2015 Theses Doctoral
Modeling and Analysis of Graphene Resonant Channel Transistors for RF Filters
In recent years the proliferation of wireless devices such as tablets and smartphones has resulted in an unprecedented crowding of the radio spectrum around the world. The high density of radio signals being transmitted at any one time has necessitated the use of high-performance radio-frequency (RF) filters prior to any receiver signal path in order to protect the device against interference. State-of-the-art filter technologies based on piezoelectric resonators provide good rejection of interfering signals, but do not scale well to cover the large range of frequencies currently allocated for cellular communications. This thesis presents measurements and analysis of a new active resonator technology, known as a graphene resonant channel transistor (G-RCT), that has the potential to be used in micron-scale RF filters that are capable of covering these larger bandwidths. A compact model for G-RCTs is developed that accurately replicates the AC, DC, and frequency tuning characteristics of the device, enabling the design and simulation of hybrid electromechanical circuits. The device noise is also modeled, and analytical expressions for the noise figure of circuits using G-RCTs are derived. Finally, expressions for third-order intermodulation distortion are derived and validated with measurements.
Subjects
Files
-
Lekas_columbia_0054D_12546.pdf application/pdf 51 MB Download File
More About This Work
- Academic Units
- Electrical Engineering
- Thesis Advisors
- Shepard, Kenneth L.
- Degree
- Ph.D., Columbia University
- Published Here
- March 4, 2015