2013 Theses Doctoral
Charged Particle Multiplicity and Open Heavy Flavor Physics in Relativistic Heavy Ion Collisions at the LHC
In this thesis, two independent measurements are presented: the measure- ments of centrality dependence and pseudo-rapidity dependence of charged particle multiplicities, and the measurements of centrality dependence of open heavy flavor suppression. These measurements are carried out with the Pb+Pb collisions data at the LHC energy and = 2.76 TeV with the ATLAS detector. For the charged particle measurements, charged particles are reconstructed with two algorithms (2-point "tracklet" and full tracking) from the pixel detector only. Measurements are presented of the per-event charged particle density distribution, dNch/d η and the average charged par- ticle multiplicity in the pseudo-rapidity interval |η| <0.5 in several intervals of collision centrality.
The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower √sNN results measured at RHIC. The shape of the dNch/η distribution is found to be independent of centrality within the systematic uncertainties of the measurement. For the open heavy flavor suppression measurements, muons identified by the muon spectrometer are classified as heavy flavor decays and background contributions by using a fitting procedure with templates from Monte Carlo samples. Results are presented for the per-event muon yield as a function of muon transverse momentum, pT, over the range of 4 pT 14 GeV.
Over that momentum range single muon production results largely from heavy quark decays. The centrality dependence of the muon yields is characterized by the "central to peripheral" ratio, RCP. Using this measure, muon production from heavy quark decays is found to be suppressed by a centrality-dependent factor that increases smoothly from peripheral to central collisions. Muon production is suppressed by approximately a factor of two in central collisions relative to peripheral collisions. Within the experimental errors, the observed suppression is independent of muon pT for all centralities.
Furthermore, the pT dependence of the relative muon yields in Pb+Pb collisions to p+p colli- sions with the same center of mass collision energy per nucleon is presented by the nuclear modification factor RAA, which is defined as the ratio of a spectrum from heavy ion collisions to the same but scaled spectrum from nucleon-nucleon collisions . The observed RAA has little dependence on pT within the uncertainties quoted here. The results for RAA indicate a factor of about 3 suppression in the yield of muons in the most central (0-10%) collisions compared to the p+p collisions.
Subjects
Files
- Chen_columbia_0054D_11213.pdf application/pdf 14.7 MB Download File
More About This Work
- Academic Units
- Physics
- Thesis Advisors
- Cole, Brian A.
- Degree
- Ph.D., Columbia University
- Published Here
- April 12, 2013