BUGMINER: Software Reliability Analysis Via Data Mining of Bug Reports

Wu, Leon Li; Xie, Boyi; Kaiser, Gail E.; Passonneau, Rebecca

Software bugs reported by human users and automatic error reporting software are often stored in some bug tracking tools (e.g., Bugzilla and Debbugs). These accumulated bug reports may contain valuable information that could be used to improve the quality of the bug reporting, reduce the quality assurance effort and cost, analyze software reliability, and predict future bug report trend. In this paper, we present BUGMINER, a tool that is able to derive useful information from historic bug report database using data mining, use these information to do completion check and redundancy check on a new or given bug report, and to estimate the bug report trend using statistical analysis. Our empirical studies of the tool using several real-world bug report repositories show that it is effective, easy to implement, and has relatively high accuracy despite low quality data.



More About This Work

Academic Units
Computer Science
Department of Computer Science, Columbia University
Columbia University Computer Science Technical Reports, CUCS-024-11
Published Here
May 3, 2012