases

When a user completes a set of changes, the user gives either the update or deposit command

to return all the reserved modules to the public database. Update retains the reservations, so the

user can make funher changes, while deposit removes the reservations. In either case, SMTI...E

makes the changes available to the rest of the software team by replacing the previous versions

in the public database with the changed modules from the experimental database. SMILE permits

users to back out of a proposed change by releasing the current reservations, so other users can

reserve these modules in their original state.

At the beginning of an update or a deposit, SMll...E checks the status of all reserved items to

ensure that they have been analyzed and compiled successfully, without any errors. If there are

inconsistencies, SMll...E aborts the command; otherwise, SMll...E locks the public database while it

copies the modified objects back into the public database. Thus, update and deposit behave as

transactions with respect to the public database.

4.3. Transactions

Every SMILE command is a transaction, in the sense that it is impossible to apply a second

command within the same database until the first command terminates.2 Background processing

is coordinated in such a way that its results are recorded without conflicting with the transaction

2In the workstation implementations of SMILE. a user can access unaffected partS of a database in a read-only
window. during a transaction; see Section 5.

11

model. An earlier version of SMll.E saved its internal state on disk after each transaction in order

to record the changes in a fail-safe manner. This led to poor responsiveness when there were

five or more simultaneous users in a time-sharing environment (on a V AX1M 780) and was

discontinued) Currently, SMll.E saves state after the number of transactions indicated by the

Checkpoint mode, and always saves state before and after commands that cause major changes,

such as change, update, and deposit. A user can select full state saving by setting the

Checkpoint mode to 1; alternatively, the user can explicitly give the chkpoint command after

particularly crucial changes.

SMILE coordinates changes among the experimental databases owned by the members of a

software project A user can add a new module only within an experimental database, but S~ffi..E

records the addition in the public database to prevent another user from adding another new

module with the same name. Similarly, SMILE records addition of import items in the public

database, since another user may attempt to delete the item in a different experimental database.

When the public database is locked during a transaction, other actions that affect the public

database are blocked until completion of the transaction. Since update and deposit often take

several minutes, blocked commands time out after thirty seconds and SMll...E advises the user to

try again later. This enables users to perfonn other development activities while they wait.

4.4. Change Logs

When programming teams are large, it is useful to maintain on-line change logs. Whenever a

user updates or deposits the contents of an experimental database, SMll..E prompts for a log entry

for each modified module. SMll...E automatically includes the user's name, the time/date, and the

module name with the text provided by the user. Users can also append log entries for their

reserved modules at any time. A user can query the entire log for a database or only the log for a

particular module, and request entries since a particular date and/or by a particular user. SMILE

prevents tampering with previous log entries, so a full audit trail of past changes is always

available.

3ntis performance problem is reduced when SMILE runs in a disaibuted workstation environment; see Section S.

12

4.5. Maintenance and 'Old Code'

As software systems become older, the modular structure tends to degenerate. Import and

export lists grow and rarely shrink, even though an imported item is no longer used in the

importing module and an exported item is no longer used outside the module, or even inside the

module. SMll..E assists user.; in restructuring old systems by moving items from one module to

another and adjust the imports and exports accordingly, by adjusting the imports and expons

throughout the database to reflect the actual interconnections determined by cross-references.

and by detecting unused items.

SMll.E provides facilities to bring externally developed 'old code' into a database, so it can

assist future maintenance and enhancement activities. SMll.E can also copy modules from one

database to another. SMILE makes it easy to use software maintained outside of a SMILE

database: Every module and every database may have a prelude, which lists external flies and

definitions of outside procedures; the corresponding object code flies and 'Cnix libraries are

listed in SMILE library items. The add, remove, and change commands apply to libraries, as do

the browsing facilities. The names of necessary libraries are given as arguments to the build

command to incorporate them in an executable system. SMTI.E helps user.; create new Unix

archives and libraries. It can produce a Unix archive from the C items in the database and can

generate a single object code me that can be used as a library outside SMn..E or within other

SMTI.E databases.

5. Implementation

SMILE was originally called IPC, for Incremental Program Constructor, but the name was soon

changed to SMTI.E. A prototype implementation was written in the Unix shell language during

August 1979; it was used in September 1979 to bootstrap to a more advanced implementation in

Gc. These two ver.;ions ran on a PDpThi 11na under Unix Ver.;ion 7.

SMILE was soon ported to a V AX (both 750 and 780) under Berkeley Unix, where it supported

the intensive Gandalf prototype [10] implementation in 1980 and 1981 and the development and

maintenance of the production-quality Gnome environment starting in 1982. SMILE was poned

to the Sun WorkstationThi in 1984 and to the MicroVA.X'fM workstation in 1985. The

MicroV AX ver.;ion is distributed by virtue of the Mach variant of Unix 4.3 BSD. The current

implementation consists of 15,000 lines of GC source code, which is available on request from

the Gandalf project at CMU.

13

Details

Although the original IPC was implemented in the Unix shell language, neither IPC nor the

later versions of SMTI...E should be thought of simply as user shells. SMll..E maintains its own

database of all information about a software project and provides its own commands for carrying

out development and maintenance activities; in effect, SMll...E presents its own model of the

programmmg process.

SMn.E maps its database onto the Unix me system in a hierarchical manner. Each database

corresponds to a directory, which contains a subdirectory for each project. which in turn contains

a subdirectory for each module. Each module directory contains two files listing the imports and

exports. respectively. and" four subdirectories. one each for procedures, variables, rypes, and

macros. The text of each item is stored in a separate fLIe. This mapping to the rue system is not

visible to users. Cross·rcferencing information, Status, and other derived attributes are

maintained in a graph structure. This graph is dumped in binary form to a file within the

database to persist between invocations of SMll..E. A backup copy of the graph is also

maintained, but if both the original and backup are cOmJpted, the graph can be regenerated from

the database.

SMn..E protects its users from operating system crashes, which might leave a database in an

inconsistent state. SMll..E automatically checks its database at the beginning of every session: [f

derived infonnation such as error messages or object code has been lost, SMn..E resets statuS

information to make sure they arc rederived. If the most recent session with this database was

done using a previous version of SMn..E itself, SMllL automatically reformats the graph structure

and the database and adds default values for any new kinds of auributes. Approximately 30% of

SMILE's source code is for disaster recovery and self repairs.

SMn..E hides the Unix me system and its tools and utilities from its users, with the exception

that it calls the user's favorite text editor. The default text editor at CMU is Emacs [91, but a

different default can be substituted at each site. SMll..E invokes lint to detect static semantic

errors in source code objects, cc to compile modules, and make to generate ex.ecutable systems.

The variants of grep support SMU.E's searches through source text and other objects.

I
. "ad SMU.E automatically transforms objects into the

h t modified these too s; Uls~ , .
We ave no b' the items of a module into a slOgle

fo
-at .. nuired by each tool. For example, SMlll com me~. ~rt SMIU from one
"" .. ~ il Thi made" easy to ,-

~~ ~ \\\\1 ~ ~\. """ .. ooro, • ,

version of Unix to another and to use new tools as they became available (e.g. , lint replaced cc

for static semantic analysis in 1982) without these changes being visible to the users. We believe

it would not be difficult to port SIvffi..E to a non-Unix operating system, providing it supplied

similar tools; the only local tools that are mandatory are a text editor, a C compiler, and a linker.~

6. Related Systems

SMll...E is similar to knowledge-based programming environments , advanced programming

language environments , language-based edito~ and software engineering environmentS. In the

following paragraphs, we describe the advantages and disadvantages of these systems with

respect to SMILE.

Knowledge-Based Environments: The CommonLisp Framework (CLF) [6], Refine~ [22] and

other knOWledge-engineering environments can provide StfIl.E-li..\;:e automation vIa

condition/action rules [5}. However, they cannot recognize the alte~ar.ive results of actions, e.g.,

the compiler may terminate successfully. producing object code, or unsuccessfully, produc ing

error messages. None of these environments support multiple simultaneous users. On the other

hand, SMILE is not extensible. so it is not as easy to add new kinds of objects and new tools.

Language Environments: Advanced programming languages such as Interlisp [261. loops

[23] and Smalltalk-80™ [8] include run-time environments that are indistinguishable from

single-user programming environments. Although they provide Sr-.ffi.E-like facilities, these are

strongly tied to the programming language. The implementation of SMILE is specific to the Ge,

but it would not be very difficult to reimplement for another conventional programming

language. provided corresponding tools were available. However. language environments can

integrate debugging facilities with the other tools.

Language-Based Environments:5 Language-based environments add many of the advantages

of language environments to conventional languages such as Pascal. The Synthesizer [25] and

Pecan [19J are examples of specific environments. while the Synthesizer Generator [20] and

Gandalf are systems for generating such environmentS from formal descriptions. Most language-

4~a.r!y versions of S"'ULE used only the 1OO1s aJld utilities r . .
SpeCI~ ID?ls foc !anguage..menLed prog.ra.mming en ... ' p OVided by UntA, but ~l:Tlt versions also include
descnbed In this paptt. lIOnmenu. These tools ~ not relevan l ., r .. .

to UJe aCliJlles

15

based environments provide advanced user interfaces with menus and pointing devices, and

perform various activities in response to programmer actions, but they are unable to anticipate

the potential results of actions and warn users before the damage is done. The practicality of

these environments is limited, since the entire software system is maintained as a single abstract

syntax tree; further, it is difficult to incorporate existing programming tools into these

environments.

Software Engineering Environments: SMILE is most similar to Cedar [27], DSEE1M [14],

Arcadia [24] and other large-scale environments for software development and maintenance.

Like S~m..E, these environments provide an interface between programming tools and the user on

the one hand, and between programming ~ools and the software database on the other. Such

environments typically provide more advanced version control and project management facilities

than Sr..m.E, but they leave individual programmers to the standard edit/compile/debug cycle

supported by traditional tools.

7. Conclusions
SMILE's primary contribution is the apparently intelligent assistance that spans both the

activities of individual programmers and the coordination of multiple programmers. SMILE

provides this assistance by

• maintaining all information about a software project in a database;

• integrating Unix tools into a new model of development and maintenance that hides
the particularities of Unix tools;

• actively participating in the development and maintenance processes by deriving
data when possible from previously stored information, automating the invocation of
these tools and anticipating the consequences of tool processing;

• imposing a structure on software development activities that permits it to 'know'
what the programmers are doing at all times, to 'infer' what they are likely to do
next, and to 'judge' what it can appropriately do for them;

• recovering from external and internal failures and repairing its databases
automatically, making it sufficiently robust and reliable for production use.

SMILE provides this assistance without a knowledge base of rules describing the software

development process. Instead, certain 'common sense' about software development activities

has been programmed directly into the environment, resulting in a production-quality intelligent

assistant that several projects have relied on to develop and maintain their software.

16

Acknowledgements
In addition to the authors, other past and present members of the Gandalf Project at Carnegie-

Mellon Unive~ity have been active in SMTI...E's evolution over the past seven years. Raul

:\tledina-Mora and David Notkin were involved in the early development. Barbara Denny, Bob

Ellison and Charlie Krueger have been responsible for maintaining and enhancing SMll.E at

various times. Many other people have developed tools that are presently incorporated into

S?vffi..E. Nico Habennann is the principal investigator of the Gandalf Project.

References

[1] Robert Balzer.
A 15 Year Pe~pective on Automatic Programming.
IEEE Tran.sacn·ons on Sofrware Engineering SE-llClI): 1257-1268, ~ovember. 1985.

[2] Robert M. Balzer.
Living in the Next Generation Operating System.
In Proceedings of the 10th World Computer Congress (IFIP Congress' 86). Dublin,

Ireland, September, 1986.
To appear as a book published by Springer-Verlag.

[3] David R Barstow and Howard E. Shrobe.
From Interactive to Intelligent Programming Environments.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, N"Y, 1984, pages 558-570.

[4J David R. Bamow, Howard E. Shrobe and Erik Sandewail.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984.

[5] Lee Brownston, Robert Farrell, Elaine Kant and Nancy Martin.

(6]

Programming Expert Systems in OPS5.
Addison-Wesley Publishing Co., Reading, MA, 1985.

CLF Project.
Introduction to the CLF Environment
March, 1986.
USC Infonnation Sciences Institute.

(7] David B. Garlan and Philip L. Miller.
GNOME: An Introductory Programming Environment Based on a Family of Structure

Editors.
In Procee.dings of the SIGSOFTISIGPLAN Sofrware Engineering Symposium on

Practlcal Software Development Environments. Pittsburgh, PA, April, 1984.

[8] Adele Goldberg and David Robson.
Smallta/k-80 The Language and its Implementation.
Addison-Wesley Publishing Co., Reading, MA, 1983.

17

[9] James A. Gosling.
Unix Emacs
Carnegie-Mellon University, Department of Computer Science, 1982.

[10] Gail E. Kaiser, Robert J. Ellison, David B. Garlan, David S. Notkin and Steven Popovich.
Gandalf User Manual and Tutorial.
In The Second Compendium of GandaIj Documentarion. Carnegie-Mellon University,

Department of Computer Science, 1982.

[11] Beverly L. Kedzierski.
Knowledge-Based Project Management and Communication Support in a System

·Development Environment
In Proceedings of the 4th Jerusalem Conference on Information Technology. Jerusalem,

Israel, May, 1984.

[12] Brian W. Kernighan and John R. Mashey.
The UNIX Programming Environment.
Software - Practice and Experience 9(1), January, 1979.
Appears in IEEE Computer, 12(4), April 1981 and in [4].

[13] Charlie Krueger.
Private communication.
August, 1986
Regarding largest system (ALOE) maintained in SMll..E.

[14] David B. Leblang and Gordon D. McLean, Jr.
Configuration Management for Large-Scale Software Development Efforts.
In GTE Workshop on Software Engineering Environmentsfor Programming in the

Large, pages 122-127. June, 1985.

[15] John R. Nestor.
Toward a Persistent Object Base.
In Proceedings of the IFIP WG 2.4 In terna tionai Workshop on Advanced Programming

Environments. June, 1986.
To appear as a book published by Springer-Verlag.

[16] David Notkin.

[17]

[18]

[19]

The GAl'IDALF Project
The Journal of Systems and Software 5(2):91-105, May, 1985.

Dewayne E. Perry.
Position Paper: The Constructive Use of Module Interface Specifications.
In Third International Workshop on Software Specification and Design. London,

England, August, 1985.

C.V. Ramamoorthy, Vijay Garg and Rajeev Aggarwal.
Environment Modelling and Activity Management in Genesis.
In Proceedings of SoftFairll: 2nd Conference on Software Development Tools.

Techniques. and Alternatives, pages 2-10. December, 1985.

Steven P. Reiss.
Graphical Program Development with PECAN Program Development Systems.
In Proceedings o/the SIGSOFTISIGPLAN So/tware.Engineering Symposium on

Practical Software Development Environments. Pittsburgh, PA, April, 1984.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

18

Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator. ..,
In Proceedings of the SIGSOFTISIGPLAN Sofrware Engineering Symposium on

Practical Software Development Environments. Pittsburgh, PA, April, 1984.

B. A. Sheil.
Power Tools for Programmers.
Datamation Magazine, 1983.
Reprinted in [4].

Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold.
Research on Knowledge-Based Software Environments at Kestrel Institute.
IEEE Transactions on Sofrware Engineering SE-ll(lI):1278-1295, November, 1985.

Mark Steflk and Daniel G. Bobrow.
Object-Oriented Programming: Theme.s and Variations .
. 41 Magazine 6(4):40-62, Winter, 1986.

Richard N. Taylor, Lori Clarke, Leon J. Osterweil, Jack C. Wiledon and ~fichal Young.
Arcadia: A Software Development Environment Research Project.
In 2nd Internan'onal Conference on Ada Applications and Environments. IEEE

Computer Society, ~1iami Beach, FL, April, 1986.

Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
Communications of the ACM 24(9), September, 1981.
Reprinted in [4].

Warren Teitelman and Larry Masinter.
The Interlisp Programming Environment.
IEEE Computer 14(4):25-34, April, 1981.
Reprinted in [4].

Warren Teitelman.
A Tour Through Cedar.
IEEE Sofrware 1(2):44-73, April, 1984.
Also appears in Proceedings of the Seventh International Conference on Software

Engineering, 1984.

[28] Walter F. Tichy.
Software Development Control Based on Module Interconnection.
In 4th International Conference on Sofrware Engineering. September, 1979.

[29] Terry Winogr.ui
Breaking the Complexity Barrier (Again).
In Proceedings of the ACM SIGPLAN·SIGIR Interface Meeting on Programming

lAnguages -Infomzation Retrieval, pages 13-30. Gaithersburg, lvID, November,
1973.

Reprinted in [4].

An Architecture for Intelligent Assistance
in Software Development

Gail E. Kaiser­
Columbia University

Department of Computer Science
New York, NY 10027

Peter H. Feiler
Carnegie-Mellon University

Software Engineering Institute
Pittsburgh, PA 15213

14 August 1986

Abstract

We define an architecture for a software engineering environment that behaves as an intelligent
assistant Our architecture consists of two key aspects, an objectbase and a model of the
software development process. Our objectbase is adapted from other research, but our model is
unique in that is consists primarily of rules that define the preconditions and multiple
postconditions of software development tools. Metarules define forward and backward chaining
among the rules. Our most significant contribution is opportunistic processing, whereby the
environment automatically performs software development activities at some time between when
their preconditions are satisfied and when their postconditions are required. Further, our model
defines strategies that guide the assistant in choosing an appropriate point for carrying out each
activity.

Copyright © Peter H. Feiler and Gail E. Kaiser

*The research presented in this paper was conducted while Dr. Kaiser was a Visiting Computer
Scientist at the Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA.

1

1. Introduction
In 1973, Winograd [30] presented his dream of an intelligent assistant for programmers that

would understand what it does: It would be based on an explicit model of the programming
world. Winograd described an imaginary programming environment, A, that would assist
programmers by providing early error checking, by answering questions about the program and
the interactions among program parts, by handling trivial programming problems, and by
automating simple debugging tasks.

Artificial intelligence research has moved closer to achieving this dream by developing a
knowledge-based approach to programming, which includes relationships among program units,
both in the abstract and with respect to a particular target system. The Masterscope package of
Interlisp [27] and the CommonLisp Framework (eLF) [5] maintain cross-referencing
information to answer queries about interactions among program units. Also, CLF's
knowledgebase understands the abstract relationships among program units. For example, CLF
'knows' that a system consists of modules and individual software objects (functions, variables,
etc.) and that object classes have particular properties, such as a maintainer and whether it has
been compiled.

A knowledge-based programming environment also includes the rules governing the software
development process. For example, wide-spectrum languages such as V [23] and Gist [1] have
been augmented with rules that aid the programmer in translating from higher- to lower-level
specifications and from specifications to executable code. CMS [13] provides a formal
representation of the software project model, time (for scheduling), and software development
activities. For example, if a 'capability' is a desired feature of the target system, then it must be
realized by a 'component' of the system; a 'task' must be defined to specify who is in charge of
the component and when it is due. Genesis's Activity Manager [19] provides similar facilities.

While work in AI was progressing, researchers in traditional software were addressing their
version of Winograd's dream. Tools were developed that automated certain aspects of the
programming process. For example, Make [7] automatically rederives an executable system
when part of the source code changes. SCCS [22] requires programmers to reserve modules for
change, thus ensuring orderly software evolution. RCS [28] supports multiple versions of
software objects and manages separate lines of development

Collections of tools were integrated into interactive programming environments that support a
particular programming language. The Synthesizer [26] combines language-oriented editing that
prevents syntactic errors with immediate feedback about static semantic errors; it also permits
programmers to interleave execution and debugging with editing. The Gandalf Prototype
[16] added a module interconnection language with incremental, intermodule consistency

checking to a C programming environment similar to the Synthesizer.

Unfortunately, the knowledge-based approach and the tools approach have progressed more­
or-less independently. The individual tools incorporate a small bit of knowledge about a
particular programming problem, but this knowledge cannot be augmented. The programming
environments are hardcoded with a particular view of the software development process that
defines the interaction between the programmers and the target system, but this knowledge is not
available to the users of the environment The knowledge-based environments are much more

2

general, but represent only a fraction of human expertise about software development and
maintenance.

Working within the tools approach, the members of the Gandalf project (including the authors)
developed a distributed, multi-user software engineering environment called SMILE [24, 12],
which is relatively close to achieving intelligent assistance. SMll.E presents a 'fileless
environment' to its users, answers queries, and automatically invokes various tools. However,
S~ill..E's knowledge of software objects and the programming process is hardcoded into the
environment.

Our experience with SMILE provided insights into the development of practical environments
and convinced us that a generalization of SMILE's internal architecture would aid in developing
an intelligent assistant for software development and maintenance. Our architecture for
intelligent assistance combines tools with knowledge. From the tools approach, we gain the
years of experience of other computer scientists building and using particular tools and
environments. From the knowledge-based approach, we gain a suitable structure for choosing
among tools and automating the invocation of tools. Our architecture defines a basis for
intelligent assistance that consists of two key aspects: an objecrbase and a model of rhe sofrware
development process.

The objectbase maintains all software objects, including tools, and provides the environment
with insight into the various classes of objects and the relationships among objects. For example,
one object is a component of another, and a particular object may be applied to another object to
produce a third.

The model imposes a structure on programming activities. It consists of an extensible
collection of rules that specify the particular conditions that must exist for particular tools to be
applied to particular software objects. Metarules permit the environment to understand the rules
and support opportunistic processing, where the environment performs activities when it knows
the results of these activities will soon be required by its users. Opportunistic processing is the
primary focus of this paper.

In this paper, we explain our architecture and how it meets certain fundamental requirements
for supporung a software engineering environment that understands what it does. Section 2
presents the basis for intelligent assistance defined by our architecture. Section 3 describes how
3.n intelligent assistant built on this framework can perform software development activities
automatically to provide intelligent assistance to its users. Section 4 briefly describes our
implementation.

2. A Basis for Intelligent Assistance
An intelligent assistant should understand what it is doing [30]. Most software tools are

"moronic assistants" that know what they are doing, but do not understand the purpose of the
objects they manipulate or how their tasks fit into the software development process. In other
words, they may know the 'how' but not the ·why'.

For example, Make has a simplistic world model consisting of files and command lines. A
'makeflle' defines dependencies among files and gives the command lines necessary for

3

restoring consistency among dependent files. Make's notion of consistency is based on files and
time: If the timestamp of an input file is later than the timestamp of an output file, then the
indicated command line should be passed to the Unix 1M shell. Make is used widely for
generating a new executable version of a system after source files have been modified.

However, Make's 'knowledge' is primitive. Its objectbase consists of files that have a single
attribute, their timestamp. Make knows nothing about applying tools to files: it just handles
command lines as indivisible units. Make does not understand source files vs. object files,
modules vs. systems, programmers or programming.

To give Make this knowledge we could define a notion of an object, which belongs to a class,
such as 'system' or 'module'. Each class would define the attributes, or properties, of its
objects. A 'module object code' object might have a 'history' attribute describing its generation
and a 'derivation of' attribute pointing to the object representing the corresponding source code.

We could then defme rules that model the part of the software development process relevant to
~ake. One rule might be that a 'programmer' object can modify a 'module' object; another rule
might state that after such a modification, the 'module' object is no longer consistent with its
'derivation' attribute and there is an obligation to restore this consistency. A third rule might
state that a precondition for a 'programmer' to test a 'system' is that all 'module object code'
objects that are components of the corresponding 'executable system' must be consistent with
their 'module'.

Given this knOWledge, Make could be considered to be relatively more intelligent. Make
would be easier to integrate with other tools that support configuration management, version
control, task management, etc., assuming these tools had similar knowledge of software objects
and their roles in the development process.

We believe that an objectbase and a model of the development process are prerequisites to
intelligent assistance. An assistant cannot understand why it performs particular activities unless
it knows

• the properties of the objects it manipulates,

• the capabilities of certain objects (programmers and tools) to manipulate other
objects,

• the preconditions required by each activity,

• the postconditions of each activity.
Therefore, our architecture specifies a general objectbase and an extensible collection of rules
describing the preconditions and postconditions of activities, as well as hints and strategies that
detennine the degree of the environment's contributions. We briefly describe the objectbase
here; the rules, hints and strategies are the topic of the following section.

Objectbase

We considered several possible forms for our objectbase. One possibility was the entity­
relation-attribute model proposed for Genesis t20]. However, weaknesses of relational databases
ma.'<e them inadequate for software engineering environments [15]. To maximize flexibility, we
chose an objectbase similar to those of object-oriented programming languages, such as Loops
[25]. In particular, we adopted their support for multiple inheritance and active values. Unlike

most such languages, however, we require a 'persistent' objectbase, one that retains its state
across invocations of the environment The same concepts are found in the objectbases
supported by other knowledge-based environments, such as AP3 [2] and Refine™ [23].

In our objectbase, each object is an instance of a class, which defines certain attributes of each
object and inherits other attributes from its superclass(es). Some attributes define the
relationships among objects: others trigger activities when accessed and/or updated. The
activities applicable to a class are defined as methods for the class.

This enables an intelligent assistant to expose its users only to the logical structure of the target
software system. The environment consists of a set of typed, interconnected software objects
representing the system and its history. The fnterconnections among software objects represent
the logical strucrure of the system. Object types include module, procedure, type. design
description, user task (or development step). user manual, ere. Typing permits the assistant to
provide an object-oriented user interface similar to the Smalltalk-80™ environment [10], where
the environment makes available to each user only those commands that are relevant to the
object under consideration.

3. Opportunistic Processing
The objectbase also maintains the rules that model the software development process. These

rules provide the meta-knowledge required for an environment to apply tools automatically. We
call this behavior opportunisric processing, which offloads simple activities onto the intelligent
assistant-menial activities, such as invoking the compiler and recording any errors found during
compilation. This approach contrasts with some intelligent assistance systems, such as the
Programmer's Apprentice (KBEmacs) [29] and CHI (previously PSn [23], which focus on the
separate problem of automatic programming.

3.1. Rules
We represent our model as a collection of rules similar to the production rules of Ops5 [4] in

that each rule has a condition and action. When the condition is true, the action may be
executed. Our rules differ from production rules in that the action is divided into two parts. an
activity and a postcondition. Because our rules have postconditions, we refer to the original
conditions as preconditions.

The acrivity part of a rule represents an integral software development task. For example,
"compile module" is one activity and "change compor'.ent" is another (a 'component' is a facility
defined within a module, such as a procedure, a variable, a type, ere.). The specific editing
commands applied during the course of the "change component" activity are not considered

5

activities. "Fix bug" is not an activity, since it involves many tasks, perhaps involving several
useI3. Thus our notion of an activity represents a middle-ground granularity.

Each activity is associated in the objectbase with a tool that perfonns the activity. One
attribute of each tool is whether it can be invoked by the environment without human
intervention. For example, the "compile module" activity is associated with the compiler, which
can be applied by the intelligent assistant; the "edit component" activity is associated with a text
editor (or a syntax-directed editor), which requires human interaction.

The precondition part of a rule - a boolean expression - must be true before an activity can
be perfonned. The operands of a precondition include software objects and the attributes of
software objects. For example, "notcompiled(module)" might be an appropriate precondition for
the "compile module" activity. Another precondition for "compile module" would be "for all
components c such that in(module, component c): analyzed(component c)", where "analyzed(c)"
is true only if a static semantic analysis of component c finds no errors. An activity may have
mUltiple preconditions that must be satisfied.

A postcondition becomes true when an activity is completed. Both preconditions and
postconditions are written as well-fonned fonnulas (wffs) in the first order predicate calculus.
OUf rules are based on Hoare's assertions [11], where a programming language construct is
associated with its preconditions and postconditions; if the preconditions are true before the
language construct is executed, then the postconditions will be true afterwards.

However, a programming activity may have multiple postconditions, exactly one of which is
true after the activity terminates. Which of the various possibilities is true can be determined
only by invoking the corresponding tool. For example, two postconditions for the "compile
module" activity might be "compiled(module)" and "errors(module)". Here we follow the
extension of Hoare's assertions proposed by Perry [18], where there must be multiple
postconditions to represent the exceptional results of executing a procedure. This notion of
postconditions distinguishes our architecture from CLF, Genesis' Activity Manager, and other
expert systems that rely on condition/action rules. The most important advantages are that we
can separate an activity from its results and therefore consider several alternative results within
our model.

Two example rules are given in Figure 3.1. The first states the preconditions and the two
postconditions for the "compile module" activity. The preconditions are given first, followed by
the activity (within braces), followed by the postconditions. The alternative postconditions are
separated by semicolons.

3.2. Meta Rules
Our architecture supports the definition of metarules that guide the intelligent assistant's use of

rules. One metarule states that if the preconditions of an activity are satisfied, and the activity
can be perfonned by the assistant, then the assistant may perfonn the activity automatically.
Consider the first rule in Figure 3.1. The metarule interprets this rule to mean that the assistant
may compile any modules M such that all the components of M have been analyzed but M has
not been compiled.

6

notcompiled(module) and
for all components c such that in (module, component c) :

analyzed(component c);
{ compile module }

compiled(module);
errors (module) ;

equals (module, focus(userid» and in(module, component);
{ edit component }

notanalyzed(component) and notcompiled(module) ;

Figure 3-1: Compile Rule and Edit Rule

In this example, "notcompiled(module)" is one of the preconditions to the "compile module"
activity; "errors(module)" is included as one of the possible postconditions. If the.. previous
compilation failed, "errors(module)" will be true. The "compile module" activity cannot be
performed when "errors(module)" is true, because its preconditions cannot be satisfied. If a user
then edits a component. perhaps to fix the error, the second rule of Figure 3.1 states that
"notcompiled(module)" will be set to true and the metarule permits compilation.

Importantly, this metarule states that the intelligent assistant l!illY perform an activity when
preconditions are satisfied: it does not state that the assistant must perform the activity as soon as
the preconditions are true, or at any time thereafter. However, the intelligent assistant may apply
the tool and use forward chaining to detennine additional activities whose preconditions are
satisfied by the postconditions of the first activity. Therefore, we call this metarule the 'forward
chaining metarule'.

Forward chaining supports behavior similar to language-oriented editors, such as the
Synthesizer and Gnome [8]. When the user makes a subtree replacement in the abstract syntax
tree representing the program, the editor automatically performs several actions. In the case of
editors generated from attribute grammars [21], the editor automatically re-evaluates the values
of attributes whose values may have changed. These attributes might represent the content of the
symbol table and the object code for the program. Other editor generators automatically invoke
action routines for type checking or code generation for modified program parts [6].

A second metarule states that if a user invokes a tool with unsatisfied preconditions, the
intelligent assistant should use backward chaining to find activities it can perform whose
postconditions might satisfy the preconditions of the activity requested by the user. In this case,
the metarule states that the intelligent assistant must exhibit this behavior. We call this metarule
the 'backward chaining metarule'.

Backward chaining supports behavior similar to Make, DSEETh{ [14], Toolpack [17] and other
software engineering tools in which a user may request regeneration of an executable system
after changes have been made to its source code. The environment uses dependency infonnation
previously supplied by the software development team to determine which source files to
recompile.

7

Sometimes our intelligent assistant attempts backwards chaining, but finds that the
preconditions cannot be satisfied; in this case, the user is informed of the problem. The
intelligent assistant is not expected to, for example, correct source code so that it will compile
successfully. For example, our intelligent assistant might support a large team where multiple
users should not change the same module simultaneously. Here, each user must reserve a
module before changing it. The preconditions and postconditions for the "reserve module"
activity are stated in the first rule shown in Figure 3-2 ("saved(module)" is true when the module
has been saved. by the version control tool), and the second rule states that the "change
component" activity cannot be performed unless the module containing the component is
reserved.

not reserved(module) and saved(module);
{ reserve module }

reserved (module, userid);

reserved (module, userid)
{ change component }

notanalyzed(component) and notcompiled(module);

for all components k such that in (module, component k)
and uses {component k, component c):

reserved {module, userid);
{ change component c }

Figure 3-2: Change Rules and Reserve Rule

The "change component" activity permits the user to modify the specification of a component
("edit component" permits the user to modify only the body). The third rule of Figure 3-2 states
that the containing module must be reserved along with any other modules that depend on it (c
and k distinguish multiple objects of the same type). The backward-chaining metarule enables
our intelligent assistant to automatically reserve modules whose components may have to be
modified to restore consistency with the changed component The metarule also prevents the
user from modifying the specification of a component when dependent modules cannot be
reserved (according to the first rule).

3.3. Strategies and Hints
We chose the name 'opportunistic processing' for these chores because the assistant may

perfonn an activity as the opportunity arises any time after its preconditions are satisfied and
before another activity whose preconditions depend on its postconditions. Rules may be tagged
so their activities are performed immediately after their preconditions are satisfied (i.e., forward
chaining applies) while other activities are performed only when their postconditions are
required (forward chaining does not apply). Since we need to choose other points on this
spectrum, we have included hints and strategies in our model to aid the intelligent as~istant in
making decisions.

8

A hint is similar to a rule, but without postconditions. The preconditions of a hint are used to
guide the intelligent assistant in choosing when to apply a tool whose other preconditions are
satisfied. Consider again the first rule from Figure 3.1. Suppose we do not want the assistant to
compile a module, even though the preconditions are satisfied, while a user with modification
rights is browsing through the module: The user may decide to change some components of the
module, and the compilation will have been wasted. So we use a hint, Figure 3-3, giving this
precondition for the "compile module" activity (angle brackets are used for parentheses). When
the assistant follows a strategy including this hint, compilation is delayed until the user changes
to another module.

not reserved(module) or
< reservsd(module, userid) and

not equals (module, fccus(userid» >
compile module]

Figure 3·3: Compile Hint

Since we want the human user to be able to invoke the compiler without changing to another·
module, we give this precondition to "compile module" in a hint, rather than as pan of a rule.
Hints apply only to the opportunistic processing of the intelligent assistant, not to activities
initiated by a human user. In other words, hints are considered during forward chaining and
ignored during backward chaining.

A strategy consists of a collection of hints and rules, which apply only when the strategy is in
force. The third (and currently final) metarule from our model enables the intelligent assistant to
employ strategies by combining its rules and hints ~ith the rules normally considered. Zero or
more strategies may be employed at the same time. When this results in more than one rule for
the same activity, all their preconditions must be satisfied; only one set of postconditions is
permitted.

Currently, our assistant cannot choose its own strategies; the knowledge to support this
capability requires additional research on user modeling. Instead, each user will select
appropriate strategies by informing the environment that he is, for example, a manager vs. a
programmer, developing a new system vs. maintaining an old system, or making major changes
vs. a minor revision. A strategy whose rules and hints result in automatically performing type
checking immediately after each component is edited would be appropriate for a minor revision,
but not for a large-scale changes involving many interrelated components.

3..t. Activities as Side·Effects
Often a tool performs additional aCUVlues as side effects. For example, the analysis tool

invoked for the "analyze component" activity may change the values of several attributes of
components. For the purposes of our rules, setting the value of an attribute is considered an
activity, resulting in a situation where one action of the intelligent assistant is embedded inside
another rather than being a consequence of forward or backward chaining. This case

9

demonstrates a limitation of our rules: Secondary actions whose arguments cannot be
determined in the general case cannot be expressed easily as postconditions. Instead, potential
side effects are indicated by attributes of the tool.

In such cases, the secondary activities are often described by their own rules, and these must
be considered for further processing. For example, some rules related to the "uses" attribute of a
component are given in Figure 3-4. The "uses" attribute lists the components that the component
depends on.

notanalyze~(component);

{ analyze component }
analyzed(component);
errors(component);

in (module, component c) and
< in(module, component k) or imports(module, component k) >;
{ component c uses component k }

uses(component c, component k);

exports (module N, component) and
not equal(module M, module N);
{ import component }

imports (module M, component);

in (module, component);
{ export component }

exports (module, component);

Figure 3-~: Analyze Rule, Uses Rule and Import/Export Rules

The first rule gives the obvious preconditions and postconditions for the "analyze component"
activity. The second rule states a component c cannot use another component k unless k is in the
same module or is imported into the module. The third rule means that a component cannot be
imported by a module M unless it is exported by another module N. The fourth rule states that a
component cannot be exported by a module unless it is in that module.

What happens when the analysis tool finds that procedure p (a component) calls procedure q
(another component) and tries to set the "uses" attribute of procedure p to include procedure q?
If q is in the same module as p, there is no problem; the attribute is set and the analysis
continues. If q is not in the same module, the intelligent assistant checks whether it is imported.
In the case where q is not already imported, the assistant notes that "imports(module,
component)" is a postcondition of the "import component" activity (third rule) and realizes it can
perform the "import component" activity without human intervention. It considers the
preconditions of this activity. The assistant queries its objectbase to find the module that
contains q. If q is already exported from that module, the assistant performs the "import
component" activity. If not, the backward-chaining metarule penni~ the assistant to follow the

10

preconditions of the activity given in the fourth rule of Figure 3-4. The assistant can add q to the
exports of its module, then actually import q into the original module, and then permit the
analysis tool to set the "uses" attribute of p.

In the above scenario, we ignored the possibility that distinct procedures named q might be
found in more than one module. Sometimes language-specific typing information can be used to
narrow down the possibilities, but generally the intelligent assistant must interrupt the human
user to explain its dilemma and to ask which q is intended. The assistant can then proceed as
described in the previous paragraph.

If no component named q is in the objectbase, the assistant considers the "add component q"
activity, whose postcondition is the existence of q. A sufficiently intelligent assistant could carry
out this activity by creating a stub for the procedure within the module where the use occurs; the
Gnome programming environment for Karel does this automatically [91. If this is not feasible,
an alternative would be to ask the user to create the procedure (or stub) before continuing the
analysis, but this would be intrusive; a preferred alternative is to inform the analysis tool of the
problem and prevent it from performing the "procedure p uses procedure q" activity. This causes
the analysis tool to terminate unsuccessfully, generating the "errors(p)" predicate among its
post_conditions. .

In this discussion, "import component" and "export component" are among the activities that
can be performed by the intelligent assistant without human intervention, permitting the assistant
to carry out the repairs illustrated by the example. An alternative strategy would require the
assistant to take the imports and exports as given. This might be appropriate for languages, such
as Ada TM, that include their own module constructs, where reference to an external component
without the appropriate "with" clause should be detected as an error.

3.5. Implicit Queries
In the previous example, the assistant automatically queried its objectbase to locate procedure

q. When the environment performs a query on its own, rather than in response to a user
command, we call this an implicit query. Implicit queries are necessary to determine whether the
preconditions of rules and hints are satisfied and to find the next rules to be applied in forward
and backward chaining.

Another application is to anticipate the postconditions of activities, enabling the environment
to warn the user when an action is likely to lead to adverse results. Consider again the two rules
shown in Figure 3-5. Through forward chaining, changing a component will lead to semantic
analysis, which may result in errors. When a user invokes the editor on a particular component,
the environment anticipates this forward chaining and notes the possible "errors(component)"
postcondition. This causes it to perform an implicit query to determine likely causes of the
errors.

The intelligent assistant cannot guess what modifications the user will make and how these
will affect other components. However, it can take advantage of the "used-by" attribute to
determine those components most likely to be affected. Both the "used-by" attribute and its
inverse ("uses") are listed in the objectbase among the potential side effects of the editor tool.

reserved (module, userid)
{ change component }

11

notanalyzed(component) and notcompiled(module);

notanalyzed(component);
{ analyze component }

analyzed(component);
errors(component);

Figure 3-5: Change and Analyze Rules

The environment informs the user of potential sources of semantic inconsistencies by presenting
the list of components given by the "used-by" attribute of the component argument to the ¢itor.
The user can take this information into account and choose whether or not to abort the "change
component" command.

A further application of implicit queries was implied in Figure 3-2. A user gave the "change
component" command, and backward chaining led the assistant to query the objectbase to
detennine whether all the modules affected by the proposed change were reserved by this user.
If not, the environment would attempt to reserve all the necessary modules. However, this
cannot succeed if some of these modules are reserved by other users. In this circumstance, the
assistant presents the results of its implicit queries to the user to explain why the requested
activity is not permitted.

3.6. Summary
The main points of our architecture for modeling the software development process are as

follows.

• Rules define the preconditions that must be satisfied before a tool can be applied and
the alternative postconditions of each tool.

• Hints define the preconditions that must be satisfied before a tool can be applied by
the environment; unlike rules, hints do not affect the activities of human users.

• Two metarules define forward chaining from the postconditions of completed
activities to the preconditions of other tools and backward chaining from the
preconditions of desired activities to the postconditions of other tools.

• Tools may have side effects that cannot be expressed directly as postconditions, but
these are nevertheless considered with respect to forward and backward chaining.

• The environment performs implicit queries to detennine the attributes of software
objects and the potential side effects of tools.

• Strategies group rules and hints appropriate for particular users and for particular
phases of software development and maintenance. Our third metarule enables the
intelligent assistant to consider these strategies during forward and backward
chaining.

12

.t. Implementation
We are implementing our intelligent assistant by by reimplementing the internal mechanisms

of S;\ill.E. The advantages of starting with SMILE are (1) we can implement in place, retaining at
all times a more-or-Iess working environment; (2) we have continued to use much of the
previous S~ill.E code, most notably its disaster recovery mechanisms - approximately 30% of
SMILE's source code protects against internal failures and supportS recovery from external
failures (disk full, system crashes, abort signals, etc.), and (3) we can continue to support the
many systems, including SMll.E, that have been developed and maintained using SMILE.

We are currently replacing SMll.E's hardcoded knowledge about the software development
process with the rules, hints and strategies of our model. The preconditions and postconditions

. of rules are translated into C routines that perform the corresponding queries and changes to the
objectbase. The metarules are currently hardcoded. For example, forward chaining is performed
by hashing on the actual postconditions of the most recently completed activity to find rules with
potentially matching preconditions, which are then checked by the procedures that implement the
preconditions.

We have so far retained SMILE's original objectbase, which is mapped OntO the Unix me
system, but we are currently designing a more nexible mapping that will support an extensible
objectbase. We expect to complete this design and its implementation within three months. We
have also retained the same user interface and tools, but expect to later replace the user interface
to take advantage of bitmapped displays.

5. Conclusions
Our general architecture for intelligent assistance consists of an objectbase and a model of the

software development process. The advantage of an objectbase is it permits the assistant to
present a 'fileless environment' to its users, so the users are concerned only with the logical
entities associated with software development and not with the details of the underlying tile
system and operating system. The advantages of a model of the software development process is
that it can automate bookkeeping chores and other simple development activities and can
constrain the invocation of tools to maintain consistency among the software objects.

These notions have been promoted by other researchers as the fundamental basis for a
programming environment that understands what it does. The specific contribution of our
research is the formalization of opportunistic processing, including implicit querying.
Opportunistic processing is made possible· by rules that describe the preconditions and
postconditions of software development activities, metarules that permit the intelligent assistant
to take advantage of these rules to enable automatic processing, and strategies that guide the
assistant's application of the metarules. The result is a significant improvement in the assistance
that the environment can provide for software development and maintenance by individuals as
well as by teams of programmers, managers and other staff.

13

References

[1] Robert Balzer.
A 15 Year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SE-I1(11):1257-1268, November, 1985.

[2] Robert M. Balzer.
Living in the Next Generation Operating System.
In 10th World Computer Congress. Dublin, Ireland, September, 1986.
Proceedings to appear as a book published by Springer-Verlag.

[3] David R Barstow, Howard E. Shrobe and Erik Sandewal1.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984.

[4] Lee Brownston, Robert Farrell, Elaine Kant and Nancy Martin.
Programming Expert Systems in OPS5.
Addison-Wesley Pub. Co., Reading, MA, 1985.

[5] CLF Project.
Introduction to the CLF Environment
~arch, 1986.
USC Infonnation Sciences Institute.

[6] Peter H. Feiler and Raul Medina-Mora.
An Incremental Programming Environment
IEEE Transactions on Software Engineering SE-7(5):472-482, September, 1981.

[7] S.L Feldman.
Make - A Program for Maintaining Computer Programs.
Software - Practice & Experience 9(4):255-265, April, 1979.

[81 David B. Garlan and Philip L. Miller.
GNOME: An Introductory Programming Environment Based on a Family of Structure

Editors.
In SIGSOFJISIGPlAN Software Engineering Symposiwn on PracticaL Software

Development Environments, pages 65-72. Pittsburgh, PA, April, 1984.
Proceedings published as SIGPlAN Notices, 19(5), May, 1984.

[9] David Garlan.
Private communication.
July, 1986
Regarding capabilities of Gnome programming environments.

[101 Adele Goldberg.
The Influence of an Object-Oriented Language on the Programming Environment.
In 1983 ACM CompurerScience Conference. February, 1983.
Reprinted in [3].

[11] C.A.R. Hoare.
An Axiomatic Approach to Computer Programming.
Communications of the ACM 12(10):576-580,583, October, 1969.

l~

[12] Gail E. Kaiser and Peter H. Feiler.
Intelligent Assistance without Anificial Intelligence.
In Thirty-Second IEEE Computer Society International Conference. San Francisco, CA,

February, 1987.
Conference article to appear. Now available as CMU Software Engineering Instirute

Technical Report, SEI-86-ThI-14, September. 1986.

[13] Beverly L. Kedzierski.
Knowledge-Based Project Management and Communication Support in a System

Development Environment.
In 4th Jerusalem Conference on Information Technology. Jerusalem, Israel, May, 1984.

[14] David B. Leblang and Gordon D. McLean, Jr.
Configuration Management for Large-Scale Software Development Efforts.
In GTE Workshop on Software Engineering Environmentsfor Programming in the

Large, pages 122-127. June, 1985.

[15] John R. Nestor.
Toward a Persistent Object Base.
In IFIP WG 2.4lnternarional Workshop on Ad\:anced Programming EnvironmentS.

June, 1986.
Proceedings to appear as a book published by Springer- Verlag.

[16] David Notldn.
The GAl'fDALF Project.
The Journal of Systems and Software 5(2):91-105, May, 1985.

[17] LJ. Osterweil.
Toolpack - An experimental software development environment research project.
IEEE Transactions on Software Engineering SE-9(6), November, 1983.

[18] Dewayne E. Perry.
Position Paper: The Constructive Use of Module Interface Specifications.
In Third International Workshop on Software Specification and Design. London,

England, August, 1985.

[19] C.V. Ramamoorthy, Vijay Garg and Rajeev Aggarwal ..
Environment Modelling and Activity Management in Genesis.
In SoftFairll: 2nd Conference on Software Development Tools. Techniques. and

Alternatives, pages 2-10. December, 1985.

[20] C. V. Ramamoorthy, Yutaka Usuda, Wei-TekTsai and Atul Prakash.
GENESIS: An Integrated Environment for Supporting Development and Evolution of

Software.
In IEEE Computer Sociery' s Ninth International Computer Software & Applications

Conference, pages 472-479. October, 1985.

[21] Thomas Reps, Tim Teitelbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based Editors.
ACM Transactions on Programming Languages and Systems 5(3):449-477, July, 1983.

[22] M. J. Rochkind.
The Source Code Control System.
IEEE Transactions Oft Software Engineering SE-1 :364-370, 1975.

15

[231 Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold.
Research on Knowledge-Based Software Environments at Kestrel Institute.
IEEE Transactions on Software Engineering SE-11(11): 1278-1295, November, 1985.

[24] Barbara J. Staudt, Charles W. Krueger, A.N. Habermann and Vincenzo Ambriola.
The GANDALF System Reference Manuals.
Technical Report CMU-CS-86-130, Carnegie-Mellon University, Department of

Computer Science, May, 1986.

[25] Mark Steftk and Daniel G. Bobrow.
Object-Oriented Programming: Themes and Variations.
AI Magazine 6(4):40-62, Winter, 1986.

[26] Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
Communications of the ACM 24(9), September, 1981.
Reprinted in [31.

[271 Warren Teitelman and Larry Masinter.
The Interlisp Programming Environment.
IEEE Computer 14(4):25-34, April, 1981.
Reprinted in [31.

[28] Walter F. Tichy.
RCS - A System for Version Control.
Software - Practice and Experience 15(7):637-654, July, 1985.

[29] Richard C. Waters.
KBEmacs: Where's the AI?
The AI Magazine VU(1):47-56, Spring, 1986.

[301 Terry Winograd.
Breaking the Complexity Barrier (Again).
In SIGPlAN·SIGIR Interface Meeting on Programming Languages -Information

Retrieval, pages 13-30. Gaithersburg, MD, November, 1973.
Reprinted in [3].

Granularity Issues in a
Knowledge-Based Programming Environment

Peter H. Feiler
Carnegie-Mellon University

Software Engineering Institute
Pittsburgh, PA 15213

Gail E. Kaiser·
Columbia University

Department of Computer Science
New York, NY 10027

September 1986

Abstract

MARVEL is a knowledge-based programming environment that assists software development
tearns in performing and coordinating their activities. While designing MARVEL, we discovered
several granularity issues that have a strong impact on the degree of intelligence that can be
exhibited, as well as on the friendliness and perfonnance of the environment. The most
significant granularity issues include the refinement of software entities in the software database
and decomposition of the software tools that process the entities and report their results to the
human users. We describe the many alternative granularities and explain the choices we made
for MARVEL.

Copyright © Peter H. Feiler and Gail E. Kaiser

*The research presented in this paper was conducted while Dr. Kaiser was a Visiting Computer
Scientist at the Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA.

To appear in 2nd Kansas Conference on Knowledge-Based Software Development,
Manhattan, KA, October, 1986.

Table of Contents
1. Introduction
2. A Basis for Intelligent Assistance

2.1. The Objectbase
2.2. The Model

3. Granularity of Structure
4. Impact of Structure Granularity on Tools
5. Granularity of Processing
6. Conclusions
Acknowledgements
References

1
2
3
3
~

5
7
8
9
9

1

1. Introduction
We are developing a knowledge-based programming environment called PROFESSORJ.\1ARVEL,

or MARVEL for short. 1 MARVEL is knowledge-based in the sense that it incorporates knowledge
of the logical entities and the activities involved in the software development process. It is an
environment rather than a software tool because it actively participates in the software
development process rather than remaining passive until explicit demands are made by its users.
The primary functions of MARVEL are (1) to interactively answer queries about the current status
of the development effort and the relationships among components of the target software system
and (2) to automatically perform bookkeeping chores and simple development activities. This is
in contrast to some other intelligent assistance systems such as the Programmer's Apprentice
(also known as KBEmacs) [29], which focuses on planning, and cm (previously PSI) [23] and
the Formalized System Development system (FSD) [2], which focus on automatic programming.
MARVEL is also not concerned with solving the problems of natural language processing; queries
are expressed in a simple but formal notation.

Unlike most other knowledge-based programming environments, MARVEL suppOrts multi­
programmer software development teams in addition to individual programming efforts. For
example, it includes facilities corresponding to Build [7] and SCCS [21] to coordinate
simultaneous and sequential activities among multiple developers. However, MARVEL
approaches these facilities in a participatory, knowledge-based fashion that enables it to
automatically invoke the tools at the proper times wi~out human intervention.

MARVEL is our second multi-user programming environment Our ftrst system, called SMILE
[24, 14], presents a ftleless environment to its users, answers queries about the evolving

software system, and automatically invokes various software development tools. However,
SMILE's knowledge is hardcoded into the environment and is not extensible: SMILE does not
really 'understand' what it is doing and users cannot augment SMILE with additional knowledge.
SMU.E was developed several years ago to support our research on the Gandalf project [20]. It
has since been used extensively by other projects at Carnegie-Mellon University and at AT&T
Bell Laboratories. and has been distributed to approximately forty sites. SMILE was
implemented in C and runs on Unix. 1M.

Although we found SMU.E very useful. and in fact relied on it for the implementation and
maintenance of our Gandalf research, we became convinced that an environment that
'understands' what it was doing could provide much more valuable assistance. Because of this,
we have based our design of MARVEL on a general architecture for intelligent assistance. The
architecture consists of an objectbase and a model of the software developmEnt process. The
objectbase maintains all software objects, including tools such as the editor and the compiler.
The objectbase provides MARVEL with insight into the various classes of objects and the
relationships among objects, such as one object is a component of another and a particular object
may be applied to another object to produce a third object.

The model imposes a structure on programming activities. It consists of a user-extensible

IProfessor Marvel was the (Kansas) name of 'the man behind the curtain' in the movie The Wi:ard 0/0:.

2

collection of production-like rules that specify the particular conditions that must exist for
particular activities to be carried out The rules enable MARVEL to provide opportunistic
processing, where the environment perfonns simple activities automatically. such as satisfying
the preconditions of an activity and then carrying out the activity when it knows the results of the
activity will soon be required by a user. For example, when a user wants to run the system,
~1ARVEL can automatically link the executable system from its component modules; if
necessary, MARVEL recompiles modules automatically to satisfy the precondition to linking that
the object code for these modules is up to date.

Insight and opportunistic processing are presented elsewhere [15], and will be discussed only
briefly. Our focus is the granularity issues that arose during our long experience with SMILE and
during the subsequent design of MAR VEL. In particular, we ran into several problems regarding
the appropriate refmement of logical entities to be maintained as separate software objects and
the units appropriate both for tools and for reporting the results of tool processing to the users.
Choice of granularity affects the capabilities of the intelligent assistant. the friendliness vs.

intrusiveness of the programming environment and, of course, performance and responsiveness.
We believe that discussion of these issues, including an explanation of the decisions we made
regarding MARVEL, will prove useful to other researchers who are in the process of building
knowledge-based programming environments.

In the rest of this paper, we briefly sketch MARVEL's underlying basis for intelligent
assistance. We then address granularity issues, categorized into three areas: the granularity of
structure in the objectbase, its impact on tools, and the granularity of processing automatically
performed by the environment We conclude by summarizing the significance of these issues for
achieving intelligent assistance for software development and maintenance.

2. A Basis for Intelligent Assistance
The distinguishing feature of an intelligent assistant is that it understands what it is doing [30].

We believe that both an objectbase and a model of the software development process are
prerequisites to intelligent assistance. An assistant cannot understand why it performs particular
activities unless it knows

• the properties of the objects it manipUlates,

• the capabilities of certain objects (programmers and tools) to manipulate other
objects,

• the preconditions required by each activity,

• the results or postconditions of each activity.
Therefore. MARVEL includes a general objectbase that maintains software entities and tools, and
an extensible collection of rules that describe the preconditions and postconditions of software
development activities.

3

2.1. The Objectbase
There are several possible forms for MARVEL's.objectbase to take [19]. To ffiaXlIruze

flexibility, we chose an objectbase similar to the objectbases of object-oriented programming
languages, such as Loops [25]. In particular, we adopted their support for mUltiple inheritance

. and active values. The same concepts are found in the objectbases supported by other
knowledge-based programming environments, such as AP3 [3] and RefmeThf [23].

In MARVEL's objectbase, each object is an instance of a class, which defines certain attributes
of each object and inherits other attributes from its superclass(es). Some attributes defme the
relationships among the objects, while others trigger activities when they are accessed and/or
updated. The software development activities applicable to the members of a class are defined
as methods for the class.

The objectbase enables MARVEL to present a 'fileless environment', exposing its users only to
the logical structure of the target software system and hiding the underlying files and directories.
As far as the users are concerned, the environment consists of a set of typed and interconnected
software objects that represent both the system and its history of development. Object types
include module, procedure, type, design description, user task (or development step), user
manual, etc. Typing of these objects permits MARVEL to provide an object-oriented user
interface similar to the Smalltalk-BOThf environment [10]. This means that the environment
makes available to each user only those commands that are relevant to the object under
consideration. .

The interconnections among software objects represent the logical structure of the system.
The more detailed the structure, the more information is available for browsing and querying,
and the more MARVEL can deduce which activities it can suitably perform and understand those
tasks that the users carry out. These issues are addressed in Section 3.

2.2. The Model
There are also several possible forms for the rules we use to model the software development

process. Again to maximize flexibility, we chose a style of rule developed in the program
verification community. Each software activity is associated with preconditions and
postconditions, as defined by Hoare [13]. The postconditions of an activity may satisfy the
preconditions of future activities.

Our rules are similar to the production rules of Ops5 [5] and the automation rules of FSD in
that each rule has both a condition and action. When the condition is true, or satisfied, then the
action may be carried out Our rules are different from productions in that the action is divided
into two parts, an activity and its postconditions. Because our rules have postconditions, we
refer to the original conditions as preconditions. We use the activity part of a rule to represent an
integral software development task. For example, "compile module" is one activity and "edit
procedure" is another. The preconditions of "compile module" might be that the module is not
compiled and that all its components have been analyzed without errors; the postconditions
might be that the module was compiled and this produced either object code or error messages.
Preconditions and postconditions are written as well-formed formulas (wffs) in the flrst order
predicate calculus.

Our rules are maintained as part of the MARVEL's objectbase. They pennit MARVEL to
perform activities and to explain activities in terms of the rules. Forward chaining allows that if
the preconditions of a rule are satisfied, then MARVEL can perfOI111 the activity; the
postconditions may satisfy the preconditions of other rules, which can then be applied.
Backward chaining allows that if a user requests a particular activity, then MARVEL can attempt
to satisfy its preconditions; this often requires the environment to flrst perfOI111 other activities
whose postconditions match the preconditions of the original rule.

Forward and backward chaining, together with the rules and the objectbase, support insight
and opportunistic processing. One simple example of insight occurs when a user invoke~ the
"change procedure" command, which enables editing of both the specification (header) and body
of a particular procedure. MARVEL uses the results of its incremental analysis of dependencies
among software components to inform the user of the potential consequences of this action; for
example, each calling procedure will have to be modified if the number or order of the
parameters are changed. A simple example of opportunistic processing occurs after a user
completes the "change procedure" command by writing out the procedure from the editor.
:\1ARVEL notices that a postcondition of this 3.ctivity is that the analysis of the procedure is not
up to date, which is also the precondition of the "analyze procedure" activity; ~1ARVEL uses
forward chaining to automatically update its incremental analysis.

3. Granularity of Structure
The degree of intelligence that can be demonstrated by MARVEL, or any knowledge-based

programming environment, is intimately tied to the granularity of independent entities
maintained by its objectbase and to the granularity of the processing tools it has available. The
granularity of structure refers to the extent the target software system is decomposed mto
separately stored entities. An entity is considered separately scored when it is represented as an
object; in other words, it is not necessary to parse or analyze a . larger' object to derive the entity:
For example, a procedure might be represented as an object: its attributes might include its name
and a list of the other procedures it uses, but not the specific statements that make up the
procedure. It would be necessary to parse the procedure's source text to find any particular
statement.

There are several reasons why it is desirable to have the logical entities of the target system
separately accessible. In the flrst place, an object can be referenced from other parts of the
system, while it is not possible to refer directly to only a portion of the information within an
object. For example, MARVEL can support separate access to modules, procedures, macros, and
global variables in the program domain, sections and subsections in the document domain, and
plans, tasks, and developers in the management domain. These logical entities depend on each
other in various ways, such as actual use dependency among software components such as
procedures, macros and variables, intentional use dependency as expressed through export and
import clauses of modules, compilation order, or referential use such as reference to a section or
a citation in a document. If this interconnection structure is accessible, MARVEL can detect
inconsistencies among the components of the target system; for example, a module M might
import a procedure p from module N, even though there is no procedure within M that actually
calls p. If this situation persists, it may imply an error, and MARVEL can bring this to the user's
attention.

s

Certain logical entities should be separately accessible as objects because then it is possible to
associated status infonnation with-the entities by represented the status as one or more attributes_
The status may represent the need to or the result of processing an entity, such as analysis of a
procedure, code generation for a module, or running a section of a document through the
document processor. It can also indicate coordination information among multiple users and
between users and tools, i.e., synchronization and version information [27].

There are situations where it is desirable to store the status of an object as an attribute that
references another object with its own subparts. This can improve the degree of intelligence
exhibited by the kriowledge-based programming environment For example, to support 'smart
recompilation' [28], it is necessary to store status information about each intermodule symbol
deflnition and use. This enables MARVEL to recompile only those entities that actually use
modified symbols, as opposed to recompiling all modules that depend in any way on the module
whose interface has changed. In contrast, SMILE supports import and export clauses, but does
not pennit more detailed relations among individual components, so it is not able to provide this
level of intelligent processing.

It may be desirable for users to navigate and manipulate the target system according to the
structural units represented by logical entities. Syntax-directed editors [26] usually support
cursor movement and manipulation at the language construct level; Rational™ [I] takes this to
an extreme by perfonning all processing in terms of the Diana [6] representation of Ada 1M

programs. Even text editors support a certain amount of structure, such as the electric-lisp mode
in Emacs [12] recognizing matching parentheses. Graphical editors support manipulation of
basic graphical symbols such as lines, circles and icons as well as composite graphical units.
Word processing systems support character, word, sentence and paragraph manipulation.
MARVEL supports viewing at the level of objects, using certain of their attributes as paths that
can be followed by the browser to other objects.

User actions, especially modiflcations, may have different effects for different logical entities.
For example, editing a comment does not affect analysis or code generation but is relevant to
updating hardcopy listings, whereas modiflcation to a design specification not only affects other
-parts of the design, but also the implementation. Thus, MARVEL provides object-oriented
commands to reflect these distinctions. MARVEL can then recognize a user's focus of attention,
i.e., the software objects currently under consideration, as well as the extent of his or her
modiflcations in order to intelligently and effectively restore consistency of the target system.
SMILE's more primitive user interface requires the user, for example, to give the "edit procedure"
command to edit the body of a procedure and the distinct "change procedure" command to edit
its specification (header).

4. Impact of Structure Granularity on Tools
The question arises as to the choice of the smallest logical entity that should be separately

stored. The answer must consider that there are two ways to have logical entities separately
accessible. One is by analyzing a 'larger' entity that is stored as a separate object in the
objectbase, and deriving the 'smaller' entities as needed. The alternative is to represent each
logical entity as a separate object The appropriate choice is a tradeoff between the space cost of

6

the proliferation of objects and explosion of information to be stored on the one hand and the
time cost of reprocessing of information on the other. This manifests itself in a variety of ways.

Tools provided as part of a knowledge-based programming environment may require a special
interface to the objectbase as they may not be able to cope directly with composite objects. For
example, a compiler requires adaptation to be able to process modules as separate compilation
units when they consist of sets of references to objects representing imported entities and a
composition of objects representing the procedures, etc., comprising the module. It is preferable
to bring in existing tools without modifications; DSEETh{ [18] does this for version control by
providing a virtual interface between each tool and the version manager. We would like to do
this in the general case, so :VIARVEL provides multiple views corresponding to the normal
interfaces of the tools [9]. SMilE does not support views, and so is force~ to store objects in the
form expected by its tools: this sometimes results in duplication of information when the same
kind of object is processed by multiple tools.

The status information of all components of a composite object may be accessed frequently.
For example, the result of analysis of all components of a module must be positive before code
generation should be done. ~IARVEL can either compute the composite status value every time it
is desired or it can cache the value in the module object and maintain it incrementally, as
compoqents are modified and re-analyzed, using, for example, finite differencing techniques
[11].

Another example of status information is the error messages resulting from unsuccessful
processing. Users tend to query them at times other than the time they are produced by the
processing tool, except when the activity is performed on user demand. MARVEL stores error
messages explicitly for strongly-typed languages, since recomputation is costly.

Interconnection information, such as actual use, may not require explicit representation, but
this is orthogonal to whether the information is explicitly stored or dynamically determined. In
other words, an attribute can be calculated only when needed, and information can be stored as
part of some composite attribute rather than separately. One example of the first category is use
dependency of local variables. This is rarely queried because all use sites are often displayed
simultaneously. A user can visually search or use a viewer (editor) search command. Where
explicit representation is necessary, the environment may explicitly store only the module in
which an exported procedure is actually used (because the whole module has to be recompiled)
and dynamically analyze the module when queried about the calling procedures, or it may
explicitly store the procedure that calls the exported procedure but not every callsite within the
procedure as those are easily found by direct search when needed. SMll.E follows the former
strategy, but the response time is widely variable and sometimes unacceptable, so MARVEL

follows the latter course.

An objectbase permits tracking of modifications to objects. Representing logical entities as
separate objects at appropriate granularities eliminates additional processing such as recognition
of changes within regions of an object by the editor or content comparison algorithms (such as
Diff [27]). For example, procedures may be represented as composite objects consisting of the
specification, a description, and the implementation. Using this as the lowest level structural
granularity pennits MARVEL to limit side-effect propagation considerably, since other entities
can be affected only when the specification is changed.

7

Decomposition of the target system into" separate objects at a small grain places certain
requirements on the object-viewing and browsing capabilities of the environment On one hand,
a user should not be starved of information as is the case with single-level object viewers. For
example, viewing a module may result in display of only the names of components, without even
an indication of their type. More Context should be provided to the users.

On the other hand, a user should not be overloaded with information, which may lead to
disorientation and confusion. An example of this is the presentation of the target system as a
single textual unit, decorated with all available status information - possibly encoded in a range
of symbols. A balance must be struck as to the amount of information to be displayed at any time
and the desire to reduce explicit querying for information. This may change over time as the
users carry out different activities. For example, while making major changes to the system a
user has little interest in code generation status. Similarly, when examining an imported module,
the user's view should be limited to its specification. SMll...E solves these problems with distinct
commands for different levels of detail. MARVEL includes an objectbase viewing and browsing
capability supporting multiple views and multi-level viewing, attempting to make best use of
available screen space through mUltiple viewing panes.

5. Granularity of Processing
As previously discussed. the tools as well as the users can take advantage of multiple views. A

related issue is whether or not the users should have multiple 'views' of the tools. The
granularity of processing detennines the responsiveness of the environment as well as the
intelligence perceived by its users. Responsiveness refers both to feedback to the users regarding
inconsistencies in the target system and to processing of the target system to derive other
representations, e.g., to prepare for execution or for formated printing. MARVEL and other
knowledge-based programming environments are interactive environments that attempt to
increase user productivity. This means that each user should get feedback while in the context of
the problem spot; the environment displays intelligence by understanding the user's notion of
context and relating it to the results of the tools.

This also means that a user should not have to wait excessively for the computer to complete
its share of the work. This is accomplished by processing at the appropriate level of granularity
and by processing opportunistically. The availability of both forward and backward chaining
permits MAR VEL to perform activities any "time between when the preconditions are satisfied and
when the postconditions are required. Furthermore, not all processing has to be done at the same
level of granularity. Granularity of processing that results in feedback to the user is strongly
influenced by the context and time in which feedback is expected. Note that feedback may
involve simple visual cues, such as changing the font of the prompt, rather than immediately
dumping all the error messages on the user's display. Granularity of processing resulting mainly
in derived entities such as object code is primarily influenced by the following tradeoff. On the
one hand, we have the possibility of processing many small units, thus reducing the time of
processing one unit, yet causing possibly redundant processing of the same unit when it is
frequently affected by changes to other small units. On the other hand. processing larger units at
less frequent intervals leads to the expense of longer delays when the users need the results. In
some cases, this problem means exploration of separate processing techniques in order to avoid

8

processing of the complete target system. Examples include linking in pieces through use of
indirect references [8], and fonnatting in pieces by a document processor through maintenance
of fonnatting context - as is supported by Scribe [22].

Feedback to the users can occur at several levels of granularity, where the grain size chosen
may be different for different kinds of analysis. One fonn of feedback is enforcement of a
particular kind of consistency. The most prominent example is enforcement of syntactic
consistency, as done by syntax-directed or form editors. This is accomplished either by limiting
The choices of entry to acceptable ones, e.g., by providing a menu with the legal set of constructs.
or by immediately checking and rejecting invalid entries. Another fonn of feedback is checking
for consistency and reporting any violations, but accepting the input into the objectbase. In this
case, ~IARVEL records whether or not objects have been checked for each kind of consistency
and, if so, the results of each analysis.

During different phases of development and maintenance, a user may desire feedback for the
same kind of consistency at different granularity levels. For example, while writing a new piece
of code, a user does not want to be told repeatedly about the use of an undefined identifier umil
he has completed his activity with the procedure or module. However. when c:rrrying out minor
corrections, more immediate feedback is desirable. :-'fARVEL offers such flexibility by
separating checking from reporting. In this way, checking for a particular kind of consistency is
always performed at the 'same level of granularity - the smallest level for which feedback is
desired (as selected by the current user) - with one set of analysis processes. Reporting can be
realized by querying the results of checking, and MARVEL does this by performing queries
automatically at different times as detennined by the reporting strategy.

This behavior is in contrast to SMll.E, which initially performed compilation at the level of
procedures and immediately infonned the user of any errors. We found this behavior
unacceptable. SMILE was modified to perform symbol resolution and type checking at the
procedure level, but to apply compilation only to modules. Errors were no longer reported
except in response to user queries, but their detection was indicated by an unintrusive visual
change in the display that remained until the errors were corrected.

6. Conclusions
The fundamental tradeoffs regarding granularity of logical entities and of automatic processing

demonstrate the impact of the choices of granularity on the apparent intelligence of an
environment as well as on its responsiveness and perfonnance. The most notable choices we
made for PROFESSORl\1ARVEL are as follows.

• A knowledge-based programming environment can more quickly answer more
complex queries when it incrementally updates its analysis of the relationships
among logical entities of the target software system and also maintains these entities
refined to the level of relationships among individual software components rather
than among modules;

• An environment is less intrusive and more infonnative when the granularity of
automatic processing is separated from the granularity for automatic reporting of the
results of processing, and it is not difficult to separate these behaviors for semantic
analysis, compilation and other activities.

9

We believe that these choices are also appropriate for most other knowledge-based programming
environments~ While SMlLE was targeted for C, we designed MARVEL to suppon either C,
CommonLisp, or Ada. We also kept in mind document formatting languages such as Scribe and
project management facilities such as those found in CMS [16] and DSEE [17]. Thus our
conclusions cover a wide range of possible entities as well as tools.

Acknowledgements
We would like to thank Cecile Paris and Ursula Wolz for their useful criticisms and

suggestions regarding this paper. Purvis Jackson assisted us with technical editing. Steve
Popovich is working with us on the implementation of MARVEL.

References

[1] James E. Archer, Jr. and Michael T. Devlin.
Rational's Experience Using Ada for Very Large Systems.
In First International Conference on Ada Programming Language Applications for the

NASA Space Station, pages B.2.5.1-B.2.5.1l. Houston, TX, June, 1986.

[2] Robert Balzer.
A 15 Year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SE-ll(1l):1257-1268, November, 1985.

[3] Robert M. Balzer.
Living in the Next Generation Operating System.
In 10th World Computer Congress. Dublin, Ireland, September, 1986.
Proceedings to appear as a book published hy Springer-Verlag.

[4] David R. Barstow, Howard E. Shrobe and Erik Sandewall.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984.

[5] Lee Brownston, Roben Farrell, Elaine Kant and Nancy Martin.
Programming Expert Systems in OPS5.
Addison-Wesley Publishing Co., Reading, MA, 1985.

[6] Diana Reference Manual
Carnegie-Mellon University, Department of Computer Science, 1981.

[7] V.B. Erickson and J.F. Pellegrin.
Build - A Software Construction Tool.
AT&T Bell Laboratories Technical Journal 63(6): 1049-1059, July-August, 1984.

[8] Peter H. Feiler and Raul Medina-Mora.
An Incremental Programming Environment
IEEE Transactions on Software Engineering SE-7(5):472-482, September, 1981.

[9] David Garlan.
Views for Tools in Integrated Environments.
In IFfP WG 2.4fnternarional WorksJwp on Advanced Programming Environments.

June, 1986.
Proceedings to appear as a book published by Springer-Verlag.

10

[10] Adele Goldberg.
The Influence of an Object-Oriented Language on the Programming Environment.
In 1983 ACM Computer Science Conference. February, 1983.
Reprin ted in [4].

[11] Allen T. Goldberg.
Knowledge-Based Programming: A Survey of Program Design and Construction

Techniques.
IEEE Transactions on Software Engineering SE-12(7):752-768, July, 1986.

[12] James A. Gosling.
Unix Emacs
Carnegie-Mellon University, Deparunent Of Computer Science, 1982.

[13] c.A.R. Hoare.
An Axiomatic Approach to Computer Programming.
Communications of the ACM 12(10):576-580,583, October, 1969.

[14] Gail E. Kaiser and Peter H. Feiler.
Intelligent Assistance without Artificial I nte//igence.
Technical Report SEI-86-Thf-14, C:\;fU Software Engineering Institute. September,

1986.
Submitted for publication.

[15] Gail E. Kaiser and Peter H. Feiler.
An Architecture for Intelligent Assistance in Software Development.
Technical Report SEI-86-TM-12, c~ru Software Engineering Institute, September,

1986.
Submitted for publication.

[16] Beverly L. Kedzierski.
Knowledge-Based Project Management and Communication Support in a System

Development Environment.
In 4th Jerusalem Conference on Informacion Technology. Jerusalem, Israel, :'vfay, 198·t

[17] David B. Leblang and Robert P. Chase, Jr.
Computer-Aided Software Engineering in a Distributed Workstation Environment.
In SIGSOFTISIGPLAN Software Engineering Symposium on Practical Software

Development Environments, pages 104-112. Pittsburgh, PA, April, 1984.
Proceedings published as SIGPLAN Notices, 19(5), May, 1984.

[18] David B. Leblang and Gordon D. McLean, Jr.
Configuration Management for Large-Scale Software Development EffortS.
In GTE Workshop on Software Engineering Environmentsfor Programming in the

Large, pages 122-127. June, 1985.

[19] John R. Nestor.
Toward a Persistent Object Base.
rn IFIP WG 2.4 International Workshop on Advanced Programming Environments.

June, 1986.
Proceedings to appear as a book published by Springer-Verlag.

... -

11

[20] David Notkin.
The GANDALF Project
The Journal of Systems and Sofrware 5(2):91-105, May, 1985.

[21] M. J. Rochkind.
The Source Code Control System.
IEEE Transactions on Software Engineering SE-1:364-370, 1975.

[22] SCRIBE Document Production Sofrware User Manual
Unilogic, Ltd., 1985.
The original Scribe manual was written by Brian K. Reid and Janet H. Walker.

[23] Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold.
Research on Knowledge-Based Software Environments at Kestrel Institute.
IEEE Transactions on Sofrware Engineering SE-ll(11):1278-1295, November, 1985.

[24] Barbara 1. Staudt, Charles W. Krueger, A.N. Habermann and Vincenzo Ambriola.
The GANDALF System Reference Manuals.
Technical Report CMU-CS-86-130, Carnegie-Mellon University, Department of

Computer Science, May, 1986.

[25] Mark SteEle and Daniel G. Bobrow.
Object-Oriented Programming: Themes and Variations.
AI Magazine 6(4):40-62, Winter, 1986.

[26] Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
Communications of the ACM 24(9), September, 1981.
Reprinted in [4].

[27] Walter F. Tichy.
RCS - A System for Version Control.
Sofrware - Practice and Experience 15(7):637-654, July, 1985.

[28] Walter F. Tichy.
Smart Recompilation.
ACM Transactions on Programming Languages and Systems 8(3):273-291, July, 1986.

[29] Richard C. Waters.
KBEmacs: Where's the AI?
The AI Magazine VII(1):47-56, Spring, 1986.

[30] Terry Winograd.
Breaking the Complexity Barrier (Again).
In SIGPLAN-SIGIR Interface Meeting on Programming Languages -Information

Retrieval, pages 13-30. Gaithersburg, MD, November, 1973.
Reprinted in [4].

