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Abstract

Background: The transcription factor NK2 homeobox 1 (Nkx2-1) plays essential roles in epithelial cell proliferation
and differentiation in mouse and human lung development and tumorigenesis. A better understanding of genes
and pathways downstream of Nkx2-1 will clarify the multiple roles of this critical lung factor. Nkx2-1 regulates directly
or indirectly numerous protein-coding genes; however, there is a paucity of information about Nkx2-1-regulated
microRNAs (miRNAs).

Methods and results: By miRNA array analyses of mouse epithelial cell lines in which endogenous Nkx2-1 was
knocked-down, we revealed that 29 miRNAs were negatively regulated including miR-200c, and 39 miRNAs were
positively regulated by Nkx2-1 including miR-1195. Mouse lungs lacking functional phosphorylated Nkx2-1 showed
increased expression of miR-200c and alterations in the expression of other top regulated miRNAs. Moreover, chromatin
immunoprecipitation assays showed binding of NKX2-1 protein to regulatory regions of these miRNAs. Promoter
reporter assays indicated that 1kb of the miR-200c 5′ flanking region was transcriptionally active but did not mediate
Nkx2-1- repression of miR-200c expression. 3′UTR reporter assays support a direct regulation of the predicted targets
Nfib and Myb by miR-200c.

Conclusions: These studies suggest that Nkx2-1 controls the expression of specific miRNAs in lung epithelial
cells. In particular, we identified a regulatory link between Nkx2-1, the known tumor suppressor miR-200c, and
the developmental and oncogenic transcription factors Nfib and Myb, adding new players to the regulatory
mechanisms driven by Nkx2-1 in lung epithelial cells that may have implications in lung development and
tumorigenesis.
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Background
The NK2 homeobox 1 (Nkx2-1, Ttf1, T/ebp) gene con-
trols lung, thyroid and brain gene expression in develop-
ment and tumors [1-3]. In lung development, Nkx2-1 is
essential for epithelial branching morphogenesis and
bronchiolar and alveolar epithelial cell differentiation
[2,3]. Mutations of NKX2-1 lead to lung epithelial hy-
perplasia, interstitial disease, and postnatal respiratory
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distress [4]. In tumors, NKX2-1 has oncogenic and
tumor suppressor functions, depending on the cell
context, suggesting a dual role as a lineage specific factor
contributing to lung cancer progression [5-8]. The
downstream genes controlled by Nkx2-1 mediate its
multiple functions in different cell contexts. In previous
genome-wide studies we and others identified Nkx2-1
regulated protein-coding genes (mRNA) and Nkx2-1 dir-
ect binding targets [9-13] in mice and humans. However,
non-coding microRNAs (miRNAs) regulated by Nkx2-1
have not been identified. Regulation of gene expression
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Figure 1 Genome-wide analysis of miRNA and mRNA in
Nkx2-1-knockdown cells. A. Representative western blot analysis
of NKX2-1 protein levels in Nkx2-1-shRNA treated MLE15 cells
compared to non-silencing control. These stable cell lines were
fully characterized in Cao et al [22], and Tagne et al, [12]. B. Diagram of
the transcriptomic analyses indicating the number of genes identified
up- or down-regulated (p < 0.05; FDR < 0.2). C. Expression levels of
epithelial and mesenchymal markers in Nkx2-1shRNA treated MLE15
cells relative to non-silencing control, determined by microarray
analysis. Adjusted p value < 0.0005.
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by miRNAs is a major mechanism of gene silencing
[14], that controls translation and stability of target
mRNAs in a cell and tissue specific manner. In the lung,
the expression patterns and functions of specific miR-
NAs have been described during cell differentiation,
development and in diseases such as lung fibrosis and
cancer [14-16]. In development, specific miRNAs are
differentially regulated over time and between sexes
[17]; the miR-17-92 cluster plays important roles in cell
differentiation and growth [18,19], whereas the Gata6-
regulated cluster miR-302-367 [20] controls multiple
aspects of lung endoderm progenitor cell behavior.
Several microRNAs including miR-29, miR-365, and
miR-17-92 [14,19] control tumor cell proliferation, in-
vasion and survival. However, the link between the key
lung transcription factor Nkx2-1, downstream miRNAs
and their predicted targets has not been addressed. In this
study we have characterized miRNAs regulated by Nkx2-1
in a mouse lung cell line system by genome-wide analysis
of mRNA and miRNA profiles and confirm the expression
patterns of highly regulated miRNAs in normal mouse
lung and in lungs expressing phosphorylation mutant
Nkx2-1. In particular, we found a regulatory link be-
tween Nkx2-1, miR-200c and the nuclear factor I/B
(Nfib) and myeloblastosis oncogene (Myb). These find-
ings add new components to the gene regulatory net-
work controlled by Nkx2-1 in lung epithelial cells that
may have implications in the various roles of Nkx2-1 in
development and disease.

Methods
Cell lines and tissues
The Murine Lung Epithelial cell line (MLE15), a gift of Dr.
J.A. Whitsett (Cincinnati Children’s Hospital Medical Cen-
ter), is derived from transgenic mice harboring the simian
virus 40 large tumor antigen under the transcriptional
control of the 3.7 kb human Surfactant Protein C promoter.
These mice develop pulmonary adenocarcinomas within
4–6 months of age [21]. We have previously reported
[12,22] the generation of three independent MLE15 stable
cell lines transduced with lentivirus expressing Nkx2-1-
shRNA or non-silencing control, followed by puromycin
selection. These original cell lines were maintained in liquid
nitrogen and expanded for the current studies. In these
cells, Nkx2-1 mRNA levels are reduced to 60% of the
control and NKX2-1 protein to ~40% (Figure 1A and
[12]). Embryonic mouse tissues were dissected from
phosphorylation-mutant Nkx2-1 mice (kindly provided
by Dr. DeFelice (Università degli Studi di Napoli), har-
boring seven serine phosphorylation sites mutations in
the Nkx2-1 locus [23]. These mutations prevent NKX2-
1 protein to regulate genes controlling distal lung epi-
thelial differentiation. Studies in mice were approved by
the Boston University IACUC panel.
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microRNA and mRNA microarray experiments
Total RNA, isolated from three independently transduced
Nkx2-1-shRNA and control MLE15 cell lines [12], was
enriched in low molecular weight RNA using miRNeasy
kit (Qiagen, Valencia, CA). RNA was labeled with FlashTag
kit (Genisphere Inc., Hatfield, PA), and was hybridized to
miRNA Galaxy arrays (Affymetrix, Santa Clara, CA).
Arrays were scanned using Affymetrix GeneArray Scanner
3000 7G Plus. miRNA QC Tool software version 1.0.33.0
was used for background subtraction, detection p-value
calculation and normalization. A two-sample t-test was
performed to identify differentially regulated miRNA
expression in Nkx2-1 knockdown cells; the Benjamini-
Hochberg False Discovery Rate (FDR) was used to correct
for multiple hypothesis comparisons [24]. Genes with a
p < 0.05 and an FDR adjusted p value < 0.2 were consi-
dered to be differentially expressed.
For mRNA expression analysis we followed the Gene-

Chip® Whole Transcript (WT) Sense Target Labeling Assay
Manual (Affymetrix, Santa Clara, CA) as described previ-
ously [25]. The labeled fragmented DNA was hybridized to
the Gene Arrays 1.0ST. After scanning, data were summa-
rized using Affymetrix Expression Console (version 1.1).
Robust Multi-Array Analysis algorithm [26] was used to
generate gene-level data. A two-sample t-test was per-
formed to identify differentially regulated mRNA expres-
sion in Nkx2-1 knockdown cells adjusted for multiple
hypothesis comparisons [24]. Genes with an adjusted p <
0.0005 were considered significant. Both mRNA and micro-
RNA expression data are deposited in the Gene Expression
Omnibus GSE47055. Predicted targets of miR-200c
were downloaded from TargetScanMouse 6.2 (aggregate
PCT > 0.1) [27]. Gene Ontology database analysis was
performed using GATHER (Gene Annotation Tool to
Help Explain Relationships) [28]. Detailed microRNA and
mRNA array methods are described in Additional file 1.

Real time RT-PCR
mRNA expression was analyzed by RT-qPCR in total
RNA samples using methods described previously [22].
miRNA expression was analyzed in 1μg of total RNA,
reverse transcribed using MicroRNA Reverse Transcrip-
tion Kit (Applied Biosystems, Grand Island, NY). miRNA
RT-qPCR analyses were performed with MicroRNA
Assays (Applied Biosystems) in a StepOne Real-Time
PCR System (Applied Biosystems). We used rnuRNA-
6B in cell lines and snoRNA-202 in mouse tissues since
the expression of these endogenous genes was more
stable in the conditions tested in each system. Quanti-
tative analysis was performed by the 2-ΔΔCt method.

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation assays (ChIPs) were
performed as described previously [12], using 1 × 106
cells and 10 μl of NKX2-1 antibody (07-601-Upstate,
Millipore, Billarica, MA) or IgG control (Santa Cruz
Biotechnology, Dallas, TX). Equal volumes of immuno-
precipitated DNA solution and 10% of the input DNA
fragments were amplified by qPCR using a custom
designed TaqMan assay (Applied Biosystems) within -1kb
relative to the first nucleotide of the pre-miRNA sequence
indicated in the UCSC Genome Browser mm10 [29]
(miR-1195, chr17:70860551–70861600; miR-200c, chr6:12
4718366–124719390) and quantified using TaqMan
Master Mix (Applied Biosystems). Data were normalized
to IgG and expressed as percentage of the input. Detailed
ChIP methods are described in Additional file 1.

miRNA promoter cloning, transfections and luciferase
assays
Genomic regions (1.1 kb) 5′ to the first nucleotide of
miR-200c and of miR-221 pre-miRNA sequences were
retrieved from the UCSC Mouse Genome Browser [29].
We used oligonucleotides with restriction enzyme adaptors
to amplify ~ 0.9-1kb of each region by PCR (miR-200c F
5′-SacI CAGGCAGACACTGCCATCT-3′, R 5′-HindIII
CTACCCAACCAGTCCACCTCC-3′; miR-221 F 5′-SacI
AGGAGAGGCCCTTGGTATAG-3′, R 5′-HindIII GTTC
AGCCTGCAAATTATCC). Amplicons were ligated into
the pGL3-basic luciferase vector (Promega, Madison, WI)
and confirmed by sequencing. After several attempts we
were unable to clone the 5′flanking region of miR-1195.
Thus, miR-200c-Luc and miR-221-Luc plasmids were
transiently transfected using Lipofectamine 2000 (Life
Technologies, Grans Island, NY) in the cell lines de-
scribed above. A renilla luciferase expressing vector was
co-transfected for transfection efficiency control. Cells
were harvested 48 h after transfection and luciferase
activity measured using the Dual-Luciferase Reporter
Assay System (Promega). Firefly luciferase signal was
normalized to Renilla luciferase and data expressed rela-
tive to the pGL3-basic vector.

3′-UTR luciferase assays
All plasmids and reagents were obtained from Geneco-
peia (Rockville, MD). Plasmids harboring a Firefly lucif-
erase reporter and the 3′UTR flanking region of the
mir-200c predicted targets Myb (MmiT029722-MT01),
Nfib (MmiT027729a2-MT01), and Six1 (MmiT028207-
MT01), or a control vector (CmiT000001-MT01) were
co-transfected in MLE15 cells either with a pre-miR-
200c plasmid (MmiR3304-MR01) or with an scrambled
control clone (CmiR0001-MR01) using EndoFectin Plus
transfection kit. Different ratios of 3′UTR plasmids and
miR-200c plasmid were evaluated (data not shown). A 1:5
ratio rendered the most consistent effect with all plasmids.
Renilla luciferase expressing vector was co-transfected for
transfection efficiency control. Cells were harvested 48 h
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after transfection and luciferase activity was measured
using the Luc-Pair miR Luciferase Assay. Firefly luciferase
signal was normalized to Renilla luciferase and data
expressed relative to the Control Luciferase vector.

miRNA-1195 antagomir assay
MLE15 cells were transduced with miRVana miR-1195
inhibitor (4464084 ID MH13628 (Life Technologies) using
Lipofectamine RNAiMAX (Life Technologies) protocol.

Statistical analysis
Data were obtained from at least three independent ex-
periments (N = 3) and presented as mean ± SEM. The
significance of differences was calculated using t-test for
two-group unpaired comparisons. P < 0.05 was consid-
ered statistically significant.

Results
miRNAs downstream of Nkx2-1 in lung epithelial cells
To identify candidate miRNAs regulated by Nkx2-1 we
analyzed by microRNA arrays differences in expression
levels in the small RNA fraction isolated from control
and Nkx2-1-shRNA transduced MLE15 cells (Figure 1A,
B). We have previously characterized these stable cell
lines in two publications [12,22]. Nkx2-1 mRNA was
knocked-down to 60% of control and protein to 40%
(Figure 1A and [12]). Reduction of Nkx2-1 delayed cell
cycle progression by halting cells in G2/M phase of the
cell cycle [12]. We now show that these moderate
changes in Nkx2-1 expression also produced significant
changes in miRNA and gene expression. Importantly,
Nkx2-1 knock-down MLE15 cells retain their epithelial
features including unchanged expression of Cdh1, and
increased Krt14, Cldn4, Cldn8 and Epcam (Figure 1C).
Being of epithelial origin they have low expression of
vimentin, unchanged Zeb2 (Figure 1C) and undetectable
mRNA levels of the Epithelial-Mesenchymal-Transition
mediators Zeb1, Snail, Snug or Twist determined by
microarray analysis. We identified 68 well-annotated
miRNAs significantly altered by down-regulation of
Nkx2-1 (p < 0.05; FDR < 0.2) (Table 1). From these, 29
miRNAs increased their expression levels by Nkx2-1
knock-down including miR-200c (16.7 fold), miR-200b
(1.7 fold), miR-221 (4.2 fold), and miR-222 (3.7 fold)
(Figure 2A and Table 1). A group of 39 miRNAs was
significantly down-regulated by Nkx2-1 knock-down in-
cluding miR-1195 (−4.9 fold), miR-378 (−4.6 fold), miR-
449a (−2.1 fold), and miR-130a (−1.9 fold) (Figure 2A
and Table 1). Other miRNAs regulated by Nkx2-1 in-
clude miRNAs belonging to the miR-106-363 cluster
(miR-106a/b, miR-18a, miR-19b-1/2 and miR-20a/b)
(Figure 1 and Table 1). The expression of miR-141, clus-
tered and usually co-expressed with miR-200c [30], is
higher in Nkx2-1-shRNA than in control (p = 0.0196;
FDR = 0.087) (Table 1) following the same trend than
miR-200c. Expression patterns of the most altered miR-
NAs (miR-200c, miR-221, miR-1195, and miR-378) were
analyzed in Nkx2-1 knock-down cells by RT-qPCR
(Figure 2B) confirming the microarray data.

miRNA expression is altered in Nkx2-1 phosphorylation-
mutant lungs
Nkx2-1 null mice have an extreme lung phenotype due
to failing in branching morphogenesis resulting in a
large sac lined by a simple epithelium [2,3]. Therefore,
we tested the effect of Nkx2-1 on specific miRNAs
in vivo in wild type and in Nkx2-1 phosphorylation-
mutant lungs at E19.5 by RT-qPCR. These mice have
normal branching morphogenesis but show alterations
in distal epithelial differentiation and expression of lung
function genes. By RT-qPCR analysis we showed that
absence of phosphorylated NKX2-1 results in a signifi-
cant increment in the levels of miR-200c and miR-221;
miR-1195 is down-regulated although no significantly,
showing a similar trend than in Nkx2-1 knockdown
experiments in MLE15 cells (Figure 2C).

NKX2-1 protein binds to miRNA regulatory regions
To evaluate NKX2-1 protein binding to regulatory re-
gions of the top regulated miRNAs we performed ChIP
assays using a NKX2-1 antibody or the corresponding
IgG followed by quantitation by qPCR of fragments
within the miRNA’s 5′ flanking regions (Figure 3A). The
NKX2-1 antibody significantly immunoprecipitated 5′re-
gions of the tested miRNAs compared to IgG (Figure 3B).
For miR-200c, the enrichment of the IP fractions with
the Nkx2-1 antibody and IgG were 28 and 0.4% of input
while for miR-1195, were 129% and 1.3% of input re-
spectively. NKX2-1 also binds to the 5′flanking region
of miR-221. These data indicate a potential regulatory
link between NKX2-1 and miR-200c, miR-221, or miR-
1195. In support of these results, a search in a ChIP-
chip dataset of NKX2-1 target genes in mouse lung
development that we previously published [12] indicates a
significant binding of NKX2-1 within the 1kb 5′ flanking
region of the miR-200c gene (Figure 3C).

Nkx2-1 controls transcriptional activity of the miR-200c 5′
flanking region
To evaluate the transcriptional activity of the 5′flanking
regions of selected microRNAs we cloned ~1kb 5′ to the
miR-200c and to the miR-221 transcripts in a luciferase
reporter vector. Both fragments contain several NKX2-1
consensus binding core CAAG/CTTG sites (Figure 3A).
The miR-200c 5′flanking fragment is highly conserved in
humans where it is transcriptionally active [31]. We transi-
ently transfected the mouse constructs in MLE15 cell lines
previously transduced with lentivirus expressing Nkx2-1-



Table 1 miRNAs differentially expressed in Nkx2-1shRNA vs non-silencing control in MLE15 cells

MicroRNA Fold change p (Ttest) FDR MicroRNA Fold change p (Ttest) FDR

mmu-miR-200c_st 16.73 0.000005 0.001 mmu-miR-1195_st −4.90 0.0033 0.034

mmu-miR-221_st 4.16 0.0022 0.027 mmu-miR-378_st −4.58 0.00004 0.005

mmu-miR-222_st 3.71 0.0004 0.013 mmu-miR-351_st −3.12 0.0056 0.044

mmu-miR-27a-star_st 2.44 0.0017 0.024 mmu-miR-503_st −2.65 0.0003 0.012

mmu-miR-125a-5p_st 2.05 0.0217 0.090 mmu-miR-449a_st −2.13 0.0007 0.014

mmu-miR-24-2-star_st 2.00 0.0162 0.081 mmu-miR-1196_st −2.07 0.0005 0.013

mmu-miR-27a_st 1.80 0.0006 0.013 mmu-miR-685_st −2.05 0.0330 0.120

mmu-miR-486_st 1.75 0.0182 0.085 mmu-miR-709_st −2.00 0.0073 0.049

mmu-miR-200b-star_st 1.72 0.0054 0.044 mmu-miR-1224_st −1.94 0.0070 0.049

mmu-miR-574-3p_st 1.69 0.0085 0.052 mmu-miR-130a_st −1.93 0.0057 0.044

mmu-miR-200b_st 1.65 0.0104 0.057 mmu-miR-20a_st −1.86 0.0010 0.017

mmu-miR-22_st 1.49 0.0041 0.038 mmu-miR-20b_st −1.75 0.0009 0.017

mmu-miR-484_st 1.48 0.0470 0.159 mmu-miR-19b_st −1.71 0.0073 0.049

mmu-miR-700_st 1.47 0.0004 0.013 mmu-miR-18a_st −1.69 0.0021 0.026

mmu-miR-344_st 1.45 0.0168 0.082 mmu-miR-152_st −1.64 0.0033 0.034

mmu-miR-23a_st 1.45 0.0184 0.085 mmu-miR-805_st −1.58 0.0197 0.087

mmu-miR-181a_st 1.44 0.0143 0.073 mmu-miR-185_st −1.52 0.0003 0.012

mmu-miR-200a_st 1.39 0.0033 0.034 mmu-miR-106b_st −1.51 0.0284 0.108

mmu-miR-181b_st 1.36 0.0088 0.052 mmu-miR-27b_st −1.48 0.0085 0.052

mmu-miR-205_st 1.36 0.0097 0.055 mmu-miR-106a_st −1.48 0.0061 0.045

mmu-miR-532-3p_st 1.32 0.0220 0.090 mmu-miR-346_st −1.48 0.0260 0.101

mmu-miR-151-5p_st 1.31 0.0171 0.082 mmu-miR-877_st −1.45 0.0118 0.061

mmu-miR-362-5p_st 1.31 0.0208 0.088 mmu-let-7i_st −1.44 0.0047 0.040

mmu-miR-21_st 1.28 0.0014 0.020 mmu-miR-182_st −1.43 0.0083 0.052

mmu-miR-24_st 1.27 0.0045 0.040 mmu-miR-345-3p_st −1.42 0.0005 0.013

mmu-miR-140-star_st 1.26 0.0233 0.094 mmu-miR-674_st −1.40 0.0095 0.055

mmu-miR-28-star_st 1.23 0.0203 0.088 mmu-let-7f_st −1.40 0.0034 0.034

mmu-let-7e_st 1.17 0.0113 0.060 mmu-let-7d_st −1.40 0.0495 0.164

mmu-miR-141_st 1.17 0.0196 0.087 mmu-miR-324-5p_st −1.36 0.0300 0.112

mmu-miR-183_st −1.36 0.0021 0.026

mmu-miR-378-star_st −1.34 0.0067 0.049

mmu-miR-25_st −1.33 0.0326 0.120

mmu-miR-674-star_st −1.32 0.0012 0.019

mmu-miR-100_st −1.25 0.0463 0.159

mmu-miR-17-star_st −1.23 0.0473 0.159

mmu-miR-99a_st −1.22 0.0258 0.101

mmu-miR-491_st −1.20 0.0002 0.012

mmu-miR-191_st −1.13 0.0432 0.152

mmu-miR-470_st −1.12 0.0350 0.125

(p < 0.05; FDR < 0.2).
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shRNA or non-silencing control (Figure 3D). The 5′
flanking region of miR-200c exhibits intense transcrip-
tional activity (15-fold ± 0.66; p = 0.0005) with normal
levels of Nkx2-1. Unexpectedly, we found that knock-
down of Nkx2-1 resulted in lower transcriptional activ-
ity of this 1kb fragment (8-fold ± 0.24; p = 1.6 × 10−6).
The 1kb fragment 5′ to miR-221 was transcriptionally
inactive in the same conditions (Figure 3D). So, Nkx2-1



Figure 2 Nkx2-1 controls the expression of specific miRNAs. A.
Hierarchical two-dimensional clustering analysis of Nkx2-1-regulated
miRNA expression in MLE15 cells. Blue, Non-silenced Nkx2-1 samples;
yellow, Nkx2-1-shRNA knocked-down samples. Each row corresponds to a
miRNA and each column corresponds to an independent sample. Green
represents lower and red higher relative expression. B. RT-qPCR validation
analysis of miRNAs down- regulated (upper panels) or up-regulated
(lower panels) by Nkx2-1 knockdown in MLE15 cells. Data was normalized
to rnuRNA-6B. (*) p < 0.05. C. RT-qPCR analysis of miRNA expression
levels in Nkx2-1PM/PM relative to Nkx2-1+/+. Data was normalized
to snoRNA-202 and represented in a log scale. (*) p < 0.05.
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has a strong effect in controlling the levels of miR-200c
expression but this control might be indirect. Nkx2-1 is
recognized to act mainly as a transcriptional activator
[11], binding to the promoters/enhancers of 58% of
activated downstream genes but only to 23% of genes
repressed by Nkx2-1. Therefore, most genes repressed
by Nkx2-1 do so by mechanisms other than direct pro-
moter binding as may be the case for miR-200c. Alter-
natively, the elements mediating Nkx2-1 repression of
miR-200c might be located in regulatory regions beyond
the -1kb 5′ flanking region. Analysis of histone marks
in distinct microRNA loci to identify putative transcrip-
tion start sites (TSS) indicates that a putative TSS of
miR-200c in mouse cells might be within 5 kb of the
pre-miRNA sequence [32].

Expression patterns of predicted targets of Nkx2-1-regulated
miRNAs
Predicted targets of miR-200c were retrieved from Tar-
getScanMouse (Release 6.2) [27]. A total of 770 pre-
dicted targets of miR-200c (total context score ≤ −0.01)
were identified (Additional file 2: Table S1). We also
determined genome-wide changes in mRNA levels in
the Nkx2-1 knock-down cells using expression microar-
rays. 1352 genes with an adjusted p value < 0.0005,
logFC < −0.6 or logFC > 0.6 were selected for further
analysis (Additional file 3: Table S2). We intersected Tar-
getScanMouse predicted targets with 557 genes showing
anti-correlated expression to that of miR-200c (Figure 4A)
in Nkx2-1 knockdown cells. The intersection showed 32
genes whose changes in expression were anti-correlated
with miR-200c (including the transcription factors Gata4,
Myb, Nfib Ntf3, Phf6, Six1, Sox2, and Trps1) (Figure 4B).
We validated Myb, Nfib and Six1 expression patterns by
RT-qPCR analysis (Figure 4C).

miR-200c controls expression of its predicted targets Nfib
and Myb
A significant number of miR-200c targets whose expres-
sion was negatively correlated to miR-200c in the micro-
array analysis were overrepresented in the transcriptional
regulation GO category (Additional file 4: Table S3). The
transcription factors Gata4 [33], Ntf3 [34] and Sox2 [35]
are experimentally validated targets of miR-200c in
human cells. We selected Nfib, Six1, and Myb to per-
form 3′UTR-luciferase reporter assays in MLE 15 cells
expressing pre-miR-200c or scrambled control. Significant
reduction of luciferase activity was observed in Nfib 3′
UTR-Luciferase (0.63 ± 0.06; p = 0.016) and in Myb 3′
UTR-Luciferase (0.62 ± 0.04; p = 0.002) transfected cells in
the presence of pre-miR-200c compared to the scrambled
control (Figure 4D). No difference in luciferase activity
was observed in cells co-transfected with Six-1-Luciferase
and pre-miR-200c or scrambled plasmids.



Figure 3 NKX2-1 binds to miRNA’s regulatory regions and regulates their transcriptional activity. (A) Scheme representing 1 kb of the 5′
flanking region of each miRNA. The core of the NKX2-1 consensus binding site (CAAG/CTTG) is represented as a green circle. (B) Chromatin
immunoprecipitation assays using NKX2-1 antibody or IgG control followed by qPCR analysis of the 5′ flanking regions of miR-200c, miR-221 and
miR-1195. Data represents percentage of the input in log scale. (*) p≤ 0.05. (C) Binding of NKX2-1 to miR-200c 5′ flanking region in E11.5 and
E19.5 mouse lung previously determined by ChIP-chip analysis [12]. Data represents binding signal (y axis) for each probe on the promoter tiling
array (x axis) corresponding to the 5′ flanking region of the pre-miR-200c. miR-221 and miR-1195 5′ flanking regions were not represented in the
array. Red, E11.5; blue, E19.5; black line, transcript. N = 3 (D) Promoter-luciferase analysis of the transcriptional activity of the 1 kb 5′ flanking regions
of different miRNAs in MLE15 transduced with NKx2-1 shRNA or control. Data represents Firefly luciferase normalized to Renilla luciferase. Values
are relative to the 0-Luciferase (pGL3) control vector in each cell line. (*) p < 0.05 in 0-Luc vs. miR-200c –Luc; (**) p < 0.05 in miR-200c-Luc + scrambled
vs. miR-200c.
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miR-1195 controls expression of its predicted targets
We intersected 40 predicted targets of miR-1195 retrieved
from TargetScanMouse with 795 genes showing anti-
correlated expression to that of miR-1195 (Figure 5A) in
Nkx2-1 knockdown cells. We identified only 4 genes
whose changes in expression induced by Nkx2-1 were
anti-correlated with changes in miR-1195 expression
(Nr1d1, Cyp2s1, Spire1 and Map3k2) (Figure 5B). We ob-
served the same trend in the expression of these putative
targets analyzed by RT-qPCR (Figure 5C).
To further evaluate the effect of miR-1195 on pre-

dicted downstream genes, we transfected MLE15 cells
with a miR-1195 inhibitor to reduce its expression
levels. After 48 h of transduction, expression levels of
miR-1195 were measured by RT-qPCR confirming that
miR-1195 was reduced by 50% (Figure 5D). Expression
of Map3k2 and Cyp2s1 was significantly up-regulated
by the miR-1195 inhibitor (Figure 5D). Because miR-
1195 is a mouse specific miRNA no further analyses
were performed to determine direct regulation of the
identified targets. hsa-miR-584 shares partial homology
to mmu-miR-1195 [36] and will be analyzed in future
studies.
Discussion
In this study we have identified microRNAs whose ex-
pression is influenced by knock-down of Nkx2-1. Using
genome- wide miRNA expression profiling in a lung
adenocarcinoma-derived mouse epithelial cell line (MLE15)
[21], we observed that reduction of Nkx2-1 levels to
approximately half of that in control cells promoted signifi-
cant and reproducible changes in miRNA expression pat-
terns, including a high up-regulation of miR-200c. The top
up- and down- regulated miRNAs are expressed in normal
mouse fetal lung and their level of expression is also altered
in mice lacking functional phosphorylated-Nkx2-1. Further-
more, we present evidence of a regulatory link between
Nkx2-1, mirR-200c and the downstream transcription
factors Nfib and Myb. The studies indicate that down-
regulation of Nkx2-1 de-represses miR-200c, either by a
direct or an indirect mechanism. Downstream, miR-
200c reduces the expression of its predicted targets Nfib
and Myb.
miR-200c was initially identified as a lung-specific

miRNA in rats [37]. Expression of miR-200c is higher in
adult rat lung alveolar cells than fibroblasts, and its
expression is lower during development than in adult



Figure 4 Analysis of predicted targets of miR-200c. (A) Venn diagram showing the intersection analysis of in silico miR-200c predicted target
genes in TargetScanMouse 6.2 and genes downregulated in Nkx2-1 knockdown cells identified by microarray analysis. (B) Expression level of
Nkx2-1 and of the 32 predicted targets of miR-200c identified in the intersection in A, determined by microarray analysis. FC, fold change; (1, 2, 3)
biological replicates; red represents higher expression levels; green represents lower expression levels. Adjusted p value < 0.0005 (C) Selected
transcription factors target of miR-200c were validated by RT-qPCR in Nkx2-1 shRNA treated cells vs. non-silencing control MLE15 cells. N = 3-6.
(*) p < 0.01. (D) 3′UTR-Luciferase analysis of miR-200c predicted targets Myb, Nfib and Six1 compared to control-Luciferase in MLE15 transfected
with pre-miR-200c or scrambled control. (*) p < 0.05.
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lung. Most studies about miR-200c have been performed
in the mesenchymal-epithelial transition (MET) context.
One well studied function of the miR-200 family is the
induction of an epithelial phenotype by inhibiting the
transcriptional repressor Zeb2 and thereby enhancing
E-cadherin expression [31,35]. Supporting its role in
maintaining an epithelial phenotype in the lung, miR-
200c expression is significantly reduced in the lung of mice
with experimental fibrosis and in lungs of IPF patients
where the epithelium undergoes profound alterations by
acquiring some mesenchymal characteristics. In lung
adenocarcinoma a high-level of NKX2-1 expression is
significantly associated with longer overall survival [7],
whereas a high-level of miR-200c expression is associ-
ated with shorter overall survival [30] supporting the
inverse correlation. But in epithelial cell contexts, as the
ones described in this work, increased miR-200c may
regulate cellular processes other than MET, such as pro-
liferation, or survival of lung cells.
Our data shows that miR-200c represses Nfib and
Myb genes. These transcription factors [38,39] and other
known miR-200c targets such as E2F3 [40] and Kras
[41] have been linked to lung epithelial proliferation in
development and in tumorigenesis acting as oncogenes.
Nfib is highly expressed in the embryonic lung epithe-
lium and in the mesenchyme, but its expression gets
restricted to the epithelium at late gestation. Absence
of Nfib in null mutant mice results in early postnatal
lethality with severe lung hypoplasia [38]. In small
cell lung carcinomas NFIB regulates cell viability and
proliferation [42] and it is considered an oncogene. The
other predicted target, Myb has been recently linked to
the differentiation of airway epithelial cells [43], and was
shown to be regulated by miR-200c in glioblastomas [44]
and breast cancer cells [43]. In the latter, the human MYB
3′UTR was shown to contain miR-200c binding sites.
Therefore, a reduction of Nkx2-1may modulate the prolif-
erative activity of lung epithelial cells not only by direct



Figure 5 Analysis of predicted targets of miR-1195. (A) Venn diagram of the intersection of in silico miR-1195 predicted target genes in
TargetScanMouse 6.2 and genes upregulated in Nkx2-1 knockdown cells identified by microarray analysis. (B) Expression level of Nkx2-1 and of
the 4 predicted targets of miR-1195 in Nkx2-1shRNA treated MLE15cells vs. non-silencing control, determined by microarray analysis. FC, fold change;
(1, 2, 3) biological replicates; red represents higher expression levels; green represents lower expression levels. (C) The 4 predicted targets of miR-1195
were validated by RT-qPCR in Nkx2-1 shRNA treated cells vs. non-silencing control MLE15 cells. (*) p < 0.05. (D) A miR-1195 inhibitor transduced in
MLE15 cells reduces the expression of miR-1195 by 50% determined by RT-qPCR; expression of miR-1195 predicted target genes in the same cells
inversely correlated to the levels of miR-1195 determined by RT-qPCR. (*) p < 0.05.
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inhibition of cyclin B, as it was previously described
[12,13], but also through direct or indirect activation of
miR-200c to inhibit downstream oncogenes.
We identified other miRNAs regulated by Nkx2-1 ex-

pression. miR-1195, for instance, is positively regulated
by Nkx2-1 in the lung epithelial cell system and in nor-
mal vs. phosphorylation mutant lungs. miR-1195 is a
mouse specific miRNA [45], enriched in epithelial struc-
tures in the embryo and moderately homologous to the
human miRNA hsa-miR-584-3p (miRBase [36]). Predicted
targets of miR-1195, including the mitogen-activated pro-
tein kinase Map3k2 [46] and the extra-hepatic cytochrome
P450 enzyme Cyp2s1 [47,48], responded to changes in
miR-1195 levels. Because miR-1195 is not found in
humans, its close homolog hsa-miR-584-3p will be the
focus of further studies.

Conclusions
Overall, our findings suggest that modulation of the level
of expression of Nkx2-1 has a high impact on down-
stream regulatory events mediated by miRNAs in mouse
lung epithelial cell lines and in lung tissue. Particularly,
miR-200c, negatively regulated by Nkx2-1, reduces the
expression of downstream targets Nfib and Myb. Be-
cause of the high conservation between mouse and
human homologs of Nkx2-1, Nfib, Myb, and miR-200c
it is likely that these links apply to human cells. The
individual functions of NKX2-1 [5-7,49], miR-200c
[30,50,51], MYB [39,52], and NFIB [42] in lung devel-
opment and/or lung cancer have been widely documented.
Thus, our future analyses are aimed at characterizing
these novel regulatory links between NKX2-1:miR-200c:
NFIB, or MYB in propagating fluctuations in the levels
of NKX2-1 in human lung tumors.
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