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1. Introduction 
In 1973, Winograd discussed his dream of an intelligent assistant for programmers [29]. More 

recently, artificial intelligence researchers have extended programming languages and 

environments (primarily Lisp environments) with knowledge about the relationships among 

program units [26] and the rules governing the software development process [3, 1, 22] in an 

attempt to turn the dream into reality. The resulting systems support 'exploratory programming' 

by an individual programmer very well [21], but they do not provide the assistance necessary to 

manage large-scale development and maintenance. However, as AI projects, such as 'expert 

systems', have become larger and commercially viable, researchers have turned their efforts 

towards developing this kind of assistance [11, 18], and we believe they will produce excellent 

results. 

In the meantime, it is possible to build production-quality software engineering environments 

that provide seemingly intelligent assistance without requiring new breakthroughs in AI 

research. There is already (at least) one such system-the Software Management and 

Incremental Language Editing system (SMll..E)-that provides seemingly intelligent, interactive 

suppOrt for teams of software developers and maintainers. SMll..E does not use artificial 

intelligence techniques: it is not even written in Lisp. SMll..E was written in C and runs on 

Unix™. 

Although SMll..E is several years old, it has not been discussed in the literature, except in 

acknowledgements by researchers who used it to develop their own systems). SMll..E was 

developed by one of the authors, starting in 1979, originally as a tool for developing research 

prototypes for the Gandalf project [16]; it has been used extensively by both authors and by 

many others since 1980. SMll..E has been relied on by the Gandalf and Gnome [7] projects at 

CMU and by the Inscape project [17] at AT&T Bell Labs; it has been distributed to at least forty 

~ites. SMll..E passes the crucial test of supponing its own maintenance. The purpose of this 

paper is to present the goals of SMILE and explain how they were achieved. 

The original, high-level goals of SMILE were as follows . 

• To hide the file system and the operating system from the users. SMILE presents a 
'meless environment'; that is, SMILE exposes its users only to the logical structure 
of the target software system. The nonnal alternative is for users to deal with the 
physical storage of the software in tenns of directories and files, which often do not 
correspond nicely to the logical structure . 

.. To shelter the users from the tedious task of maintaining redundant infonnation. 
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SMILE requires its users to enter each item of information only once: it automatically 
transfonns the data as needed by tools. SMILE derives necessary information that 
can be calculated from the data supplied by users . 

• To automate invocation of tools at appropriate points. SMILE assists the users by 
automatically performing trivial software development activities such as calling 
grep. lint, cc, make, and other Unix utilities [12] with the appropriate arguments at 
appropriate times. In some cases, the tool is invoked as soon as its input is ready; in 
other cases, the tool is not called until its results are required, such as to answer a 
user query or to provide input to another tool. SMILE hides the particularities of 
Unix and presents a unifonn programming model different from the model imposed 
by Unix . 

• To actively participate in the software development and maintenance process. 
SMILE is an interactive system, and all programming activities take place within the 
environment. In addition to calculating auxiliary information and automatically 
invoking tools, SMILE anticipates the consequences of user actions and 
automatically presents appropriate warning messages. . 

• To be sufficiently robust and reliable for supporting relatively large academic 
development projects. It automatically recovers from inconsistent states after user­
initiated abortS and machine crashes; it also stores information redundantly to 
support recovery from disk errors or its own bugs. 

All of these goals have been achieved. SMILE maintains source code, object code and other 

software development information in a database mapped onto the Unix file system. Knowledge 

of software objects and a model of the software development process are hardcoded into S~ffi.E's 

commands. SMILE incprporates a large collection of Unix utilities, plus several special tools 

developed as part of the Gandalf research. SMII...E has supported the simultaneous activities of at 

least seven programmers, and the largest software system developed and maintained in SMILE 

has appro:illnately 61,000 lines of source code [13]. 

The following sections present the goals and achievements of SMILE in more detaiL Section 2 

explains SMILE's external architecture. Section 3 describes how SMn..E assists individual 

programmers, while Section 4 describes the facilities oriented towards projects involving many 

programmers and long lifetimes. Section 5 discusses SMILE's implementation and current status. 

Section 6 compares SMILE to other software engineering environments. We conclude by 

summarizing the significance of SMILE as an example of intelligent assistance without artificial 

in telligence. 
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2. Architecture 
SMll..E is intended for use by small teams of programmers (5 to 20) developing and 

maintaining medium-size software systems (10,000 to 250,000 lines of source code) written in 

C, taking maximum advantage of the Unix me system and utilities. 

2.1. GC 

GC (Gandalf C) [28] is an enhancement of C that lists the types of fonnal parameters within 

the argument list (as in Pascal) and provides a module interconnection language (Mll..). The 

Mil.. defInes modules consisting of four types of source code objects (called items): procedures, 

variables, types, and macros. Each module has an import list indicating the items required from 

other modules and an export list indicating the items accessible to other modules. GC was 

adopted by the Gandalf project for all implementation efforts. SMILE supports GC, but 

automatically transfonns source and header flies from standard C to GC and vice versa as needed 

to import existing source code and to take advantage of C-specific programming tools. 

Throughout the rest of this paper, we mean "GC" when we say "C". 

2.2. Databases 

SMILE maintains all information about a software system in a database similar to the 

'objectbases' of more recently developed programming environments [2, 15]. Each object has 

several attributes, representing auxiliary information, and is typed, enabling SMILE to provide 

object-oriented commands that apply type-specific tools. 

A database consists of one or more 'projects', each representing a distinct software system. 

Most databases contain exactly one project, so we say 'database' and 'project' interchangeably. 

A project contains a number of 'modules' corresponding to GC modules. Each module contains 

a set of procedures, a set of variables, a set of type defmitions, a set of macros, a list of import 

items, and a list of export items, as illustrated in Figure 2-1. The source text of procedures, 

variables, types, and macros are written in Gc. Each module and item is attributed with status 

infonnation, such as whether or not it has been compiled since it was last modified. Modules 

also contain object code, but this is never explicitly visible to users. 
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2.3. User Interface 

I MO~UI& 1 I 
I Module n I 

exportti,t: PI,tl, ... 
mDM blt: PS Irem ~3, ... 

Figure 2·1: Database of Software Objects 

SMILE's user interface is script-oriented, and does not take advantage of windows or menus. l 

However, some tools included in S~m..E, e.g., screen-oriented editors, behave differently for 

biunapped screens than for dumb terminals. 

The user interface is 'friendly' and includes on-line help facilities. It is not necessary to 

remember either commands or arguments. The user can type a carriage-return after entering any 

part of the command line, and SMll.E will prompt, one at a time, for remaining arguments; each 

prompt indicates a default value based on the user's most recent activities, and the user types a 

carriage-return to accept this default If the user types "?" at any point, SMn...E lists the currently 

valid alternatives according to the user's context If the user instead enters "help", then SMILE 

explains the selected command and its argument The user can also hit the interrupt key to any 

prompt to abort the current command. SMTI...E permits the user to abbreviate commands and 

arguments of commands to the shortest unambiguous form, and prompts with the possible 

choices if an abbreviation is ambiguous. 

IThe workstation implementations of SMIU do support windows. In particular, a user can modify a database in 
one window while browsing through the database in a second. read-only window; see Section S. 
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3. Programming Assistance 
SMILE assists individuals in writing programs. It maintains C source code, object code, and 

the status of these objects in its database, and automatically performs menial development 

activities. For example, it warns the programmer of the implications of changing the 

specifications of source code items, and it automatically recompiles after changes. 

3.1. Browsing 

SMn.E helps the user navigate through a software system. The user selects a particular 

module-the user'sfocus-which is then indicated in SMILE's top-level prompt. SMILE assumes 

that further commands refer to this module and its contents until a different module is selected. 

Browsing is object-oriented, in the sense that SMll...E automatically invokes the appropriate 

viewing tool according to the type of the selected object. For C source code, this is normally a 

screen-oriented text editor, an earlier version of SMll...E also provided a syntax-directed editor. 

Although SMILE assumes all commands are with respect to the current focus, it can shift focus 

automatically as the need arises. For example, if the user asks to visit an item that is not in the 

current module but is in some other module, SMILE changes the focus before invoking the 

appropriate viewer tool~ 

SMn.E also supports general searches. A query can apply to an individual item, a module, or 

the entire database and SMILE can further filter the results of queries to display only items of a 

particular type (import item, procedure, variable, etc.) or only items that match some pattern. 

Pattern matching can be applied to the name of an item or to its source text, and a search can be 

applied to either the definition or usage of items, or SMILE can generate a full cross-reference 

table. The results of queries are displayed on the screen in the form of a transcript, which can be 

scrolled if SMILE is run from within a text editor that supports user shells. SMILE can also direct 

its answe~ to an external me or a printer. SMILE remembers past activities on a user-by-user 

basis; this supports, for example, a special option for the printer to spool only those items that 

have changed since last printed by the particular user. 
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3.2. Editing 

SMILE creates and deletes modules and items within modules. If the user asks to remove an 

item that is in another module. SMILE requests confmnation before automatically changing focus 

to the other module to carry out the command. Thus, SMILE is forgiving of minor user errors. 

The add command requires the type of the new item; if this is not given, SMTI...E prompts for the 

missing argument. SMILE invokes the type-specific tool, and the low-level commands provided 

by the tool are used to construct the content of the item. If the user enters a command to write, 

save, save-and-exit, etc., then the new item is stored in the database; if the user tells the tool to 

abort or exit (without saving), etc., SMILE aborts the original add command. Sl-tffi..E does this by 

monitoring the tool; no changes to the tools themselves are required. 

Similarly, an existing item can be added or removed from the impons or expons list of the 

current module. When a new item is created, SMILE automatically asks the user whether or not it 

should be added to the exports list. When an item is removed from the exports, S~ffi.E warns the 

user if it is imported by other modules and requests confmnation; if confmnation is given, it 

automatically removes these impons as well. When a user tries to delete an existing item, SMILE 

reminds the user if it is exported and requests confmnation before removing the corresponding 

item from the export list. 

The user can make changes to items through the edit and change commands: SMTI...E invokes 

the appropriate editing tool. Edit restricts the user to making local changes to the body of an 

item, whereas change allows the user to make changes to both the specification and the body, 

which may have side effects on other items. For example, edit invokes the editor tool only on 

the body of a C procedure: if the tool supports multiple windows, then the header of the 

. procedure is displayed for reference in another, read-only window. In the case of a C variable, 

edit pennits the user to modify the initialization, but not the actual declaration. The edit 

command does not apply to types and macros, because any modifications can affect usages. 

Sometimes changing the specification of an item has implications beyond those anticipated by 

the user. Therefore, SMTI...E always informs the user of potential problems before the damage is 

done. When the user selects the change command, SMILE queries its database to fmd all the 

other items that may be affected by the proposed change and informs the user of the extent of 

this change, in terms of how many other items might subsequently have to be modified to 

maintain consistency; it displays the actual dependencies on request. The user can abort or go 

ahead with the change with full knowledge of the implications. 
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3.3. Error Detection and Error Reporting 

After a user adds, removes, or modifies an item, SMILE supplies rapid feedback regarding 

static semantic errors. The semantic analysis is applied only to the changed item rather than to 

other items affected by the change. SMTI..E propagates the change by updating the status 

information for dependent items. If the user requests it, SMILE submits these for analysis; this is 

explained in the following section. 

The analysis is performed in a background process, so that the user does not have to wait for 

the tool to complete before continuing other. activities. When processing completes, all error or 

warning messages are saved as an attribute of the current module (the focus), and the prompt is 

changed to indicate the errors. The user can ignore the errors, or ask SMILE to display the 

messages; thus, SMILE separates error detection from error reporting. Both the messages and the 

visual cue in the prompt remain until the user edits the offending item, so the user does not need 

to remember the particular errors or even the fact that there are errors within the particular 

module. It is less intrusive to indicate errors by appending a notice to the prompt than to display 

the errors themselves. An earlier version of SMTI..E dumped all the error messages on the user's 

screen as soon as the tool completed. This behavior was judged unacceptable because it 

interrupted the user's activities; the us~r was forced to read the messages then and remember 

them, because they were not stored. 

3.4. Bookkeeping 

SMILE maintains status information for each item. For example, each C item has a status field 

that indicates whether or not its static semantic analysis is up to date, whether the analysis was 

successful, or whether analysis is in progress in the background. S?-.ULE maintains the correct 

value for the status field. Furthermore, SMILE automatically propagates changes to items by 

updating the status field of other items that might be affected by the change. The user can 

examine the status information for any item or display all items with a particular status. A user 

might use this information, for example, to request re-analysis of a particular item or all items 

affected by a change or to look for items that still have errors and need correction. 

SMILE performs code generation by compiling at the granularity of a module. Therefore, it 

maintains a status field for each module indicating whether or not its object code is up to date, or 

being generated in the background. After compiling a module, SMILE indicates the resulting 

status in' this status field. SMILE invalidates generated code by setting the status field 

accordingly under anyone of several conditions: 
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• a new item is added to the module; 

• an existing item is moved between modules, removed, edited or changed; 

• an item is added to or removed from the importlist, and this item is actually 
referenced by an item of the module; 

• an exported item is changed, and this item is imported into another module, where it 
is actually referenced by an item in the importing module. 

3.5. Code Generation and Linking 

SMILE recompiles modules and relinks the system as needed. It recognizes several alternative 

notions of 'as needed'. There is a tradeoff between recompiling immediately after a item of a 

module changes and delaying until the user requests system execution: Late recompilation 

requires the user to wait, but early recompilation may be wasted due to funher changes to the 

same module; it also affects response time after each change. An earlier version of S~fILE 

automatically recompiled as soon as an item changed, but recompiled only the item rather than 

the entire module. This was changed because the time and space overhead was unacceptable. 

The processing performed by the compilation tool after every modification led to slower 

response .due to the cycles taken by the background job. Space was a problem because a separate 

object code me was generated for each item. SMll..E now compiles an entire module rather than 

individual items. This optimization was done without affecting the interaction with the user. 

SMILE automatically generates a makefile, including the appropriate command lines, and 

invokes make to construct an executable system. If a me name is given as an argument, the 

executable code is placed in this me; otherwise, standard Unix practice is followed and the 

output goes to the "a.out" me in the current working directory. 

3.6. Modes 

Modes permit the user to control and adapt SMILE's behavior. Users can set modes explicitly 

with a command or implicitly in their SMll..E profiles. Every mode has a type and a default 

value. The boolean Autocompilation mode permits the user to indicate to SMILE whether it 

should temporarily refrain from automatically carrying out analysis and code generation. This is 

a desirable fearure when the user starts making major changes to the application. Another 

boolean mode related to compilation indicates whether or not the compiler should generate more 

elaborate debugging information. The Verbose mode indicates the level of verbosity of SMILE's 

warnings and suggestions; 
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Somes modes are used to tailor SMll..E to a particular operating environment. C!vfU mode 

permits SMll.E to take advantage of some special CMU utilities. Home mode defines SMILE's 

home directory in the local flle system, and Print mode names the local tool for spooling to the 

printer. SMll..E is also tailored by the search paths and other environment variables defined in the 

user's Unix proflle. 

4. Development and Maintenance Assistance 

SMILE assists software teams with their long-term developQ1ent and maintenance activities. It 

coordinates simultaneous activities by multiple users, encourages reuse of existing code, and 

logs source code changes. 

4.1. Reservations 

SMILE prevents multiple users from modifying the same module at the same time by requiring 

the user to reserve a module before making changes to the module. If a user tries to modify a 

component of a module that is not reserved, SMll..E explains that reservation is necessary. Only 

one user can reserve a module at a time. If another user attempts to reserve a previously reserved 

module, SMll..E infonns the user about who has reserved the module; users can also query 

reservation status explicitly. 

SMILE helps users avoid making incompatible changes. If a user tries to change the 

specification of an exported item, SMILE checks to make sure that that all the modules that 

import this item are also reserved by the same user. If not, SMll.E informs the user of their 

reservation status. 

4.2. Experimental Databases 

Reservations are always made with respect to a private workspace called an experimenral 

database. Figure 4-1 shows the relationship between experimental databases and the public 

database, which contains the baseline version of the software system. The modules in the public 

database are available to all members of the software team, while the contents of an experimental 

database are private to its owner. An experimental database is a logical copy of the public 

database; SMll..E employs a copy-on-write strategy to conserve space. Only modules reserved in 

the current experimental database can be modified. Additional modules can be reserved at any 

time, provided they are not already reserved by another user. SMILE automatically pre links non­

reserved modules (in a background process) to improve the response time of system generation. 
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Public Database 

DOD 
DOD 

Figure ~-1: Experimental and Public Databases 

When a user completes a set of changes, the user gives either the update or deposit command 

to return all the reserved modules to the public database. Update retains the reservations, so the 

user can make funher changes, while deposit removes the reservations. In either case, SMTI...E 

makes the changes available to the rest of the software team by replacing the previous versions 

in the public database with the changed modules from the experimental database. SMILE permits 

users to back out of a proposed change by releasing the current reservations, so other users can 

reserve these modules in their original state. 

At the beginning of an update or a deposit, SMll...E checks the status of all reserved items to 

ensure that they have been analyzed and compiled successfully, without any errors. If there are 

inconsistencies, SMll...E aborts the command; otherwise, SMll...E locks the public database while it 

copies the modified objects back into the public database. Thus, update and deposit behave as 

transactions with respect to the public database. 

4.3. Transactions 

Every SMILE command is a transaction, in the sense that it is impossible to apply a second 

command within the same database until the first command terminates.2 Background processing 

is coordinated in such a way that its results are recorded without conflicting with the transaction 

2In the workstation implementations of SMILE. a user can access unaffected partS of a database in a read-only 
window. during a transaction; see Section 5. 
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model. An earlier version of SMll.E saved its internal state on disk after each transaction in order 

to record the changes in a fail-safe manner. This led to poor responsiveness when there were 

five or more simultaneous users in a time-sharing environment (on a V AX1M 780) and was 

discontinued) Currently, SMll.E saves state after the number of transactions indicated by the 

Checkpoint mode, and always saves state before and after commands that cause major changes, 

such as change, update, and deposit. A user can select full state saving by setting the 

Checkpoint mode to 1; alternatively, the user can explicitly give the chkpoint command after 

particularly crucial changes. 

SMILE coordinates changes among the experimental databases owned by the members of a 

software project A user can add a new module only within an experimental database, but S~ffi..E 

records the addition in the public database to prevent another user from adding another new 

module with the same name. Similarly, SMILE records addition of import items in the public 

database, since another user may attempt to delete the item in a different experimental database. 

When the public database is locked during a transaction, other actions that affect the public 

database are blocked until completion of the transaction. Since update and deposit often take 

several minutes, blocked commands time out after thirty seconds and SMll...E advises the user to 

try again later. This enables users to perfonn other development activities while they wait. 

4.4. Change Logs 

When programming teams are large, it is useful to maintain on-line change logs. Whenever a 

user updates or deposits the contents of an experimental database, SMll..E prompts for a log entry 

for each modified module. SMll...E automatically includes the user's name, the time/date, and the 

module name with the text provided by the user. Users can also append log entries for their 

reserved modules at any time. A user can query the entire log for a database or only the log for a 

particular module, and request entries since a particular date and/or by a particular user. SMILE 

prevents tampering with previous log entries, so a full audit trail of past changes is always 

available. 

3ntis performance problem is reduced when SMILE runs in a disaibuted workstation environment; see Section S. 
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4.5. Maintenance and 'Old Code' 

As software systems become older, the modular structure tends to degenerate. Import and 

export lists grow and rarely shrink, even though an imported item is no longer used in the 

importing module and an exported item is no longer used outside the module, or even inside the 

module. SMll..E assists user.; in restructuring old systems by moving items from one module to 

another and adjust the imports and exports accordingly, by adjusting the imports and expons 

throughout the database to reflect the actual interconnections determined by cross-references. 

and by detecting unused items. 

SMll.E provides facilities to bring externally developed 'old code' into a database, so it can 

assist future maintenance and enhancement activities. SMll.E can also copy modules from one 

database to another. SMILE makes it easy to use software maintained outside of a SMILE 

database: Every module and every database may have a prelude, which lists external flies and 

definitions of outside procedures; the corresponding object code flies and 'Cnix libraries are 

listed in SMILE library items. The add, remove, and change commands apply to libraries, as do 

the browsing facilities. The names of necessary libraries are given as arguments to the build 

command to incorporate them in an executable system. SMTI.E helps user.; create new Unix 

archives and libraries. It can produce a Unix archive from the C items in the database and can 

generate a single object code me that can be used as a library outside SMn..E or within other 

SMTI.E databases. 

5. Implementation 

SMILE was originally called IPC, for Incremental Program Constructor, but the name was soon 

changed to SMTI.E. A prototype implementation was written in the Unix shell language during 

August 1979; it was used in September 1979 to bootstrap to a more advanced implementation in 

Gc. These two ver.;ions ran on a PDpThi 11na under Unix Ver.;ion 7. 

SMILE was soon ported to a V AX (both 750 and 780) under Berkeley Unix, where it supported 

the intensive Gandalf prototype [10] implementation in 1980 and 1981 and the development and 

maintenance of the production-quality Gnome environment starting in 1982. SMILE was poned 

to the Sun WorkstationThi in 1984 and to the MicroVA.X'fM workstation in 1985. The 

MicroV AX ver.;ion is distributed by virtue of the Mach variant of Unix 4.3 BSD. The current 

implementation consists of 15,000 lines of GC source code, which is available on request from 

the Gandalf project at CMU. 
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Details 

Although the original IPC was implemented in the Unix shell language, neither IPC nor the 

later versions of SMTI...E should be thought of simply as user shells. SMll..E maintains its own 

database of all information about a software project and provides its own commands for carrying 

out development and maintenance activities; in effect, SMll...E presents its own model of the 

programmmg process. 

SMn.E maps its database onto the Unix me system in a hierarchical manner. Each database 

corresponds to a directory, which contains a subdirectory for each project. which in turn contains 

a subdirectory for each module. Each module directory contains two files listing the imports and 

exports. respectively. and" four subdirectories. one each for procedures, variables, rypes, and 

macros. The text of each item is stored in a separate fLIe. This mapping to the rue system is not 

visible to users. Cross·rcferencing information, Status, and other derived attributes are 

maintained in a graph structure. This graph is dumped in binary form to a file within the 

database to persist between invocations of SMll..E. A backup copy of the graph is also 

maintained, but if both the original and backup are cOmJpted, the graph can be regenerated from 

the database. 

SMn..E protects its users from operating system crashes, which might leave a database in an 

inconsistent state. SMll..E automatically checks its database at the beginning of every session: [f 

derived infonnation such as error messages or object code has been lost, SMn..E resets statuS 

information to make sure they arc rederived. If the most recent session with this database was 

done using a previous version of SMn..E itself, SMllL automatically reformats the graph structure 

and the database and adds default values for any new kinds of auributes. Approximately 30% of 

SMILE's source code is for disaster recovery and self repairs. 

SMn..E hides the Unix me system and its tools and utilities from its users, with the exception 

that it calls the user's favorite text editor. The default text editor at CMU is Emacs [91, but a 

different default can be substituted at each site. SMll..E invokes lint to detect static semantic 

errors in source code objects, cc to compile modules, and make to generate ex.ecutable systems. 

The variants of grep support SMU.E's searches through source text and other objects. 

I 
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version of Unix to another and to use new tools as they became available (e.g. , lint replaced cc 

for static semantic analysis in 1982) without these changes being visible to the users. We believe 

it would not be difficult to port SIvffi..E to a non-Unix operating system, providing it supplied 

similar tools; the only local tools that are mandatory are a text editor, a C compiler, and a linker.~ 

6. Related Systems 

SMll...E is similar to knowledge-based programming environments , advanced programming 

language environments , language-based edito~ and software engineering environmentS. In the 

following paragraphs, we describe the advantages and disadvantages of these systems with 

respect to SMILE. 

Knowledge-Based Environments: The CommonLisp Framework (CLF) [6], Refine~ [22] and 

other knOWledge-engineering environments can provide StfIl.E-li..\;:e automation vIa 

condition/action rules [5}. However, they cannot recognize the alte~ar.ive results of actions, e.g., 

the compiler may terminate successfully. producing object code, or unsuccessfully, produc ing 

error messages. None of these environments support multiple simultaneous users. On the other 

hand, SMILE is not extensible. so it is not as easy to add new kinds of objects and new tools. 

Language Environments: Advanced programming languages such as Interlisp [261. loops 

[23] and Smalltalk-80™ [8] include run-time environments that are indistinguishable from 

single-user programming environments. Although they provide Sr-.ffi.E-like facilities, these are 

strongly tied to the programming language. The implementation of SMILE is specific to the Ge, 

but it would not be very difficult to reimplement for another conventional programming 

language. provided corresponding tools were available. However. language environments can 

integrate debugging facilities with the other tools. 

Language-Based Environments:5 Language-based environments add many of the advantages 

of language environments to conventional languages such as Pascal. The Synthesizer [25] and 

Pecan [19J are examples of specific environments. while the Synthesizer Generator [20] and 

Gandalf are systems for generating such environmentS from formal descriptions. Most language-

4~a.r!y versions of S"'ULE used only the 1OO1s aJld utilities r . . 
SpeCI~ ID?ls foc !anguage..menLed prog.ra.mming en ... ' p OVided by UntA, but ~l:Tlt versions also include 
descnbed In this paptt. lIOnmenu. These tools ~ not relevan l ., r .. . 

to UJe aCliJlles 
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based environments provide advanced user interfaces with menus and pointing devices, and 

perform various activities in response to programmer actions, but they are unable to anticipate 

the potential results of actions and warn users before the damage is done. The practicality of 

these environments is limited, since the entire software system is maintained as a single abstract 

syntax tree; further, it is difficult to incorporate existing programming tools into these 

environments. 

Software Engineering Environments: SMILE is most similar to Cedar [27], DSEE1M [14], 

Arcadia [24] and other large-scale environments for software development and maintenance. 

Like S~m..E, these environments provide an interface between programming tools and the user on 

the one hand, and between programming ~ools and the software database on the other. Such 

environments typically provide more advanced version control and project management facilities 

than Sr..m.E, but they leave individual programmers to the standard edit/compile/debug cycle 

supported by traditional tools. 

7. Conclusions 
SMILE's primary contribution is the apparently intelligent assistance that spans both the 

activities of individual programmers and the coordination of multiple programmers. SMILE 

provides this assistance by 

• maintaining all information about a software project in a database; 

• integrating Unix tools into a new model of development and maintenance that hides 
the particularities of Unix tools; 

• actively participating in the development and maintenance processes by deriving 
data when possible from previously stored information, automating the invocation of 
these tools and anticipating the consequences of tool processing; 

• imposing a structure on software development activities that permits it to 'know' 
what the programmers are doing at all times, to 'infer' what they are likely to do 
next, and to 'judge' what it can appropriately do for them; 

• recovering from external and internal failures and repairing its databases 
automatically, making it sufficiently robust and reliable for production use. 

SMILE provides this assistance without a knowledge base of rules describing the software 

development process. Instead, certain 'common sense' about software development activities 

has been programmed directly into the environment, resulting in a production-quality intelligent 

assistant that several projects have relied on to develop and maintain their software. 
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Abstract 

We define an architecture for a software engineering environment that behaves as an intelligent 
assistant Our architecture consists of two key aspects, an objectbase and a model of the 
software development process. Our objectbase is adapted from other research, but our model is 
unique in that is consists primarily of rules that define the preconditions and multiple 
postconditions of software development tools. Metarules define forward and backward chaining 
among the rules. Our most significant contribution is opportunistic processing, whereby the 
environment automatically performs software development activities at some time between when 
their preconditions are satisfied and when their postconditions are required. Further, our model 
defines strategies that guide the assistant in choosing an appropriate point for carrying out each 
activity. 
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1. Introduction 
In 1973, Winograd [30] presented his dream of an intelligent assistant for programmers that 

would understand what it does: It would be based on an explicit model of the programming 
world. Winograd described an imaginary programming environment, A, that would assist 
programmers by providing early error checking, by answering questions about the program and 
the interactions among program parts, by handling trivial programming problems, and by 
automating simple debugging tasks. 

Artificial intelligence research has moved closer to achieving this dream by developing a 
knowledge-based approach to programming, which includes relationships among program units, 
both in the abstract and with respect to a particular target system. The Masterscope package of 
Interlisp [27] and the CommonLisp Framework (eLF) [5] maintain cross-referencing 
information to answer queries about interactions among program units. Also, CLF's 
knowledgebase understands the abstract relationships among program units. For example, CLF 
'knows' that a system consists of modules and individual software objects (functions, variables, 
etc.) and that object classes have particular properties, such as a maintainer and whether it has 
been compiled. 

A knowledge-based programming environment also includes the rules governing the software 
development process. For example, wide-spectrum languages such as V [23] and Gist [1] have 
been augmented with rules that aid the programmer in translating from higher- to lower-level 
specifications and from specifications to executable code. CMS [13] provides a formal 
representation of the software project model, time (for scheduling), and software development 
activities. For example, if a 'capability' is a desired feature of the target system, then it must be 
realized by a 'component' of the system; a 'task' must be defined to specify who is in charge of 
the component and when it is due. Genesis's Activity Manager [19] provides similar facilities. 

While work in AI was progressing, researchers in traditional software were addressing their 
version of Winograd's dream. Tools were developed that automated certain aspects of the 
programming process. For example, Make [7] automatically rederives an executable system 
when part of the source code changes. SCCS [22] requires programmers to reserve modules for 
change, thus ensuring orderly software evolution. RCS [28] supports multiple versions of 
software objects and manages separate lines of development 

Collections of tools were integrated into interactive programming environments that support a 
particular programming language. The Synthesizer [26] combines language-oriented editing that 
prevents syntactic errors with immediate feedback about static semantic errors; it also permits 
programmers to interleave execution and debugging with editing. The Gandalf Prototype 
[16] added a module interconnection language with incremental, intermodule consistency 

checking to a C programming environment similar to the Synthesizer. 

Unfortunately, the knowledge-based approach and the tools approach have progressed more­
or-less independently. The individual tools incorporate a small bit of knowledge about a 
particular programming problem, but this knowledge cannot be augmented. The programming 
environments are hardcoded with a particular view of the software development process that 
defines the interaction between the programmers and the target system, but this knowledge is not 
available to the users of the environment The knowledge-based environments are much more 
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general, but represent only a fraction of human expertise about software development and 
maintenance. 

Working within the tools approach, the members of the Gandalf project (including the authors) 
developed a distributed, multi-user software engineering environment called SMILE [24, 12], 
which is relatively close to achieving intelligent assistance. SMll.E presents a 'fileless 
environment' to its users, answers queries, and automatically invokes various tools. However, 
S~ill..E's knowledge of software objects and the programming process is hardcoded into the 
environment. 

Our experience with SMILE provided insights into the development of practical environments 
and convinced us that a generalization of SMILE's internal architecture would aid in developing 
an intelligent assistant for software development and maintenance. Our architecture for 
intelligent assistance combines tools with knowledge. From the tools approach, we gain the 
years of experience of other computer scientists building and using particular tools and 
environments. From the knowledge-based approach, we gain a suitable structure for choosing 
among tools and automating the invocation of tools. Our architecture defines a basis for 
intelligent assistance that consists of two key aspects: an objecrbase and a model of rhe sofrware 
development process. 

The objectbase maintains all software objects, including tools, and provides the environment 
with insight into the various classes of objects and the relationships among objects. For example, 
one object is a component of another, and a particular object may be applied to another object to 
produce a third. 

The model imposes a structure on programming activities. It consists of an extensible 
collection of rules that specify the particular conditions that must exist for particular tools to be 
applied to particular software objects. Metarules permit the environment to understand the rules 
and support opportunistic processing, where the environment performs activities when it knows 
the results of these activities will soon be required by its users. Opportunistic processing is the 
primary focus of this paper. 

In this paper, we explain our architecture and how it meets certain fundamental requirements 
for supporung a software engineering environment that understands what it does. Section 2 
presents the basis for intelligent assistance defined by our architecture. Section 3 describes how 
3.n intelligent assistant built on this framework can perform software development activities 
automatically to provide intelligent assistance to its users. Section 4 briefly describes our 
implementation. 

2. A Basis for Intelligent Assistance 
An intelligent assistant should understand what it is doing [30]. Most software tools are 

"moronic assistants" that know what they are doing, but do not understand the purpose of the 
objects they manipulate or how their tasks fit into the software development process. In other 
words, they may know the 'how' but not the ·why'. 

For example, Make has a simplistic world model consisting of files and command lines. A 
'makeflle' defines dependencies among files and gives the command lines necessary for 
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restoring consistency among dependent files. Make's notion of consistency is based on files and 
time: If the timestamp of an input file is later than the timestamp of an output file, then the 
indicated command line should be passed to the Unix 1M shell. Make is used widely for 
generating a new executable version of a system after source files have been modified. 

However, Make's 'knowledge' is primitive. Its objectbase consists of files that have a single 
attribute, their timestamp. Make knows nothing about applying tools to files: it just handles 
command lines as indivisible units. Make does not understand source files vs. object files, 
modules vs. systems, programmers or programming. 

To give Make this knowledge we could define a notion of an object, which belongs to a class, 
such as 'system' or 'module'. Each class would define the attributes, or properties, of its 
objects. A 'module object code' object might have a 'history' attribute describing its generation 
and a 'derivation of' attribute pointing to the object representing the corresponding source code. 

We could then defme rules that model the part of the software development process relevant to 
~ake. One rule might be that a 'programmer' object can modify a 'module' object; another rule 
might state that after such a modification, the 'module' object is no longer consistent with its 
'derivation' attribute and there is an obligation to restore this consistency. A third rule might 
state that a precondition for a 'programmer' to test a 'system' is that all 'module object code' 
objects that are components of the corresponding 'executable system' must be consistent with 
their 'module'. 

Given this knOWledge, Make could be considered to be relatively more intelligent. Make 
would be easier to integrate with other tools that support configuration management, version 
control, task management, etc., assuming these tools had similar knowledge of software objects 
and their roles in the development process. 

We believe that an objectbase and a model of the development process are prerequisites to 
intelligent assistance. An assistant cannot understand why it performs particular activities unless 
it knows 

• the properties of the objects it manipulates, 

• the capabilities of certain objects (programmers and tools) to manipulate other 
objects, 

• the preconditions required by each activity, 

• the postconditions of each activity. 
Therefore, our architecture specifies a general objectbase and an extensible collection of rules 
describing the preconditions and postconditions of activities, as well as hints and strategies that 
detennine the degree of the environment's contributions. We briefly describe the objectbase 
here; the rules, hints and strategies are the topic of the following section. 



Objectbase 

We considered several possible forms for our objectbase. One possibility was the entity­
relation-attribute model proposed for Genesis t20]. However, weaknesses of relational databases 
ma.'<e them inadequate for software engineering environments [15]. To maximize flexibility, we 
chose an objectbase similar to those of object-oriented programming languages, such as Loops 
[25]. In particular, we adopted their support for multiple inheritance and active values. Unlike 

most such languages, however, we require a 'persistent' objectbase, one that retains its state 
across invocations of the environment The same concepts are found in the objectbases 
supported by other knowledge-based environments, such as AP3 [2] and Refine™ [23]. 

In our objectbase, each object is an instance of a class, which defines certain attributes of each 
object and inherits other attributes from its superclass(es). Some attributes define the 
relationships among objects: others trigger activities when accessed and/or updated. The 
activities applicable to a class are defined as methods for the class. 

This enables an intelligent assistant to expose its users only to the logical structure of the target 
software system. The environment consists of a set of typed, interconnected software objects 
representing the system and its history. The fnterconnections among software objects represent 
the logical strucrure of the system. Object types include module, procedure, type. design 
description, user task (or development step). user manual, ere. Typing permits the assistant to 
provide an object-oriented user interface similar to the Smalltalk-80™ environment [10], where 
the environment makes available to each user only those commands that are relevant to the 
object under consideration. 

3. Opportunistic Processing 
The objectbase also maintains the rules that model the software development process. These 

rules provide the meta-knowledge required for an environment to apply tools automatically. We 
call this behavior opportunisric processing, which offloads simple activities onto the intelligent 
assistant-menial activities, such as invoking the compiler and recording any errors found during 
compilation. This approach contrasts with some intelligent assistance systems, such as the 
Programmer's Apprentice (KBEmacs) [29] and CHI (previously PSn [23], which focus on the 
separate problem of automatic programming. 

3.1. Rules 
We represent our model as a collection of rules similar to the production rules of Ops5 [4] in 

that each rule has a condition and action. When the condition is true, the action may be 
executed. Our rules differ from production rules in that the action is divided into two parts. an 
activity and a postcondition. Because our rules have postconditions, we refer to the original 
conditions as preconditions. 

The acrivity part of a rule represents an integral software development task. For example, 
"compile module" is one activity and "change compor'.ent" is another (a 'component' is a facility 
defined within a module, such as a procedure, a variable, a type, ere.). The specific editing 
commands applied during the course of the "change component" activity are not considered 
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activities. "Fix bug" is not an activity, since it involves many tasks, perhaps involving several 
useI3. Thus our notion of an activity represents a middle-ground granularity. 

Each activity is associated in the objectbase with a tool that perfonns the activity. One 
attribute of each tool is whether it can be invoked by the environment without human 
intervention. For example, the "compile module" activity is associated with the compiler, which 
can be applied by the intelligent assistant; the "edit component" activity is associated with a text 
editor (or a syntax-directed editor), which requires human interaction. 

The precondition part of a rule - a boolean expression - must be true before an activity can 
be perfonned. The operands of a precondition include software objects and the attributes of 
software objects. For example, "notcompiled(module)" might be an appropriate precondition for 
the "compile module" activity. Another precondition for "compile module" would be "for all 
components c such that in(module, component c): analyzed(component c)", where "analyzed(c)" 
is true only if a static semantic analysis of component c finds no errors. An activity may have 
mUltiple preconditions that must be satisfied. 

A postcondition becomes true when an activity is completed. Both preconditions and 
postconditions are written as well-fonned fonnulas (wffs) in the first order predicate calculus. 
OUf rules are based on Hoare's assertions [11], where a programming language construct is 
associated with its preconditions and postconditions; if the preconditions are true before the 
language construct is executed, then the postconditions will be true afterwards. 

However, a programming activity may have multiple postconditions, exactly one of which is 
true after the activity terminates. Which of the various possibilities is true can be determined 
only by invoking the corresponding tool. For example, two postconditions for the "compile 
module" activity might be "compiled(module)" and "errors(module)". Here we follow the 
extension of Hoare's assertions proposed by Perry [18], where there must be multiple 
postconditions to represent the exceptional results of executing a procedure. This notion of 
postconditions distinguishes our architecture from CLF, Genesis' Activity Manager, and other 
expert systems that rely on condition/action rules. The most important advantages are that we 
can separate an activity from its results and therefore consider several alternative results within 
our model. 

Two example rules are given in Figure 3.1. The first states the preconditions and the two 
postconditions for the "compile module" activity. The preconditions are given first, followed by 
the activity (within braces), followed by the postconditions. The alternative postconditions are 
separated by semicolons. 

3.2. Meta Rules 
Our architecture supports the definition of metarules that guide the intelligent assistant's use of 

rules. One metarule states that if the preconditions of an activity are satisfied, and the activity 
can be perfonned by the assistant, then the assistant may perfonn the activity automatically. 
Consider the first rule in Figure 3.1. The metarule interprets this rule to mean that the assistant 
may compile any modules M such that all the components of M have been analyzed but M has 
not been compiled. 
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notcompiled(module) and 
for all components c such that in (module, component c) : 

analyzed(component c); 
{ compile module } 

compiled(module); 
errors (module) ; 

equals (module, focus(userid» and in(module, component); 
{ edit component } 

notanalyzed(component) and notcompiled(module) ; 

Figure 3-1: Compile Rule and Edit Rule 

In this example, "notcompiled(module)" is one of the preconditions to the "compile module" 
activity; "errors(module)" is included as one of the possible postconditions. If the.. previous 
compilation failed, "errors(module)" will be true. The "compile module" activity cannot be 
performed when "errors(module)" is true, because its preconditions cannot be satisfied. If a user 
then edits a component. perhaps to fix the error, the second rule of Figure 3.1 states that 
"notcompiled(module)" will be set to true and the metarule permits compilation. 

Importantly, this metarule states that the intelligent assistant l!illY perform an activity when 
preconditions are satisfied: it does not state that the assistant must perform the activity as soon as 
the preconditions are true, or at any time thereafter. However, the intelligent assistant may apply 
the tool and use forward chaining to detennine additional activities whose preconditions are 
satisfied by the postconditions of the first activity. Therefore, we call this metarule the 'forward 
chaining metarule'. 

Forward chaining supports behavior similar to language-oriented editors, such as the 
Synthesizer and Gnome [8]. When the user makes a subtree replacement in the abstract syntax 
tree representing the program, the editor automatically performs several actions. In the case of 
editors generated from attribute grammars [21], the editor automatically re-evaluates the values 
of attributes whose values may have changed. These attributes might represent the content of the 
symbol table and the object code for the program. Other editor generators automatically invoke 
action routines for type checking or code generation for modified program parts [6]. 

A second metarule states that if a user invokes a tool with unsatisfied preconditions, the 
intelligent assistant should use backward chaining to find activities it can perform whose 
postconditions might satisfy the preconditions of the activity requested by the user. In this case, 
the metarule states that the intelligent assistant must exhibit this behavior. We call this metarule 
the 'backward chaining metarule'. 

Backward chaining supports behavior similar to Make, DSEETh{ [14], Toolpack [17] and other 
software engineering tools in which a user may request regeneration of an executable system 
after changes have been made to its source code. The environment uses dependency infonnation 
previously supplied by the software development team to determine which source files to 
recompile. 
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Sometimes our intelligent assistant attempts backwards chaining, but finds that the 
preconditions cannot be satisfied; in this case, the user is informed of the problem. The 
intelligent assistant is not expected to, for example, correct source code so that it will compile 
successfully. For example, our intelligent assistant might support a large team where multiple 
users should not change the same module simultaneously. Here, each user must reserve a 
module before changing it. The preconditions and postconditions for the "reserve module" 
activity are stated in the first rule shown in Figure 3-2 ("saved(module)" is true when the module 
has been saved. by the version control tool), and the second rule states that the "change 
component" activity cannot be performed unless the module containing the component is 
reserved. 

not reserved(module) and saved(module); 
{ reserve module } 

reserved (module, userid); 

reserved (module, userid) 
{ change component } 

notanalyzed(component) and notcompiled(module); 

for all components k such that in (module, component k) 
and uses {component k, component c): 

reserved {module, userid); 
{ change component c } 

Figure 3-2: Change Rules and Reserve Rule 

The "change component" activity permits the user to modify the specification of a component 
("edit component" permits the user to modify only the body). The third rule of Figure 3-2 states 
that the containing module must be reserved along with any other modules that depend on it (c 
and k distinguish multiple objects of the same type). The backward-chaining metarule enables 
our intelligent assistant to automatically reserve modules whose components may have to be 
modified to restore consistency with the changed component The metarule also prevents the 
user from modifying the specification of a component when dependent modules cannot be 
reserved (according to the first rule). 

3.3. Strategies and Hints 
We chose the name 'opportunistic processing' for these chores because the assistant may 

perfonn an activity as the opportunity arises any time after its preconditions are satisfied and 
before another activity whose preconditions depend on its postconditions. Rules may be tagged 
so their activities are performed immediately after their preconditions are satisfied (i.e., forward 
chaining applies) while other activities are performed only when their postconditions are 
required (forward chaining does not apply). Since we need to choose other points on this 
spectrum, we have included hints and strategies in our model to aid the intelligent as~istant in 
making decisions. 
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A hint is similar to a rule, but without postconditions. The preconditions of a hint are used to 
guide the intelligent assistant in choosing when to apply a tool whose other preconditions are 
satisfied. Consider again the first rule from Figure 3.1. Suppose we do not want the assistant to 
compile a module, even though the preconditions are satisfied, while a user with modification 
rights is browsing through the module: The user may decide to change some components of the 
module, and the compilation will have been wasted. So we use a hint, Figure 3-3, giving this 
precondition for the "compile module" activity (angle brackets are used for parentheses). When 
the assistant follows a strategy including this hint, compilation is delayed until the user changes 
to another module. 

not reserved(module) or 
< reservsd(module, userid) and 

not equals (module, fccus(userid» > 
compile module ] 

Figure 3·3: Compile Hint 

Since we want the human user to be able to invoke the compiler without changing to another· 
module, we give this precondition to "compile module" in a hint, rather than as pan of a rule. 
Hints apply only to the opportunistic processing of the intelligent assistant, not to activities 
initiated by a human user. In other words, hints are considered during forward chaining and 
ignored during backward chaining. 

A strategy consists of a collection of hints and rules, which apply only when the strategy is in 
force. The third (and currently final) metarule from our model enables the intelligent assistant to 
employ strategies by combining its rules and hints ~ith the rules normally considered. Zero or 
more strategies may be employed at the same time. When this results in more than one rule for 
the same activity, all their preconditions must be satisfied; only one set of postconditions is 
permitted. 

Currently, our assistant cannot choose its own strategies; the knowledge to support this 
capability requires additional research on user modeling. Instead, each user will select 
appropriate strategies by informing the environment that he is, for example, a manager vs. a 
programmer, developing a new system vs. maintaining an old system, or making major changes 
vs. a minor revision. A strategy whose rules and hints result in automatically performing type 
checking immediately after each component is edited would be appropriate for a minor revision, 
but not for a large-scale changes involving many interrelated components. 

3..t. Activities as Side·Effects 
Often a tool performs additional aCUVlues as side effects. For example, the analysis tool 

invoked for the "analyze component" activity may change the values of several attributes of 
components. For the purposes of our rules, setting the value of an attribute is considered an 
activity, resulting in a situation where one action of the intelligent assistant is embedded inside 
another rather than being a consequence of forward or backward chaining. This case 
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demonstrates a limitation of our rules: Secondary actions whose arguments cannot be 
determined in the general case cannot be expressed easily as postconditions. Instead, potential 
side effects are indicated by attributes of the tool. 

In such cases, the secondary activities are often described by their own rules, and these must 
be considered for further processing. For example, some rules related to the "uses" attribute of a 
component are given in Figure 3-4. The "uses" attribute lists the components that the component 
depends on. 

notanalyze~(component); 

{ analyze component } 
analyzed(component); 
errors(component); 

in (module, component c) and 
< in(module, component k) or imports(module, component k) >; 
{ component c uses component k } 

uses(component c, component k); 

exports (module N, component) and 
not equal(module M, module N); 
{ import component } 

imports (module M, component); 

in (module, component); 
{ export component } 

exports (module, component); 

Figure 3-~: Analyze Rule, Uses Rule and Import/Export Rules 

The first rule gives the obvious preconditions and postconditions for the "analyze component" 
activity. The second rule states a component c cannot use another component k unless k is in the 
same module or is imported into the module. The third rule means that a component cannot be 
imported by a module M unless it is exported by another module N. The fourth rule states that a 
component cannot be exported by a module unless it is in that module. 

What happens when the analysis tool finds that procedure p (a component) calls procedure q 
(another component) and tries to set the "uses" attribute of procedure p to include procedure q? 
If q is in the same module as p, there is no problem; the attribute is set and the analysis 
continues. If q is not in the same module, the intelligent assistant checks whether it is imported. 
In the case where q is not already imported, the assistant notes that "imports(module, 
component)" is a postcondition of the "import component" activity (third rule) and realizes it can 
perform the "import component" activity without human intervention. It considers the 
preconditions of this activity. The assistant queries its objectbase to find the module that 
contains q. If q is already exported from that module, the assistant performs the "import 
component" activity. If not, the backward-chaining metarule penni~ the assistant to follow the 
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preconditions of the activity given in the fourth rule of Figure 3-4. The assistant can add q to the 
exports of its module, then actually import q into the original module, and then permit the 
analysis tool to set the "uses" attribute of p. 

In the above scenario, we ignored the possibility that distinct procedures named q might be 
found in more than one module. Sometimes language-specific typing information can be used to 
narrow down the possibilities, but generally the intelligent assistant must interrupt the human 
user to explain its dilemma and to ask which q is intended. The assistant can then proceed as 
described in the previous paragraph. 

If no component named q is in the objectbase, the assistant considers the "add component q" 
activity, whose postcondition is the existence of q. A sufficiently intelligent assistant could carry 
out this activity by creating a stub for the procedure within the module where the use occurs; the 
Gnome programming environment for Karel does this automatically [91. If this is not feasible, 
an alternative would be to ask the user to create the procedure (or stub) before continuing the 
analysis, but this would be intrusive; a preferred alternative is to inform the analysis tool of the 
problem and prevent it from performing the "procedure p uses procedure q" activity. This causes 
the analysis tool to terminate unsuccessfully, generating the "errors(p)" predicate among its 
post_conditions. . 

In this discussion, "import component" and "export component" are among the activities that 
can be performed by the intelligent assistant without human intervention, permitting the assistant 
to carry out the repairs illustrated by the example. An alternative strategy would require the 
assistant to take the imports and exports as given. This might be appropriate for languages, such 
as Ada TM, that include their own module constructs, where reference to an external component 
without the appropriate "with" clause should be detected as an error. 

3.5. Implicit Queries 
In the previous example, the assistant automatically queried its objectbase to locate procedure 

q. When the environment performs a query on its own, rather than in response to a user 
command, we call this an implicit query. Implicit queries are necessary to determine whether the 
preconditions of rules and hints are satisfied and to find the next rules to be applied in forward 
and backward chaining. 

Another application is to anticipate the postconditions of activities, enabling the environment 
to warn the user when an action is likely to lead to adverse results. Consider again the two rules 
shown in Figure 3-5. Through forward chaining, changing a component will lead to semantic 
analysis, which may result in errors. When a user invokes the editor on a particular component, 
the environment anticipates this forward chaining and notes the possible "errors(component)" 
postcondition. This causes it to perform an implicit query to determine likely causes of the 
errors. 

The intelligent assistant cannot guess what modifications the user will make and how these 
will affect other components. However, it can take advantage of the "used-by" attribute to 
determine those components most likely to be affected. Both the "used-by" attribute and its 
inverse ("uses") are listed in the objectbase among the potential side effects of the editor tool. 



reserved (module, userid) 
{ change component } 
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notanalyzed(component) and notcompiled(module); 

notanalyzed(component); 
{ analyze component } 

analyzed(component); 
errors(component); 

Figure 3-5: Change and Analyze Rules 

The environment informs the user of potential sources of semantic inconsistencies by presenting 
the list of components given by the "used-by" attribute of the component argument to the ¢itor. 
The user can take this information into account and choose whether or not to abort the "change 
component" command. 

A further application of implicit queries was implied in Figure 3-2. A user gave the "change 
component" command, and backward chaining led the assistant to query the objectbase to 
detennine whether all the modules affected by the proposed change were reserved by this user. 
If not, the environment would attempt to reserve all the necessary modules. However, this 
cannot succeed if some of these modules are reserved by other users. In this circumstance, the 
assistant presents the results of its implicit queries to the user to explain why the requested 
activity is not permitted. 

3.6. Summary 
The main points of our architecture for modeling the software development process are as 

follows. 

• Rules define the preconditions that must be satisfied before a tool can be applied and 
the alternative postconditions of each tool. 

• Hints define the preconditions that must be satisfied before a tool can be applied by 
the environment; unlike rules, hints do not affect the activities of human users. 

• Two metarules define forward chaining from the postconditions of completed 
activities to the preconditions of other tools and backward chaining from the 
preconditions of desired activities to the postconditions of other tools. 

• Tools may have side effects that cannot be expressed directly as postconditions, but 
these are nevertheless considered with respect to forward and backward chaining. 

• The environment performs implicit queries to detennine the attributes of software 
objects and the potential side effects of tools. 

• Strategies group rules and hints appropriate for particular users and for particular 
phases of software development and maintenance. Our third metarule enables the 
intelligent assistant to consider these strategies during forward and backward 
chaining. 
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.t. Implementation 
We are implementing our intelligent assistant by by reimplementing the internal mechanisms 

of S;\ill.E. The advantages of starting with SMILE are (1) we can implement in place, retaining at 
all times a more-or-Iess working environment; (2) we have continued to use much of the 
previous S~ill.E code, most notably its disaster recovery mechanisms - approximately 30% of 
SMILE's source code protects against internal failures and supportS recovery from external 
failures (disk full, system crashes, abort signals, etc.), and (3) we can continue to support the 
many systems, including SMll.E, that have been developed and maintained using SMILE. 

We are currently replacing SMll.E's hardcoded knowledge about the software development 
process with the rules, hints and strategies of our model. The preconditions and postconditions 

. of rules are translated into C routines that perform the corresponding queries and changes to the 
objectbase. The metarules are currently hardcoded. For example, forward chaining is performed 
by hashing on the actual postconditions of the most recently completed activity to find rules with 
potentially matching preconditions, which are then checked by the procedures that implement the 
preconditions. 

We have so far retained SMILE's original objectbase, which is mapped OntO the Unix me 
system, but we are currently designing a more nexible mapping that will support an extensible 
objectbase. We expect to complete this design and its implementation within three months. We 
have also retained the same user interface and tools, but expect to later replace the user interface 
to take advantage of bitmapped displays. 

5. Conclusions 
Our general architecture for intelligent assistance consists of an objectbase and a model of the 

software development process. The advantage of an objectbase is it permits the assistant to 
present a 'fileless environment' to its users, so the users are concerned only with the logical 
entities associated with software development and not with the details of the underlying tile 
system and operating system. The advantages of a model of the software development process is 
that it can automate bookkeeping chores and other simple development activities and can 
constrain the invocation of tools to maintain consistency among the software objects. 

These notions have been promoted by other researchers as the fundamental basis for a 
programming environment that understands what it does. The specific contribution of our 
research is the formalization of opportunistic processing, including implicit querying. 
Opportunistic processing is made possible· by rules that describe the preconditions and 
postconditions of software development activities, metarules that permit the intelligent assistant 
to take advantage of these rules to enable automatic processing, and strategies that guide the 
assistant's application of the metarules. The result is a significant improvement in the assistance 
that the environment can provide for software development and maintenance by individuals as 
well as by teams of programmers, managers and other staff. 



13 

References 

[1] Robert Balzer. 
A 15 Year Perspective on Automatic Programming. 
IEEE Transactions on Software Engineering SE-I1(11):1257-1268, November, 1985. 

[2] Robert M. Balzer. 
Living in the Next Generation Operating System. 
In 10th World Computer Congress. Dublin, Ireland, September, 1986. 
Proceedings to appear as a book published by Springer-Verlag. 

[3] David R Barstow, Howard E. Shrobe and Erik Sandewal1. 
Interactive Programming Environments. 
McGraw-Hill Book Co., New York, NY, 1984. 

[4] Lee Brownston, Robert Farrell, Elaine Kant and Nancy Martin. 
Programming Expert Systems in OPS5. 
Addison-Wesley Pub. Co., Reading, MA, 1985. 

[5] CLF Project. 
Introduction to the CLF Environment 
~arch, 1986. 
USC Infonnation Sciences Institute. 

[6] Peter H. Feiler and Raul Medina-Mora. 
An Incremental Programming Environment 
IEEE Transactions on Software Engineering SE-7(5):472-482, September, 1981. 

[7] S.L Feldman. 
Make - A Program for Maintaining Computer Programs. 
Software - Practice & Experience 9(4):255-265, April, 1979. 

[81 David B. Garlan and Philip L. Miller. 
GNOME: An Introductory Programming Environment Based on a Family of Structure 

Editors. 
In SIGSOFJISIGPlAN Software Engineering Symposiwn on PracticaL Software 

Development Environments, pages 65-72. Pittsburgh, PA, April, 1984. 
Proceedings published as SIGPlAN Notices, 19(5), May, 1984. 

[9] David Garlan. 
Private communication. 
July, 1986 
Regarding capabilities of Gnome programming environments. 

[ 101 Adele Goldberg. 
The Influence of an Object-Oriented Language on the Programming Environment. 
In 1983 ACM CompurerScience Conference. February, 1983. 
Reprinted in [3]. 

[11] C.A.R. Hoare. 
An Axiomatic Approach to Computer Programming. 
Communications of the ACM 12(10):576-580,583, October, 1969. 



l~ 

[12] Gail E. Kaiser and Peter H. Feiler. 
Intelligent Assistance without Anificial Intelligence. 
In Thirty-Second IEEE Computer Society International Conference. San Francisco, CA, 

February, 1987. 
Conference article to appear. Now available as CMU Software Engineering Instirute 

Technical Report, SEI-86-ThI-14, September. 1986. 

[13] Beverly L. Kedzierski. 
Knowledge-Based Project Management and Communication Support in a System 

Development Environment. 
In 4th Jerusalem Conference on Information Technology. Jerusalem, Israel, May, 1984. 

[14] David B. Leblang and Gordon D. McLean, Jr. 
Configuration Management for Large-Scale Software Development Efforts. 
In GTE Workshop on Software Engineering Environmentsfor Programming in the 

Large, pages 122-127. June, 1985. 

[15] John R. Nestor. 
Toward a Persistent Object Base. 
In IFIP WG 2.4lnternarional Workshop on Ad\:anced Programming EnvironmentS. 

June, 1986. 
Proceedings to appear as a book published by Springer- Verlag. 

[16] David Notldn. 
The GAl'fDALF Project. 
The Journal of Systems and Software 5(2):91-105, May, 1985. 

[17] LJ. Osterweil. 
Toolpack - An experimental software development environment research project. 
IEEE Transactions on Software Engineering SE-9(6), November, 1983. 

[18] Dewayne E. Perry. 
Position Paper: The Constructive Use of Module Interface Specifications. 
In Third International Workshop on Software Specification and Design. London, 

England, August, 1985. 

[19] C.V. Ramamoorthy, Vijay Garg and Rajeev Aggarwal .. 
Environment Modelling and Activity Management in Genesis. 
In SoftFairll: 2nd Conference on Software Development Tools. Techniques. and 

Alternatives, pages 2-10. December, 1985. 

[20] C. V. Ramamoorthy, Yutaka Usuda, Wei-TekTsai and Atul Prakash. 
GENESIS: An Integrated Environment for Supporting Development and Evolution of 

Software. 
In IEEE Computer Sociery' s Ninth International Computer Software & Applications 

Conference, pages 472-479. October, 1985. 

[21] Thomas Reps, Tim Teitelbaum and Alan Demers. 
Incremental Context-Dependent Analysis for Language-Based Editors. 
ACM Transactions on Programming Languages and Systems 5(3):449-477, July, 1983. 

[22] M. J. Rochkind. 
The Source Code Control System. 
IEEE Transactions Oft Software Engineering SE-1 :364-370, 1975. 



15 

[231 Douglas R. Smith, Gordon B. Kotik and Stephen J. Westfold. 
Research on Knowledge-Based Software Environments at Kestrel Institute. 
IEEE Transactions on Software Engineering SE-11(11): 1278-1295, November, 1985. 

[24] Barbara J. Staudt, Charles W. Krueger, A.N. Habermann and Vincenzo Ambriola. 
The GANDALF System Reference Manuals. 
Technical Report CMU-CS-86-130, Carnegie-Mellon University, Department of 

Computer Science, May, 1986. 

[25] Mark Steftk and Daniel G. Bobrow. 
Object-Oriented Programming: Themes and Variations. 
AI Magazine 6(4):40-62, Winter, 1986. 

[26] Tim Teitelbaum and Thomas Reps. 
The Cornell Program Synthesizer: A Syntax-Directed Programming Environment. 
Communications of the ACM 24(9), September, 1981. 
Reprinted in [31. 

[271 Warren Teitelman and Larry Masinter. 
The Interlisp Programming Environment. 
IEEE Computer 14(4):25-34, April, 1981. 
Reprinted in [31. 

[28] Walter F. Tichy. 
RCS - A System for Version Control. 
Software - Practice and Experience 15(7):637-654, July, 1985. 

[29] Richard C. Waters. 
KBEmacs: Where's the AI? 
The AI Magazine VU(1):47-56, Spring, 1986. 

[301 Terry Winograd. 
Breaking the Complexity Barrier (Again). 
In SIGPlAN·SIGIR Interface Meeting on Programming Languages -Information 

Retrieval, pages 13-30. Gaithersburg, MD, November, 1973. 
Reprinted in [3]. 



Granularity Issues in a 
Knowledge-Based Programming Environment 

Peter H. Feiler 
Carnegie-Mellon University 

Software Engineering Institute 
Pittsburgh, PA 15213 

Gail E. Kaiser· 
Columbia University 

Department of Computer Science 
New York, NY 10027 

September 1986 

Abstract 

MARVEL is a knowledge-based programming environment that assists software development 
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1. Introduction 
We are developing a knowledge-based programming environment called PROFESSORJ.\1ARVEL, 

or MARVEL for short. 1 MARVEL is knowledge-based in the sense that it incorporates knowledge 
of the logical entities and the activities involved in the software development process. It is an 
environment rather than a software tool because it actively participates in the software 
development process rather than remaining passive until explicit demands are made by its users. 
The primary functions of MARVEL are (1) to interactively answer queries about the current status 
of the development effort and the relationships among components of the target software system 
and (2) to automatically perform bookkeeping chores and simple development activities. This is 
in contrast to some other intelligent assistance systems such as the Programmer's Apprentice 
(also known as KBEmacs) [29], which focuses on planning, and cm (previously PSI) [23] and 
the Formalized System Development system (FSD) [2], which focus on automatic programming. 
MARVEL is also not concerned with solving the problems of natural language processing; queries 
are expressed in a simple but formal notation. 

Unlike most other knowledge-based programming environments, MARVEL suppOrts multi­
programmer software development teams in addition to individual programming efforts. For 
example, it includes facilities corresponding to Build [7] and SCCS [21] to coordinate 
simultaneous and sequential activities among multiple developers. However, MARVEL 
approaches these facilities in a participatory, knowledge-based fashion that enables it to 
automatically invoke the tools at the proper times wi~out human intervention. 

MARVEL is our second multi-user programming environment Our ftrst system, called SMILE 
[24, 14], presents a ftleless environment to its users, answers queries about the evolving 

software system, and automatically invokes various software development tools. However, 
SMILE's knowledge is hardcoded into the environment and is not extensible: SMILE does not 
really 'understand' what it is doing and users cannot augment SMILE with additional knowledge. 
SMU.E was developed several years ago to support our research on the Gandalf project [20]. It 
has since been used extensively by other projects at Carnegie-Mellon University and at AT&T 
Bell Laboratories. and has been distributed to approximately forty sites. SMILE was 
implemented in C and runs on Unix. 1M. 

Although we found SMU.E very useful. and in fact relied on it for the implementation and 
maintenance of our Gandalf research, we became convinced that an environment that 
'understands' what it was doing could provide much more valuable assistance. Because of this, 
we have based our design of MARVEL on a general architecture for intelligent assistance. The 
architecture consists of an objectbase and a model of the software developmEnt process. The 
objectbase maintains all software objects, including tools such as the editor and the compiler. 
The objectbase provides MARVEL with insight into the various classes of objects and the 
relationships among objects, such as one object is a component of another and a particular object 
may be applied to another object to produce a third object. 

The model imposes a structure on programming activities. It consists of a user-extensible 

IProfessor Marvel was the (Kansas) name of 'the man behind the curtain' in the movie The Wi:ard 0/0:. 
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collection of production-like rules that specify the particular conditions that must exist for 
particular activities to be carried out The rules enable MARVEL to provide opportunistic 
processing, where the environment perfonns simple activities automatically. such as satisfying 
the preconditions of an activity and then carrying out the activity when it knows the results of the 
activity will soon be required by a user. For example, when a user wants to run the system, 
~1ARVEL can automatically link the executable system from its component modules; if 
necessary, MARVEL recompiles modules automatically to satisfy the precondition to linking that 
the object code for these modules is up to date. 

Insight and opportunistic processing are presented elsewhere [15], and will be discussed only 
briefly. Our focus is the granularity issues that arose during our long experience with SMILE and 
during the subsequent design of MAR VEL. In particular, we ran into several problems regarding 
the appropriate refmement of logical entities to be maintained as separate software objects and 
the units appropriate both for tools and for reporting the results of tool processing to the users. 
Choice of granularity affects the capabilities of the intelligent assistant. the friendliness vs. 

intrusiveness of the programming environment and, of course, performance and responsiveness. 
We believe that discussion of these issues, including an explanation of the decisions we made 
regarding MARVEL, will prove useful to other researchers who are in the process of building 
knowledge-based programming environments. 

In the rest of this paper, we briefly sketch MARVEL's underlying basis for intelligent 
assistance. We then address granularity issues, categorized into three areas: the granularity of 
structure in the objectbase, its impact on tools, and the granularity of processing automatically 
performed by the environment We conclude by summarizing the significance of these issues for 
achieving intelligent assistance for software development and maintenance. 

2. A Basis for Intelligent Assistance 
The distinguishing feature of an intelligent assistant is that it understands what it is doing [30]. 

We believe that both an objectbase and a model of the software development process are 
prerequisites to intelligent assistance. An assistant cannot understand why it performs particular 
activities unless it knows 

• the properties of the objects it manipUlates, 

• the capabilities of certain objects (programmers and tools) to manipulate other 
objects, 

• the preconditions required by each activity, 

• the results or postconditions of each activity. 
Therefore. MARVEL includes a general objectbase that maintains software entities and tools, and 
an extensible collection of rules that describe the preconditions and postconditions of software 
development activities. 
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2.1. The Objectbase 
There are several possible forms for MARVEL's.objectbase to take [19]. To ffiaXlIruze 

flexibility, we chose an objectbase similar to the objectbases of object-oriented programming 
languages, such as Loops [25]. In particular, we adopted their support for mUltiple inheritance 

. and active values. The same concepts are found in the objectbases supported by other 
knowledge-based programming environments, such as AP3 [3] and RefmeThf [23]. 

In MARVEL's objectbase, each object is an instance of a class, which defines certain attributes 
of each object and inherits other attributes from its superclass(es). Some attributes defme the 
relationships among the objects, while others trigger activities when they are accessed and/or 
updated. The software development activities applicable to the members of a class are defined 
as methods for the class. 

The objectbase enables MARVEL to present a 'fileless environment', exposing its users only to 
the logical structure of the target software system and hiding the underlying files and directories. 
As far as the users are concerned, the environment consists of a set of typed and interconnected 
software objects that represent both the system and its history of development. Object types 
include module, procedure, type, design description, user task (or development step), user 
manual, etc. Typing of these objects permits MARVEL to provide an object-oriented user 
interface similar to the Smalltalk-BOThf environment [10]. This means that the environment 
makes available to each user only those commands that are relevant to the object under 
consideration. . 

The interconnections among software objects represent the logical structure of the system. 
The more detailed the structure, the more information is available for browsing and querying, 
and the more MARVEL can deduce which activities it can suitably perform and understand those 
tasks that the users carry out. These issues are addressed in Section 3. 

2.2. The Model 
There are also several possible forms for the rules we use to model the software development 

process. Again to maximize flexibility, we chose a style of rule developed in the program 
verification community. Each software activity is associated with preconditions and 
postconditions, as defined by Hoare [13]. The postconditions of an activity may satisfy the 
preconditions of future activities. 

Our rules are similar to the production rules of Ops5 [5] and the automation rules of FSD in 
that each rule has both a condition and action. When the condition is true, or satisfied, then the 
action may be carried out Our rules are different from productions in that the action is divided 
into two parts, an activity and its postconditions. Because our rules have postconditions, we 
refer to the original conditions as preconditions. We use the activity part of a rule to represent an 
integral software development task. For example, "compile module" is one activity and "edit 
procedure" is another. The preconditions of "compile module" might be that the module is not 
compiled and that all its components have been analyzed without errors; the postconditions 
might be that the module was compiled and this produced either object code or error messages. 
Preconditions and postconditions are written as well-formed formulas (wffs) in the flrst order 
predicate calculus. 



Our rules are maintained as part of the MARVEL's objectbase. They pennit MARVEL to 
perform activities and to explain activities in terms of the rules. Forward chaining allows that if 
the preconditions of a rule are satisfied, then MARVEL can perfOI111 the activity; the 
postconditions may satisfy the preconditions of other rules, which can then be applied. 
Backward chaining allows that if a user requests a particular activity, then MARVEL can attempt 
to satisfy its preconditions; this often requires the environment to flrst perfOI111 other activities 
whose postconditions match the preconditions of the original rule. 

Forward and backward chaining, together with the rules and the objectbase, support insight 
and opportunistic processing. One simple example of insight occurs when a user invoke~ the 
"change procedure" command, which enables editing of both the specification (header) and body 
of a particular procedure. MARVEL uses the results of its incremental analysis of dependencies 
among software components to inform the user of the potential consequences of this action; for 
example, each calling procedure will have to be modified if the number or order of the 
parameters are changed. A simple example of opportunistic processing occurs after a user 
completes the "change procedure" command by writing out the procedure from the editor. 
:\1ARVEL notices that a postcondition of this 3.ctivity is that the analysis of the procedure is not 
up to date, which is also the precondition of the "analyze procedure" activity; ~1ARVEL uses 
forward chaining to automatically update its incremental analysis. 

3. Granularity of Structure 
The degree of intelligence that can be demonstrated by MARVEL, or any knowledge-based 

programming environment, is intimately tied to the granularity of independent entities 
maintained by its objectbase and to the granularity of the processing tools it has available. The 
granularity of structure refers to the extent the target software system is decomposed mto 
separately stored entities. An entity is considered separately scored when it is represented as an 
object; in other words, it is not necessary to parse or analyze a . larger' object to derive the entity: 
For example, a procedure might be represented as an object: its attributes might include its name 
and a list of the other procedures it uses, but not the specific statements that make up the 
procedure. It would be necessary to parse the procedure's source text to find any particular 
statement. 

There are several reasons why it is desirable to have the logical entities of the target system 
separately accessible. In the flrst place, an object can be referenced from other parts of the 
system, while it is not possible to refer directly to only a portion of the information within an 
object. For example, MARVEL can support separate access to modules, procedures, macros, and 
global variables in the program domain, sections and subsections in the document domain, and 
plans, tasks, and developers in the management domain. These logical entities depend on each 
other in various ways, such as actual use dependency among software components such as 
procedures, macros and variables, intentional use dependency as expressed through export and 
import clauses of modules, compilation order, or referential use such as reference to a section or 
a citation in a document. If this interconnection structure is accessible, MARVEL can detect 
inconsistencies among the components of the target system; for example, a module M might 
import a procedure p from module N, even though there is no procedure within M that actually 
calls p. If this situation persists, it may imply an error, and MARVEL can bring this to the user's 
attention. 
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Certain logical entities should be separately accessible as objects because then it is possible to 
associated status infonnation with-the entities by represented the status as one or more attributes_ 
The status may represent the need to or the result of processing an entity, such as analysis of a 
procedure, code generation for a module, or running a section of a document through the 
document processor. It can also indicate coordination information among multiple users and 
between users and tools, i.e., synchronization and version information [27]. 

There are situations where it is desirable to store the status of an object as an attribute that 
references another object with its own subparts. This can improve the degree of intelligence 
exhibited by the kriowledge-based programming environment For example, to support 'smart 
recompilation' [28], it is necessary to store status information about each intermodule symbol 
deflnition and use. This enables MARVEL to recompile only those entities that actually use 
modified symbols, as opposed to recompiling all modules that depend in any way on the module 
whose interface has changed. In contrast, SMILE supports import and export clauses, but does 
not pennit more detailed relations among individual components, so it is not able to provide this 
level of intelligent processing. 

It may be desirable for users to navigate and manipulate the target system according to the 
structural units represented by logical entities. Syntax-directed editors [26] usually support 
cursor movement and manipulation at the language construct level; Rational™ [I] takes this to 
an extreme by perfonning all processing in terms of the Diana [6] representation of Ada 1M 

programs. Even text editors support a certain amount of structure, such as the electric-lisp mode 
in Emacs [12] recognizing matching parentheses. Graphical editors support manipulation of 
basic graphical symbols such as lines, circles and icons as well as composite graphical units. 
Word processing systems support character, word, sentence and paragraph manipulation. 
MARVEL supports viewing at the level of objects, using certain of their attributes as paths that 
can be followed by the browser to other objects. 

User actions, especially modiflcations, may have different effects for different logical entities. 
For example, editing a comment does not affect analysis or code generation but is relevant to 
updating hardcopy listings, whereas modiflcation to a design specification not only affects other 
-parts of the design, but also the implementation. Thus, MARVEL provides object-oriented 
commands to reflect these distinctions. MARVEL can then recognize a user's focus of attention, 
i.e., the software objects currently under consideration, as well as the extent of his or her 
modiflcations in order to intelligently and effectively restore consistency of the target system. 
SMILE's more primitive user interface requires the user, for example, to give the "edit procedure" 
command to edit the body of a procedure and the distinct "change procedure" command to edit 
its specification (header). 

4. Impact of Structure Granularity on Tools 
The question arises as to the choice of the smallest logical entity that should be separately 

stored. The answer must consider that there are two ways to have logical entities separately 
accessible. One is by analyzing a 'larger' entity that is stored as a separate object in the 
objectbase, and deriving the 'smaller' entities as needed. The alternative is to represent each 
logical entity as a separate object The appropriate choice is a tradeoff between the space cost of 
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the proliferation of objects and explosion of information to be stored on the one hand and the 
time cost of reprocessing of information on the other. This manifests itself in a variety of ways. 

Tools provided as part of a knowledge-based programming environment may require a special 
interface to the objectbase as they may not be able to cope directly with composite objects. For 
example, a compiler requires adaptation to be able to process modules as separate compilation 
units when they consist of sets of references to objects representing imported entities and a 
composition of objects representing the procedures, etc., comprising the module. It is preferable 
to bring in existing tools without modifications; DSEETh{ [18] does this for version control by 
providing a virtual interface between each tool and the version manager. We would like to do 
this in the general case, so :VIARVEL provides multiple views corresponding to the normal 
interfaces of the tools [9]. SMilE does not support views, and so is force~ to store objects in the 
form expected by its tools: this sometimes results in duplication of information when the same 
kind of object is processed by multiple tools. 

The status information of all components of a composite object may be accessed frequently. 
For example, the result of analysis of all components of a module must be positive before code 
generation should be done. ~IARVEL can either compute the composite status value every time it 
is desired or it can cache the value in the module object and maintain it incrementally, as 
compoqents are modified and re-analyzed, using, for example, finite differencing techniques 
[11 ]. 

Another example of status information is the error messages resulting from unsuccessful 
processing. Users tend to query them at times other than the time they are produced by the 
processing tool, except when the activity is performed on user demand. MARVEL stores error 
messages explicitly for strongly-typed languages, since recomputation is costly. 

Interconnection information, such as actual use, may not require explicit representation, but 
this is orthogonal to whether the information is explicitly stored or dynamically determined. In 
other words, an attribute can be calculated only when needed, and information can be stored as 
part of some composite attribute rather than separately. One example of the first category is use 
dependency of local variables. This is rarely queried because all use sites are often displayed 
simultaneously. A user can visually search or use a viewer (editor) search command. Where 
explicit representation is necessary, the environment may explicitly store only the module in 
which an exported procedure is actually used (because the whole module has to be recompiled) 
and dynamically analyze the module when queried about the calling procedures, or it may 
explicitly store the procedure that calls the exported procedure but not every callsite within the 
procedure as those are easily found by direct search when needed. SMll.E follows the former 
strategy, but the response time is widely variable and sometimes unacceptable, so MARVEL 

follows the latter course. 

An objectbase permits tracking of modifications to objects. Representing logical entities as 
separate objects at appropriate granularities eliminates additional processing such as recognition 
of changes within regions of an object by the editor or content comparison algorithms (such as 
Diff [27]). For example, procedures may be represented as composite objects consisting of the 
specification, a description, and the implementation. Using this as the lowest level structural 
granularity pennits MARVEL to limit side-effect propagation considerably, since other entities 
can be affected only when the specification is changed. 
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Decomposition of the target system into" separate objects at a small grain places certain 
requirements on the object-viewing and browsing capabilities of the environment On one hand, 
a user should not be starved of information as is the case with single-level object viewers. For 
example, viewing a module may result in display of only the names of components, without even 
an indication of their type. More Context should be provided to the users. 

On the other hand, a user should not be overloaded with information, which may lead to 
disorientation and confusion. An example of this is the presentation of the target system as a 
single textual unit, decorated with all available status information - possibly encoded in a range 
of symbols. A balance must be struck as to the amount of information to be displayed at any time 
and the desire to reduce explicit querying for information. This may change over time as the 
users carry out different activities. For example, while making major changes to the system a 
user has little interest in code generation status. Similarly, when examining an imported module, 
the user's view should be limited to its specification. SMll...E solves these problems with distinct 
commands for different levels of detail. MARVEL includes an objectbase viewing and browsing 
capability supporting multiple views and multi-level viewing, attempting to make best use of 
available screen space through mUltiple viewing panes. 

5. Granularity of Processing 
As previously discussed. the tools as well as the users can take advantage of multiple views. A 

related issue is whether or not the users should have multiple 'views' of the tools. The 
granularity of processing detennines the responsiveness of the environment as well as the 
intelligence perceived by its users. Responsiveness refers both to feedback to the users regarding 
inconsistencies in the target system and to processing of the target system to derive other 
representations, e.g., to prepare for execution or for formated printing. MARVEL and other 
knowledge-based programming environments are interactive environments that attempt to 
increase user productivity. This means that each user should get feedback while in the context of 
the problem spot; the environment displays intelligence by understanding the user's notion of 
context and relating it to the results of the tools. 

This also means that a user should not have to wait excessively for the computer to complete 
its share of the work. This is accomplished by processing at the appropriate level of granularity 
and by processing opportunistically. The availability of both forward and backward chaining 
permits MAR VEL to perform activities any "time between when the preconditions are satisfied and 
when the postconditions are required. Furthermore, not all processing has to be done at the same 
level of granularity. Granularity of processing that results in feedback to the user is strongly 
influenced by the context and time in which feedback is expected. Note that feedback may 
involve simple visual cues, such as changing the font of the prompt, rather than immediately 
dumping all the error messages on the user's display. Granularity of processing resulting mainly 
in derived entities such as object code is primarily influenced by the following tradeoff. On the 
one hand, we have the possibility of processing many small units, thus reducing the time of 
processing one unit, yet causing possibly redundant processing of the same unit when it is 
frequently affected by changes to other small units. On the other hand. processing larger units at 
less frequent intervals leads to the expense of longer delays when the users need the results. In 
some cases, this problem means exploration of separate processing techniques in order to avoid 
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processing of the complete target system. Examples include linking in pieces through use of 
indirect references [8], and fonnatting in pieces by a document processor through maintenance 
of fonnatting context - as is supported by Scribe [22]. 

Feedback to the users can occur at several levels of granularity, where the grain size chosen 
may be different for different kinds of analysis. One fonn of feedback is enforcement of a 
particular kind of consistency. The most prominent example is enforcement of syntactic 
consistency, as done by syntax-directed or form editors. This is accomplished either by limiting 
The choices of entry to acceptable ones, e.g., by providing a menu with the legal set of constructs. 
or by immediately checking and rejecting invalid entries. Another fonn of feedback is checking 
for consistency and reporting any violations, but accepting the input into the objectbase. In this 
case, ~IARVEL records whether or not objects have been checked for each kind of consistency 
and, if so, the results of each analysis. 

During different phases of development and maintenance, a user may desire feedback for the 
same kind of consistency at different granularity levels. For example, while writing a new piece 
of code, a user does not want to be told repeatedly about the use of an undefined identifier umil 
he has completed his activity with the procedure or module. However. when c:rrrying out minor 
corrections, more immediate feedback is desirable. :-'fARVEL offers such flexibility by 
separating checking from reporting. In this way, checking for a particular kind of consistency is 
always performed at the 'same level of granularity - the smallest level for which feedback is 
desired (as selected by the current user) - with one set of analysis processes. Reporting can be 
realized by querying the results of checking, and MARVEL does this by performing queries 
automatically at different times as detennined by the reporting strategy. 

This behavior is in contrast to SMll.E, which initially performed compilation at the level of 
procedures and immediately infonned the user of any errors. We found this behavior 
unacceptable. SMILE was modified to perform symbol resolution and type checking at the 
procedure level, but to apply compilation only to modules. Errors were no longer reported 
except in response to user queries, but their detection was indicated by an unintrusive visual 
change in the display that remained until the errors were corrected. 

6. Conclusions 
The fundamental tradeoffs regarding granularity of logical entities and of automatic processing 

demonstrate the impact of the choices of granularity on the apparent intelligence of an 
environment as well as on its responsiveness and perfonnance. The most notable choices we 
made for PROFESSORl\1ARVEL are as follows. 

• A knowledge-based programming environment can more quickly answer more 
complex queries when it incrementally updates its analysis of the relationships 
among logical entities of the target software system and also maintains these entities 
refined to the level of relationships among individual software components rather 
than among modules; 

• An environment is less intrusive and more infonnative when the granularity of 
automatic processing is separated from the granularity for automatic reporting of the 
results of processing, and it is not difficult to separate these behaviors for semantic 
analysis, compilation and other activities. 
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We believe that these choices are also appropriate for most other knowledge-based programming 
environments~ While SMlLE was targeted for C, we designed MARVEL to suppon either C, 
CommonLisp, or Ada. We also kept in mind document formatting languages such as Scribe and 
project management facilities such as those found in CMS [16] and DSEE [17]. Thus our 
conclusions cover a wide range of possible entities as well as tools. 
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