2002 Reports
Random paths to stability in the roommate problem
This paper studies whether a sequence of myopic blockings leads to a stable matching in the roommate problem. We prove that if a stable matching exists and preferences are strict, then for any unstable matching, there exists a finite sequence of successive myopic blockings leading to a stable matching. This implies that, starting from any unstable matching, the process of allowing a randomly chosen blocking pair to form converges to a stable matching with probability one. This result generalizes those of Roth and Vande Vate (1990) and Chung (2000) under strict preferences.
Subjects
Files
- econ_0102_65.pdf application/pdf 335 KB Download File
More About This Work
- Academic Units
- Economics
- Publisher
- Department of Economics, Columbia University
- Series
- Department of Economics Discussion Papers, 0102-65
- Published Here
- March 23, 2011
Notes
June 2002