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Rigid Formations with Leader-Follower Architecture

Tolga Eren, Walter Whiteley, and Peter N. Belhumeur

Abstract— This paper is concerned with information structures
used in rigid formations of autonomous agents that have leader-
follower architecture. The focus of this paper is on sensor/network
topologies to secure control of rigidity. We extend our previous
approach for formations with symmetric neighbor relations to
include formations with leader-follower architecture. Necessary
and sufficient conditions for stably rigid directed formations are
given including both cyclic and acyclic directed formations. Some
useful steps for creating topologies of directed rigid formations
are developed. An algorithm to determine the directions of links
to create stably rigid directed formations from rigid undirected
formations is presented. It is shown thatk-cycles ¢ > 3) do
not cause inconsistencies when measurements are noisy, while
cycles do. Simulation results are presented for (i) a rigid acyclic
formation, (i) a flexible formation, and (iii) a rigid formation with
cycles.

be held fixed by directly measuring distances between only
some agents and keeping them at desired values. A ‘dis-
tance constraint’ is a requirement that a distance between
two agents, depicted witll, be maintained through a sens-
ing/communication link and some control strategy. Distance
constraints are sometimes referred to as range or separation
constraints. With enough distance constraints, the whole for-
mation will be rigid, even without there being a distance
constraint between every pair of agents.

Two agents connected by a sensing/communication link are
called neighbors There are two types of neighbor relations
in rigid formations. In the first type, the neighbor relation
is symmetric, i.e., if agent senses/communicates with agent

j and uses the received information (such as distances) for
motion planning, so does ageptwith agenti. A link with
I. INTRODUCTION a symmetric neighbor relation is represented graphically by

Multiagent systems have lately received considerable attéhStraight line. In the second type, the neighbor relation is
tion due to recent advances in computation and communicat@symmetric, i.e., if agent senses/communicates with aggnt
technologies (see for example [1]-[8]). In the context gind uses the received information for motion planning, then
this paper, agents will simply be thought of as autonomo@§ent; does not make use of any information received from
agents including robots, underwater vehicles, microsatellit@§jent: although it may sense/communicate with agerfor
unmanned air vehicles, ground vehicles, and sensor nodd@mple, rigid formations with a leader-follower architecture
A formation is a group of agents moving in real 2- or 3-have the asymmetric neighbor relation. A link with an asym-
dimensional space. A formation is calleidid if the distance Metric neighbor relation between a leader and a follower is
between each pair of agents does not change over time uri@gresented by a directed edge pointing from the follower to
ideal conditions. A formation is Ca”ed']inima”y r|g|d if it the Ieadel’, i.e., head is the leader and tail is the follower.
loses it rigidity when any one of its links is removed from th&ointing direction from leader to follower is also used, e.g.,

formation. In other words, a minimally rigid formation has th&ee [9]. The termandirected formatiomnddirected formation
minimum number of links to maintain rigidity. If a formationare also used to describe formations with symmetric neighbor

is rigid but not minimally rigid, then it is called edundantly relations and formations with leader-follower architecture [3],

rigid formation. Minimally rigid formations are more energyfespectively. We will also use those terms throughout the
efficient compared to redundantly rigid formations. This pdaper.
per is mainly concerned with minimally rigid formations. Eren et al. [10]-[12] and Olfati-Saber and Murray [2]
Sensing/communication links are used for maintaining fixeé#ggested an approach based on rigidity for maintaining for-
distances between agents. The interconnection structurentitions of autonomous agents with sensor/network topologies
sensing/communication links is callestnsor/network topol- that use distance information between agents, where the neigh-
ogy. In practice, actual agent groups cannot be expectedq@r relation is Symmetric. R|g|d|ty of undirected formations
move exact|y as a r|g|d formation because of Sensing errovg!:h distance information is well understood in 2-dimensional
vehicle modelling errors, etc. The ideal benchmark poigPace, and there are partial results in 3-dimensional space
formation against which the performance of an actual age[gg]. For formations that have a leader-follower architecture,
formation is to be measured is calledederence formation ~Baillieul and Suri gave two separate conditions for stable
In reality, agents are entities with physical dimensioné&igidity for formations that have distance information between
For mode”ng purposes, agents are represented by pomnts, one of which is a necessary condition and the other is

called point agents Distances between all agent pairs caf sufficient condition [5] Tanner et al. studied inpUt-tO'State
stability properties of formations with cyclic interconnections
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directed formations. information conveyed by this link. For example, if two agents
We show that redundantly rigid formations lead to overdeonnected by a sensing/communication link are set to maintain
termined systems. Inconsistencies in overdetermined systeanten meter distance between each other, then both agents
caused by redundant rigidity are calleddundancy-based perform action to maintain this distance. In the graph theoretic
inconsistencies Although 2-cycles cause redundancy-basegktting, the edge corresponding to this link is denoted by an
inconsistencies, we show that cycles of length 3 or more dodirected edge.
not cause redundancy-based inconsistencies. We then provid€he situation in a rigid formation where the relation between
necessary and sufficient conditions for stably rigid directeaents has a leader-follower architecture is different, because
formations that havé-cycles ¢ > 3). the information on a sensing/communication link between a
In this paper, we restrict our attention to minimally rigideader-follower pair is used only by the follower. For example,
formations in 2-dimensional space. We wish to consider veith the same distance requirement as in the example above,
broader range of interconnection topologies, including bothtwo agents, labelled with and j, are set to maintain a
cyclic and acyclic, and understand how the interconnectit®n meter distance between themselves whdgethe leader
topology and the directions affect the rigidity of a formatiomnd j is the follower, then only agent performs action to
as it performs a coordinated motion. Our ultimate goal is threaintain this distance. Let us assume the following properties
development of strategies to create minimally rigid directdd a formation of agents: (i) there is a global formation leader
formations, which are scalable for any number of agents. that determines where the entire formation moves, and it does
The contributions of this paper are: not follow any other member; (ii) there is a first-follower of the

1) to extend our previous approach for formations witglobal leader that maintains a predefined distance only to the
symmetric neighbor relations to include formations wit@lobal leader; (iii) every other agent of the formation maintains
leader-follower architecture; predefined distances to some other agents in the formation; (iv)

2) to give necessary and sufficient conditions for stablan agent, say3, maintains a predefined distance to another
rigid directed formations including both cyclic and@gent, sayd, thenA does not perform any action to maintain

acyclic directed formations; a predefined distance 1 (in this relationA is a leader and3
3) to develop some useful steps for creating sensor/netwdska follower). As the formation moves with the leadership of
topologies of directed rigid formations; the global leader, if the distance between every pair of agents

4) to present a procedure to determine the directions @pes not change over time under ideal conditions, then such
links to create a stably rigid formation from a rigig@ formation is a rigid formation.
undirected formation: Certain directed information patterns in a formation can
5) to show thatk-cycles ¢ > 3) do not cause inconsisten-Pe described by bar-joint frameworks. To do that, consider
cies when measurements are noisy, whieycles do; ~ creating a bar-joint framework in the plane starting from two
6) to show that redundant rigidity is a source for inconsid0ints connected by a bar. Once the end-joints are held fixed
tencies when measurements are noisy. (i.e., translations and rotations are avoided), we can insert a
new joint by connecting it to the existing joints using new bars.
In this scenario, the constraints imposed by the new bars act
only on the newly inserted joint because the initial bar-joint
é‘ramework is already fixed and cannot be affected by the newly

architecture inlll. Cycles in rigid formations are Studiedmserted bars and joints. (If the first two joints are regarded as

in §IV. We focus on creating directed rigid formations fronf9ents: andj, and the new joint is regarded as agénthen

undirected rigid formations ifV. Finally, concluding remarks agentk p_erfqrms Fhe actions to maintain its dlstarjce frq)m
are given in§v. andj, while i andj do not perform any corresponding action

in relation to agenk.) If the resulting bar-joint framework is
not deformable, then this new resulting bar-joint framework
is rigid and it becomes the new fixed bar-joint framework
One way of visualizing rigidity with symmetric neighborfor the next step. In the graph-theoretic setting, the directed
relation is to imagine a collection of rigid bars connecteddge points to the newly inserted joint from the fixed bar-joint
to one another by idealized ball joints, which is called &amework.
bar-joint framework. By an idealized ball joint we mean To summarize, there are two types of neighbor relations.
a connection between a collection of bars which impos@&ey can be symmetric, i.e., if agehtsenses/communicates
only the restriction that the bars share common endpointgith agent; and performs action upon the information it
Now, can the bars and joints be moved in a continuousceives, so does agejt This corresponds to an undirected
manner without changing the lengths of any of the bars, wheggaph. Alternatively, the formation can have a leader-follower
translations and rotations do not count? If so, the framewoakchitecture, i.e., agent senses/communicates with agent
is flexible; if not, it is rigid. (Precise definitions will appearand performs actions upon the information it receives, but the
in the sequel.) In a bar-joint framework, the length of a bactions of agent do not depend on the information conveyed
imposes a distance constraint for both end-joints. This is thg the sensing/communication with agentThe underlying
same situation in a formation where two agents connectghph of such formations is a directed graph. A directed edge
by a sensing/communication link are mutually affected by thmoints from the leader to the follower. We will consider these

The paper is organized as follows. Bil, we start with
definitions of rigidity. We review point formations ifll-A,
and rigid formations with symmetric neighbor relations;ii
B. We investigate rigid formations that have leader-follow

Il. RIGIDITY AND POINT FORMATIONS
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two cases separately in each section. Example 2.1:Consider a planar point formatidf, shown
in Figure 1. This has a rigidity matrix as shown in Table I.
A. Point Formations Let M,, be the manifold of points congruent to Because

any trajectory offf,, which lies within M,,, is one along which
IF, undergoes rigid motion, (2) automatically holds along any
trajectory which lies withinM,,. From this, it follows that
the tangent space t61, at p, written 7,,, must be contained
in the kernel of R.(p). If the pointspy,ps,...,p, are in
general position (which means that the poiptSps, ..., p,
not lie on any hyperplane iR"), then M, is n(n+1)/2
ﬁ@ensional since it arises from thgn — 1)/2-dimensional
nifold of orthogonal transformations dR™ and then-
imensional manifold of translations d™ [15]. Thus M,,
is 3-dimensional fof?, in IR?. We haverank R (p) = 2n —
dimensioqkernel(R.(p))} < 2n—n(n+1)/2. The following
theorem holds [15], [16]:
Theorem 2.2:AssumeF,, is an n-point formation with at

A point formationF, £ (p, £) provides a way of repre-
senting a formation of. agentsp = {p1, ps,...,p,} and the
points p; represent the positions of agents®3? wherei is
an integer in{1,2,...,n} and denotes the labels of agenfs.
is the set of “maintenance links,” labelldd j), wherei and
j are distinct integers if1,2,...,n}. Themaintenance links
in £ correspond to constraints between specific agents, s
as distances, which are to be maintained over time by us
sensing/communication links between certain pairs of age

Each point formationF, uniquely determines a graph
G, £ (V,L) with vertex sety £ {1,2,...,n}, which is
the set of labels of agents, and edge SefA formation with
distance constraints can be represented(ByL, ) where
f : L — R. Each maintenance linki,j) € £ is used to , : - )
maintain the distancg((i, j)) between certain pairs of agentd€ast2 points in 2-d|men§|onal Space yvher;an Re(p) =
fixed. max{rank R.(x) : = € R*}. F, is rigid in IR” if and only if

A trajectory of a formation is a continuously parameterized rank Rz (p) = 2n — 3.

i H nd
one-parameter family of curveg, (¢), ¢ (t), -, gn(t)) in R This theorem leads to the notion of the “generic” behavior

which containp and on which for each, Fy(,) IS a formation ¢ rigidity. When the rank is less than the maximum, the

with the same measured values underA rigid motion is formation may still be rigid. However this type of rigidity

a trajectory along which point formations contained in th'%cks the generic behavior and thus is not addressed in this
trajectory are congruent to each other. We will say that t Aper

point formationsk, andF.., wherep, r € q(t), are congruent 1) Generic Rigidity: We define a type of rigidity, called

if they have the same graph andpifind» are congruentp is S .
y . grap P r cong 4 .“generic rigidity,” that is more useful for our purposes. A
congruentto r in the sense that there is a distance-preservin

map7 : R? — R such thatl’(r;) = pi,i € {1,2,...,n}. fo tbﬁ aI:eb(raaliéé.ll. 70&2)e22ednltsfutnhcetrereiil ;unrgg-ezr:rc;s i?lfﬂ
If rigid motions are the only possible trajectories then the 9 y dep oYy

formation is calledrigid; otherwise it is calledlexible [10]. 2(();n|al h(sl’)' o ’E”L?f V,Ztlt?s Ir:l;?g:lge(t:)(r)zif(f:glllinfjsepseuncdhentthaii
1yeeeyQp) = . y

o ) _ ) ) ) is calledgeneric[18]. We say thap = (p1, ..., p,) IS generic
B. Rigidity in Point Formations with Symmetric Neighbofy, 5_gimensional space, if itn coordinates are generic. It can
Relations be shown that the set of geneyits form an open connected
Whether a given point formation is rigid or not can be studiense subset oR** [19]. A graphG = (V,£) is called
ied by examining what happens to the given point formatiagenerically rigid if F,, = (p, £) is rigid for a genericp.
F, = ({p1,p2,...,pn}, £) with m maintenance links, along The concept of generic rigidity does not depend on the
the trajectoryq([0,0)) = {{q1(t), ¢2(t), ..., qn(t)} : t > 0}  precise distances between the point&Fgfbut examines how
on which the Euclidean distancels; = ||p; — p;|| between well the rigidity of formations can be judged by knowing the
pairs of points(p;, p;) for which (i, j) is a link are constant. vertices and their incidences, in other words, by knowing the
Along such a trajectory underlying graph. For this reason, it is a desirable specializa-
tion of the concept of a “rigid formation” for our purposes.
N (Y 2 . The following theorem holds for a generically rigid graph [16]:
(@ =) (=g =dij, Gl 120 (1) Theorem 2.3:The following are equivalent:
We note that the existence of a trajectory is equivalent to the
existence of a piecewise analytic path, with all derivatives at
the initial point [14]. Assuming a smooth (piecewise analytic)
trajectory, we can differentiate to get

(¢ —qj)- (6 —¢;) =0, (@jeLl, t=0 (2

Here, ¢; is the velocity of pointi. The m equations can be
collected into a single matrix equation

i

Re(q)g=0 (3)
. .. . . . Fig. 1. A planar point formation used to demonstrate the rigidity matrix.
_ T
where g = [g1, g2, e n] and. Rﬁ_(‘J) IS a specially struc- tpe rigidity matrix corresponding to this point formation is shown in Table
turedm x 2n matrix called therigidity matrix [15]-[17]. 2.1.
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Re(p) v J r s
(,0) | ®wi—2; wyi—wy; | ®j—2  yj—w 0 0 0 0
(6,r) | zi—ar  yi—yr 0 0 Tr—Ti  Yr —Yi 0 0
(iv 5) Tj — Ts Yi —Ys 0 0 0 0 Ts — T4 Ys — Yi
(7,7) 0 0 Tj—Tr  Yj— Yr r— T Yr —Yj 0 0
(4, ) 0 0 Tj—Ts  Yj —Ys 0 0 Ts —T;  Ys — Yj
(r,5) 0 0 0 0 Tr —Ts  Yr —Ys | Ts —Tr  Ys — Yr
TABLE |
RIGIDITY MATRIX EXAMPLE FOR DISTANCES
. . . . . . . *
1) agraphG = (V, £) is generically rigid in2-dimensional G /’\\ L(j//\\
space; g ( B
2) for somep, the formationF, with the underlying graph \ / l
G has rankR.(p)}= 2|V| — 3 where|V| denotes the \ . N
cardinal number o¥; g
o

3) for almost allp, the formationkF, with the underlying

graphG is rigid.

For 2-dimensional space, we have a complete combinator‘f&‘ 2. \Vertex addition in 2-dimensional space - undirected case.
characterization of generically rigid graphs, which was first
proved by Laman in 1970 [20].

Theorem 2.4 (Laman [20])A graphG = (V, £) is gener-
ically rigid in 2-dimensional space if and only if there is a
subset’ C £ satisfying the following two conditions: (1)
L] = 2|V| =3, (2) For all £” C £/, " # 0,|L£"] <
21V(L")| — 3, where|V(L")| is the number of vertices that
are end-vertices of the edges A1.

2) Sequential Techniquedn this section, we present se-
guential techniques to create minimally rigid point formations.
As noted earlier, Laman’s Theorem characterizes rigidity in

Fig. 3. Edge splitting in 2-dimensional space - undirected case.

Now we are ready to present the following theorems:

erating rigid classes of graphs in 2-dimensional space ba
on what are known as the vertex addition, edge splitting, ang

m(gﬂ%e subgraph obtained by deletingand the edges incident

2-dimensional space. There are sequential techniques for g%;l

vertex splitting operations. First, we introduce the first
of these three operations, namely the vertex addition and e

splitting operations. Then we present sequences to create rigl
point formations in which these operations are used. Befo(g'e
explaining these operations and sequences, we introduce so
additional terminology. We shall omit discussion here of verted!

splitting.

If (,4) is an edge, then we say thaandj areadjacentor
thatj is aneighborof i andi is a neighbor ofj. The vertices
andj areincidentwith the edge(z, j). Two edges aradjacent
if they have exactly one common end-vertex. Tdegreeor
valencyof a vertexi is the number of neighbors af If a
vertex hask neighbors, it is called aertex of degreé: or a
k-valent vertexThe set of neighbors af denoted byVg (i),
is called a (open) neighborhood. Whérns also included, it
is called a closed neighborhood and is denoted\yi]. The

Theorem 2.5:(vertex addition in undirected case - Tay,
iteley [21]) LetG = (V, L) be a graph with a vertex
of degree 2 ire-dimensional space; l&* = (V*, L*) denote
it. Then G is generically minimally rigid if and only if
is generically minimally rigid.
n%xample 2.6:Vertex addition in 2-dimensional space for an
irected graph is shown in Figure 2.

Theorem 2.7:(edge splitting in undirected case - Tay,
Whiteley [21]) LetG = (V, £) be a graph with a vertek of
degree 3, and le&’ = (V', L) be the subgraph obtained by
deletingi and its three incident edges. Thénis generically
minimally rigid if and only if there is a pairj, & of the
neighborhood\V (i) such that the edggj, k) is not in £ and
the graphG* = (V', L' |J(j4, k)) is generically minimally rigid.

Example 2.8:Edge splitting in 2-dimensional space for an
undirected graph is shown in Figure 3.

Vertex addition and edge splitting operations are used in

subscriptG is usually dropped when there is no danger df€nneberg sequences.
confusion. 3) Henneberg Sequencebtenneberg sequences are a sys-

One graph expansion operationvisrtex addition given a tematic way of_generating minimal_ly. rigid grap_hs based on
minimally rigid graphG* = (V*, £*), we add a new vertex the_ vertex addition and edge sphttmg operations [21]. In
with two edges betweenand two other vertices iv* in 2- 2-dimensional space, we are given a sequence of graphs:

dimensional space. A second operatioedse splitinggiven G2, Gs, ..., Gy such that:

a minimally rigid graphG* = (V*, £*), we remove an edge
(4, k) in £* and then we add a new vertéxvith three edges
by inserting two edge$i, j), (i, k) and one edge between

and one vertex (other thap k) in V*.

1) Gs is the complete graph on two vertices;

2) G;4+1 comes fromG; by adding a new vertex either by
i) the vertex addition or ii) the edge splitting operation,
whereG,; has: vertices.
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Note that G; and G;;; correspond toG* and G in the the global leader. They are connected with one link pointed
statements of Theorem 2.5 and Theorem 2.7. All graphs fiom the first-follower to the global leader. The rest of the
the sequence are minimally rigid Zxdimensional space. agents are followers of at least two other agents. They can
Theorem 2.9 (Henneberg's Theorem [16]): graph G also be leaders of other agents. Figure 4(a) shows such an
with at least two vertices is minimally rigid if and only @ architecture.
has a Henneberg sequence. It is straightforward to see that ordinary agents (agents other
than the global leader and the first follower) have at least two
links. The global leader has 2 degrees of freedom, the first
follower has 1 degree of freedom, which makes 3 degrees of
First, we give some definitions from graph theory, which afeeedom in total. This allows them to control translation and
relevant to point formations with leader-follower architecturgotation of a formation. If any one of ordinary agents has less
A graph in which each edge is replaced by a directed edgetlign two links, this results in an additional degree of freedom.
called adigraph also called alirected graph When there is Then the formation cannot maintain rigidity anymore. Possible
a danger of confusion, we will call a graph, which is not 8elections of directions of links and the number of out-going
digraph, anundirected graphA digraph having no multiple links from points are implicit in the paper by White and
edges or loops (corresponding to a binary adjacency matwhiteley [22]. A an algorithm is given in detail i§V.
with 0's on the diagonal) is called simple digraph One can also consider other types of topologies. For ex-
An arc, or directed edgeis an ordered pair of end-verticesample, the first-follower follows only one agent, but not
It can be thought of as an edge associated with a directiorecessarily the global leader. There will be still one global
Each directed edge is denoted with a line directed from theader of out-degree 0, one first follower of out-degree 1,
first element to the second element of the pair. For exampénd other agents of out-degree 2. Figure 4(b) shows such an
for a given directed edgg, j), the direction is fromi to j. example. Another possibility is that all agents have out-degree
Symmetric pairs of directed edges are caliédirected edges 2, except three agents of out-degree 1 as shown in Figure 4(c).
In the context of formations, a birected edge is equivalent toWwe will focus on the topology where the global leader
an undirected edge in the underlying graph of a formatioof out-degree 0, and the first follower of out-degree 1 are
We will use only directed graphs with no bidirected edgaseighbors. This will ensure that the global leader and the
in formations that have a leader-follower architecture. THast follower are not part of a cycle. Thus the translation
number of inward directed graph edges to a given graph vertxd rotation of formation are controlled by the global leader’s
i in a directed graplt is called thein-degreeof the vertex and and the first follower’s actions, including the measurement and
is denoted byd; (7). The number of outward directed graphactuation errors they make, but not affected by measurement
edges from a given graph vertéxin a directed graplc is or actuation errors that other agents make.
called theout-degreeof the vertex and is denoted ugg(i). In a rigid formation with leader-follower architecture, once
The set of neighbors afsuch that the directed edge is pointedve fix the positions of the global leader and the first-follower,
from i to the other vertex, denoted By (7), is called a (open) the formation cannot deform, including translations and rota-
neighborhood. Wher is also included, it is called a closedtions. The global leader and the first-follower can make the
neighborhood and is denoted iy;[i]. The out-neighborhood entire rigid formation translate and rotate in 2-dimensional
NZ (i) of a vertexi is {j € V : (i,j) € L}, and the in- space by making maneuvers.
neighborhoodN; (i) of a vertexi is {j € V : (j,i) € L}. A Recall that the global leader has no out-going links and the
pathis a sequencéi, j, k, ..., r, s} such tha(i, j), (j,k),..., first follower has one link of out-degree 1. Since every other
(r, s) are edges of the graph.@ycleof a graphG is a subset of agent has at least two links with an out-degree of 2, we expect
the edge set of; that forms a path such that the first vertex ot least2(n — 2) + 1 = 2n — 3 links in total.
the path corresponds to the last. This definition usually refersFor point formations with leader-follower architecture, Bail-
to what is known as a circuit, or closed walk. When statdtkul and Suri define stably rigid formations [5]. They first
without any qualification, a cycle of vertices, denoted by introduce a general model for distributed relative distance
Cn, is usually assumed to be a simple cycle, meaning evesyntrol of a point formation:
vertex is incident to exactly two edges. Tleagth of a cyclés
the number of its edges. Cycles of length 1 are loops. Cycles , |
of length 2 are pairs of multiple edges. We call a cycle of < Li > = Z wij(dyj, \/(xi — 2%+ (yi —y;)?)
k edges ak-cycle A k—cycle is represented by am-tuple Yi JENT (1)
consisting of its vertices separated by commas, &.gj,k, ). N
A directed cyclés an oriented cycle such that all arcs go the ( iy ) (4)
same direction. A digraph iacyclicif it does not contain any Yi=Yi
directed cycle. for ¢ # 1,2 where d;; is the set-point distance between
In a formation with leader-follower architecture, each linkagentsi and j, andw;; is a function of both the set-point and
is denoted with a line directed from follower to leader. Onthe measured distance. The definition of stable rigidity is as
type of topology is as follows: There is one global leader arfdllows: a formation isstably rigid under a distributed relative
one first-follower of the global leader. The global leader doalstance control law as given in (4), if for any sufficiently
not follow any other agent, and the first-follower only followsmall perturbation in the relative positions of the agents, the

IIl. RIGIDITY IN DIRECTED FORMATIONS
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For the time being, we assume that acyclicity is a hecessary
condition for stable rigidity as it is given in Proposition 3.2.
In §IV, we will show thatk-cycles whereg: > 3 do not cause
instability. We will give the necessary and sufficient conditions

//7 ‘\
\ — 7 for stable rigidity for formations that have cycles §iv. In

‘ this section, we focus on acyclic graphs. It is stated in [5] that
\ the conditions in Proposition 3.2 are not sufficient because
e there is a counterexample graph shown in Figure 5, i.e., this

@ graph satisfies the conditions of Proposition 3.2 but it is not

. stably rigid. However, we note that this graph actually does
\ not satisfy the conditions of Proposition 3.2, because there is a

o cycle(3,5,4, 6, 3) in the graph; hence it violates the condition

i) of Proposition 3.2. It can be proved that the conditions

given in Proposition 3.2 are also sufficient conditions; hence

these conditions are necessary and sufficient conditions for
stable rigidity. Minimal rigidity together with acyclicity in a
directed graph implies all vertices have out-degree at most 2.
Therefore, the third condition in Proposition 3.2 is redundant.
(b) We have the following proposition:
Proposition 3.3: A point formation in 2-dimensional space
1 e with directed links is stably rigid if and only if the following
\ 5 P conditions hold for the underlying directed gragh= (V, £):
° \ i) the undirected graph is generically minimally rigid; ii) the
o directed graph is acyclic.
/ Proof: The necessity part of the proof is proved in [5].
. . Here we prove the sufficiency part only. Let us assume that the
3 directed graph is acyclic. Then we can take the directed edges
to define a partial order on the vertices> b if the directed
(© edge is pointed from to b. We can extend this by transitivity.
Fig. 4. Three different topologies for a leader-follower architecture ar%_m(_:e ther_e are no cycles, t_hls IS_ a partial order with a!l Yemces
shown. In (a), all vertices are of out-degree 2, except that there is one vergigtinct. Since the graph is minimally generically rigid, all
of ﬁu;-degrgih% é?kgvevlg(i (\e/\rlggei)a ?:f:] :\Inﬂtgl;rs V?rzt%)Ogﬁltté?t?gefgearle(gbgkﬁértices have degree at least 2. Any maximal elements in this
\c/ivtletgreg’;nexcept that there is one verteg of ou't-degre’eo (labeled with 1), ﬁ?cftlal order have qnly outgoing edges - and therefore has
another vertex of out-degree 1 (labeled with 2), and these two vertices are WO Such edges. This can be removed (by the reversed vertex
neighbors. In (c), all vertices are of out-degree 2, except that there are thzggdition operation) to give a smaller, minimally rigid graph
vertices of out-degree 1. These vertices are labeled with and3. satisfying all of the conditions. We continue this down to one
directed edge. The end points of this directed edge become
. . . the global leader and the first follower. Since this reduction
control law steers them asymptotically back into the prescrlbggquence can be reversed, the graph is constructed using only
formation in which the relative distance constraints are satigis ertex addition operation. By Theorem 3.1, such graphs
fied. Notice that this requirement justifies why we avoid thg, . stably rigid. 0
topologies in which all agents have out-degree 2, except threeCorollary 3.4: Equivalenty a point formation in 2-
_ager_lts of out-degree 1 such és an_d th_e topology Shc_"{v” dimensional space that has a leader-follower architecture is
in Figure 4(c). Any s_mall perturbation in agents’ position tably rigid if and only if the point formation can be con-
causes such a formathn to move from a de_s_|red posmo_n: T, fucted from the initial edge by the vertex addition operation.
following theiorem IS given in [5] as a sufficiency condition Figure 6 shows a formation created by vertex addition
for stably rigid form.aFlons: ] . ) only. Notice that this formation satisfies the conditions in
Theorem 3.1 (Baillieul and Suriif a formation is con- pqhosition 3.3. The agent with out-degree O (global leader) is
structed from a single directed edge by a sequence of VerjgKajeq with 1 and the agent with out-degree 1 is labeled with
addition operation, then it is stably rigid. 2. Agents are fully actuated omnidirectional point agents, i.e.
The following proposition is given in [5] as a necessanpey can move in any direction with any speed. The trajectories
condition for stable rigidity: of agents obtained in simulations are shown in Figure 7. As the
Proposition 3.2 (Baillieul and Suri)if a formation with global leader moves on a zigzag trajectory, rigidity is preserved
directed links is stably rigid then the following three conditiongs shown in Figure 8.
hold for the underlying graph: i) the undirected underlying |n simulations throughout the paper the following dis-
graph is generically rigid; ii) the directed graph is acyclic; iii}ributed relative distance control is used:
the directed graph has no vertex with an out-degree greater
than 2.
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A formation with leader-follower architecture
50 T T T T T
\' 40_1 ___________ , ___________ _
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W

y-position
h

i/

Fig. 5. This is the digraph given in [5] as a counterexample to th ) S S N S -
sufficiency of Proposition 3.2. Notice that there exist cycles in this digrap : : : : :

e.g.(3,5,4,6,3), so it actually does not serve as a counterexample. 30— ----------- —
L drroneoeeees boememnones demmconones fmemeonenees berene
T\ _ dij — /(i — 25)2 + (y; — y;)? 50 5 5 i 5 5
) i Ti = Ty Yi—Yj -20 0 20 40 60 80
JENG (4) x-position

Ti — T
( l . ] ) (5) Fig. 6. A rigid formation created by vertex addition only. It satisfies the
Yi —Yj conditions given in 3.3. The agent of out-degree 0 (global leader) is depicted

. o i : ith color red and has index 1. The agent of out-degree 1 is depicted with
for 4 7& 1,2 WheredU is the set point distance between agen een and has index 2. The agents of out-degree 2 are depicted with color

¢ andj. The distances between all agent pairs remain (almogk)e and has indices 3, 4, 5.
constant over time as the formation moves. Small deviations

from constant link lengths are due to actuation errors th Trajectories of agents

are allowed intentionally. Notice that the control law givel 40 — — T

in (5) requires infinite amount of time to reach the desire

position, so small actuation errors are allowed. In simulatiol a0l _

throughout the paper, measurement noise levels on link leng
are randomly chosen at the beginning of the program a

remain constant over time. Noise level ranges betw&gn c 25 |
and15% of link lengths. S

Recall that the global leader and the first follower contrc '@ 10 1
the translation and rotation of the formation. In this simulatiol i

only the global leader’'s trajectory is prescribed to contr ol
translation. Intentionally, we did not prescribe the one degr
of freedom that the first follower had, so that more challengir

trajectories are generated to test rigidity. When we prescri 10r |
the trajectories of both the global leader and the first follow:
such that rotations are disallowed, then we obtain translatic -20 ' ' ' ! ! ' ' ! !

200 10 0 10 20 30 40 50 60 70 80

only motion. x-position

Figure 9 shows a formation that does not satisfy thc
conditions given in Proposition 3.3. In particular, it fails thqfig. 7. Trajectories of agents in the formation shown in Figure 6.
condition i). The agent of out-degree 0 (global leader) is
colored in red and the agents of out-degree 1 are colored
with green. The agents of out-degree 2 are colored in blus. out-degree 2 with two edges directed franto two other
As the global leader moves, the rigidity is lost. This can beertices inV*. The second operation &dge splitting given a
seen in Figure 11. The distances between agent pairs, whaigimally rigid graphG* = (V*, £L*), we remove a directed
there is no sensing/communication link, change over time aedge (j, k) (directed from; to k) in £* and then we add a
the formation moves. new vertexi of out-degree 2 and in-degree 1 with three edges

The edge split operation is not used in [5] because thiy inserting two edgesj,%), (i,k), and one edge between
operation, as described in [5], results in vertices of out-degreand one other vertex (other thank) in V* such that the
3. However, the edge split operation can be defined in sucte@ge(y, ) is directed fromj to ¢ and the other two edges are
way that the out-degrees of vertices remain less than 3. Tdieected form: to the other vertices.
definition given below for the edge split operation on directed Now we are ready to present the following theorems:
minimally rigid graphs results vertices of out-degree 2. Theorem 3.5 (vertex addition - directed casépt G =

4) Sequential Technique#s with undirected graphs, one(V, £) be a directed graph with a vertéxof out-degree in
operation for graph expansion igertex addition given a 2-dimensional space; l&&* = (V*, £*) denote the subgraph
minimally rigid graphG* = (V*, £*), we add a new vertex obtained by removing and the edges incident with it. Then
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Distances between agents over time A formation with leader-follower architecture
40 T T T T T T T T T 50 T T T T T
T
3bF 7 : : : : :
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1 -
10 .
AQp---------- e [ — R [A——
5 1 1 1 1 1 1 1 1 1 _50 i i i i i
0 5§ 10 15 20 25 30 35 40 45 80 -20 0 20 40 60 80
time (s.) x-position

Fig. 8. Distances between agent pairs (of the formation shown in Figurefy. 9. A flexible formation is shown. It does not satisfy the conditions
are shown over time as the global leader moves. The blue solid lines shgwen in 3.3, i.e., the underlying undirected graph is flexible . The agent of
the distances between agents where there exist links between those pairs.olitelegree 0 (global leader) is depicted with color red and has index 1. The
red dotted lines show the distances between agent pairs where there aragemts of out-degree 1 are depicted with green and have indices 2 and 4. The

links between those pairs. agents of out-degree 2 are depicted with color blue and have indices 3, 5, and
6.
G is stably rigid if and only ifG* is stably rigid. Trajectories of agents
Proof: Inserting/removing from the undirected grapt 2 ' ' ' ' ' '
is equivalent to the vertex addition operation in an undirecte 15 i
graph. Undirected minimally rigid graphs maintain rigidity
under the vertex addition operation. Hence condition i) i 10r 1

Proposition 3.2 is satisfied in both and G*.

If G* is acyclic (condition ii) in Proposition 3.2), adding - :
a new vertexi of out-degree 2 does not add a cycle to th £ of 1
resulting graphG. This is because the inserted new verte 3
has only out-going edges, hence no path can come and le i N |

that vertex. If G is acyclic, then the graph resulting from A0t -
the removal of a vertex and its incident edges is also acyc

because removal of vertices and edges do not create new pe 18 |
Now suppose that satisfies the condition iii) in Proposi- o0l i

tion 3.2. If we remove, then the out-degrees of the vertice:

of G* do not change. Similarly, suppose tlat satisfies the a0 0 10 20 3 20 & & 70

condition iii). If inserti with out-degree 2, then the out-degree x-position

of the remaining vertices do not change. O

Example 3.6:The vertex addition operation for a directedrig. 10. Trajectories of agents in the formation shown in Figure 9.
graph is shown in Figure 12.

Theorem 3.7 (edge splitting - directed casépt G =
(V, £) be a graph with a vertekof out-degree 2 and in-degreeadd any cycles. Now suppose th@t is acyclic. If a new
1 (where this edge is betweérand j), and letG' = (V',£’) vertexi is added as described in the edge splitting operation,
be the subgraph obtained by deletingnd its three incident by removing the edg€j, k) and inserting the edge§j, i),
edges. Thefi is stably rigid if and only if there is a directed (i, k), (i,s) (wheres € V'), then there is a possibility of the
edge of a pairj, & (directed fromj to k) of the neighborhood existence of a cycle that goes through the edges) and
Nz (3) such that the directed eddg, k) is not in £ and the (i,s). An example of such a possibility is depicted in Figure

graphG* = (V', £' (4, k)) is stably rigid. 13. However, if one of the new edges is inserted between the
Proof: Condition i) in Proposition 3.2 is the edge splittinghew vertex and the first follower (directed from the new vertex
operation for undirected graphs as explaineglirB. to the first follower) then a cycle can always be avoided.

It is straightforward to see that@ is acyclic, i.e. it satisfies =~ Suppose thatz satisfies condition iii) in Proposition 3.2.
condition ii) in Proposition 3.2, thefiz* is acyclic because Then removing only changes the out-degree pfHowever,
removing a vertex and its incident edges from an acyclic graph edge is inserted from to k. So all the vertices ofc*
does not add any new paths to the graph and hence doeshase out-degree of 2. Conversely, suppose thatsatisfies
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Distances between agents over time a
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Fig. 11. Distances between agent pairs (of the formation shown in Figufe. 13. Two examples of the edge splitting operation on a minimally rigid

9) are shown over time as the global leader moves. The blue solid lines stdivected graph. The split edge {g,b). We note that the resulting directed

the distances between agents where there exist links between those pairs.gféeh on the left has no cycles. On the other hand, the resulting directed graph

red dotted lines show the distances between agent pairs where there aremthe right has a cycléc, d, e, ¢). We note that the acyclic directed graph

links between those pairs. on the left can also be obtained by a series of vertex additions starting from
a single edge.

N P i, PN G
( . Z ‘_’f\ >z | /kf\? sl i
s Gu . S
\H__\j \k_\\ J J /5 ‘] //,,)
kw( \\\H J

Fig. 12. Vertex Addition - directed case.
Fig. 14. Edge Splitting - directed case.

condition iii). The newly inserted vertekis of out-degree 2.

These edges do not change the out-degree of other vertiGess reasonable to assume that these two agents will have
In the replacement of the eddg, k) by (j,), the out-degree different measurement errors. Let us assume that ageas a

of j is also preserved. 0 constant measurement errorof and agentj has a constant
Example 3.8:The edge splitting operation for a directedneasurement error of;.
graph is shown in Figure 14. Therefore the measured distance by ageist|p; — p;| +

When edge splitting does not lead toa cycle, the resul_t!qg, and the measured distance by aggfis ||p; — p;|| + ;.
graph can always be created by using only vertex additig@nen agents reach to positions where they satisfy the distance
(from.Proposit.ion 3.3 and Corollary 3.4)..Hence all stably rig_ieonstraint between each other, we would expect that agent
acychc_ formations can be created by using the vertex add't'gatisfiesum — pjll + n; = d;;, and agent; satisfies||p; —
operation. pjll +n; = di;. We assume that agents act autonomously in a

decentralized, non-communicating waynlf # n;, then there
IV. CYCLES IN DIRECTED FORMATIONS is no way that these two agents will reach positions such that

In undirected formations, both agents at the end-points off#e distance constraint is satisfied by both agents. The agents
sensing/communication link maintain a set-distance betwepush and pull each other, or divert to infinity. Notice that this is
each other. For this reason, an undirected link can be ca@nresult of inconsistency created by noise in an overdetermined
sidered as two directed links between these two agents wégt of equations.
opposite directions, and the underlying graph of an undirectedWe say that a formatior(V, L, f) is realizable if there
formation can be considered to be a directed multigragixists a mapping : V — IR*". If a formation is flexible,
where each link is replaced by a cycle of length 2 betwednhas infinite number of realizations. If a formations is rigid,
the end-points of the link. An example is shown in Figuré has finite number of realizations. If a formation has a unique
15. Let us assume that the desired distance between poéslization then it is calledlobally rigid. We refer the reader
agenti and point ageny is d;;. The actual distance betweerto [23] for an extensive treatment of globally rigid formations.
these two point agents i§p;, — p;||. In real applications, If the underlying graph of a minimally rigid formation is
there are measurement errors, for instance due to noise, agdl, it may still have no realization for a given set of link
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/.
Fig. 15. Alink in an undirected formation can be represented by two directed 6
links. Thus it forms a 2-cycle in 1-dimensional space. This results in redundant /
rigidity in 1-dimensional space. Measurement errors cause redundancy-based

inconsistencies in this overdetermined system. 3°

o ) ) o ) Fig. 16. A point formation that has a 3-cycld, 6, 5, 4). It is minimally rigid
lengths. This is due to a choice of impermissible link length, 2-dimensional space, and has no redundancy contrary to the redundancy
e.g., the triangle inequality is not satisfied. If a formatioff the formation shown in Figure 15. Thus measurement errors do not cause
. .. . . . . redundancy-based inconsistencies in this formation.
is redundantly rigid, a choice of impermissible link lengths,

e.g., the triangle inequality, is still a source of the absence

of a realization. However, in redundantly rigid formationsys set of equations. If the triangle inequality is satisfied,
there is another source that may lead to the absence of,a, e would expect that a solution exists. Consider the
realization. This is due to the fact that, in a redundantly <o \where there are measurement errors denoted ;byn

H J

rigid formation, the set of equations for link lengths igach jink(s, ) on the cycle (4,6,5,4). We expect the following
overdetermined and almost any noise in measurements resé'&ﬁations hold:

in inconsistencies. Inconsistencies in overdetermined systems

caused by redundant rigidity are calleddundancy-based

inconsistencies Thus noisy measurements are a source of lpi — pjll = dij, for (i,7) € {(1,4),(2,5),(3,6)}
_redundancy-bas_eql inconsistencies that disallow a realizatior) , —pjll +nij = diz, for (i,5) € {(4,5), (5,6), (6,4)}

in redundantly rigid formations. In the example given above

with two links between two agents results in a redundantly There is no reason to expect that introducing's create
rigid formation in 1-dimensional space (along thelirection an immediate inconsistency as it happened in the case of a
shown in Figure 15). One of the links is redundant, and noigecycle. There are no redundant measurements so the system
in any links results in inconsistency_ In 2-dimensional Spacié’ not overdetermined. Note this is also true for formations
if an agent; has to satisfy three length constraints with agent8at have cycles of length 4 and higher. If, for example, the
a, b, ande, then one of the links is also redundant in terms dfiangle inequality is not satisfied, then the reason behind it
rigidity. If there is noise in the link length measurements, thef not cycles themselves, but rather selection of link lengths.
there will be almost always no realization. This can be se&yen acyclic formations with no noise can fail the triangle
from the following set of constraint equationg; —p, || = d;,, nequality if link lengths are poorly chosen.

lpi — poll = dips |lpi — pell = dic. pi is determined by One can also infer the existence of a solution under noisy
the intersection of three circles centeredpat p,, p. with measurements from the ‘generic’ property of rigidity and
radii d;q, dis, d;c. If there is noise in link lengths, the set ofglobal rigidity in 2-dimensional space. When we perturb link

equations for constraints are as followg; —p, ||+, = di,, €NGths, the generic property of global rigidity ensures that
lpi — poll + nap = dav, ||pi — pel| + nic = dic. In that case, there is still a realization for the formation.

for almost all choices ofv;,, ni, nic, there is no solution A geometric interpretation is as follows: Consider the case
for p;, because three circles simply do not intersect at tMéth no noise in measurements in Figure 17(a). Given the
same point. Thus we conclude that redundant rigidity cauBesitionspi, ps, and p; are fixed, then the pointg,, ps,
inconsistencies if there are measurement errors. And the rea86fl ps are located such that all six equations are satisfied
behind the inconsistency in a 2-cycle is redundancy in the $et the positions shown in Figure 17(a). Now, let us add
of constraints. noise to the edgegt, 5), (5,6), and(6,4) as shown in Figure
The behavior of agents on cycles of length 3 is strikingl§7(P). Clearly, the current positions of point do not satisfy
different. Let us consider the formation shown in Figure 14he measured link lengths. The new link lengths determine a
The underlying graph is minimally rigid. 1 is the global leadet/nique triangle as shown in Figure 17(c). Can we locate this
2 is the first-follower. Every other vertex has out-degree 2. tfiangle such that its vertices touch the three circles but not
can be verified that there is a cycle of length(85,6,4). Cross the circles? The answer to this question is ‘yes’ provided
Assume that the positions of agents 1, 2, 3 are fixed. Let {i¢ triangle inequality is satisfied. Therefore there is still a
denote the desired distance between agemd j by d;;, and New set of solutions for the positions of points that satisfy
let us denote; = (z;, ;). If there are no measurement errordhe link lengths corrupted with noise. This is shown in Figure

we expect the following hold: 17(d). For comparison purposes, the solution for the positions
of points with no noise are denoted with empty circles in this
Ipi = pjll = dij, Figure.

Figure 18 shows a formation with seven agents. It has
for (i,5) € {(1,4),(2,5),(3,6),(4,5),(5,6),(6,4)}. Recall three cycles, two of which have length &,6,5,3,7) and
that p1, p2, ps are fixed. Therefore there are six unknowns if4,3,7,6,4), and one of which has length 5, (4,3,7,6,5,4).
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Fig. 18. A rigid formation created by vertex addition and edge splitting.
The agent of out-degree 0 (global leader) is depicted with color red and has
index 1. The agent of out-degree 1 is depicted with green and has index 2.
The agents of out-degree 2 are depicted with color blue and has indices 3, 4,
56, 7.

b
® Trajectories of agents
50 . . . . . . . . .

y-position

_‘40 1 1 1 1 1 1 1 1
-10 0 10 20 30 40 50 60 70 80 90

x-position

Fig. 19. Trajectories of agents in the formation shown in Figure 18.

The global leader moves on a zigzag trajectory. The plot of
the trajectories of agents are shown in Figure 19. The distances
) between all agent pairs are shown in Figure 20.

Fig. 17. (a) This fi hows the dist raints that need to be safisii Recall that there are three possibilities for a directed rigid
ig. 17. (a) This figure shows the distance constraints that need to be sati e (i : ; g

by agentst, 5, and6 of the formation shown in Figure 16. The points in thi?ﬁpmatlon' (I) a formation with all agents hav_e out deQree 2
figure clearly satisfy the constraints; (b) If noise is added to the lengths @kCept a global leader of out-degree 0, a first follower of
links that lie on the 3-cycle4,6,5,4), then pointsps, ps, andpg fail to  gut-degree 1, and these two are connected by a link; (i) a

satisfy the distance constraints at their current positions; (c) The new dista - . _
constraints corrupted with noise can be represented by a triangle. It can?égmatlon with all agents have out-degree 2 except a global

seen that the triangle can be placed between the circles in such a way te@der of out-degree 0, a first follower of out-degree 1, and
its vertices touch the circles at one single point, thus satisfying the distart¢Rese two are not connected by a link; (iii) a formation with all
constraints. (d) The vertices of this triangle determine the new locations _ _

pointsp4, ps, andpe as shown with filled circles. The previous positions oﬂéents of out-degree 2 _e)fcept three agen'Fs of out-degree 1. As
the points are shown with empty circles. we stated before, case i) is the focus of this paper, because the

positions of agents in case ii) and case iii) are not stable under
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Distances between agents over time multigraph obtained by doubling the edgg j) is the union
°0 ' ' ' ' ' ' ' ' ' of two spanning trees [26].
Now we give a sequential algorithm to find the direction of
50t 4 links to create a stably minimally rigid directed formation from
a minimally rigid undirected formation: (Let us assume that
1 represents the global leadgrrepresents the first follower
connected ta by the edgg(j,4).)

1) Double the edgdj,:) - The entire graph can now be
partitioned into two spanning trees;

2) Remove (j,i) from one of the two trees - We now
have 3-trees, one spanning, and one each containing the
original two vertices;

3) Orient the spanning tree down to the selected leader;

4) Orient each of the other two trees down to the global
leader or the first follower, whichever is in this revised

0 : ' ' ' ’ ' ' ' ' tree.
time (s.) This algorithm gives a stably rigid directed formation with
out-degree 2 at each point except the first-follower of out-
Fig. 20. Distances between agent pairs (of the formation shown in Figudegree 1 and the global leader of out-degree 0. We give the
18) are shown over time as the global leader moves. The blue solid lines S%\Ning example to illustrate this algorithm:
the distances between agents where there exist links between those pairs. . . : . i
red dotted lines show the distances between agent pairs where there are ngXample 5.1:Consider the generically minimally rigid
links between those pairs. point formation shown in Figure 21(a). Assume that the global
leader is labeled with and the first follower is labeled with
2. The graph with the double edde, 1) is shown in Figure
small perturbations, i.e., translation and rotation of formatiorisl(b)_ This graph can be partitioned into two spanning tress
are easily affected by measurement and actuation errors. E@fshown in Figures 21(c) and 21(d). When we rem@ve)
directed formations that have cycles of length 3 or more, We&ym one of the two trees, in this case from Figure 21(d),
have the following proposition. The structure of the overalle now have three trees: one spanning as shown in Figure
proof will be clear with the algorithm given for selection °f21(c), and one each containing the original two vertices as
links in §V, therefore the proof is omitted here. . shown in Figures 22(a) and 22(b). Figure 23(a) shows the
_Proposition 4.1: A directed point formation in 2- grented the spanning tree down to the global leader. Figures
dimensional space is stably rigid if and only if they3(y) and 23(c) show the oriented two trees down to the global
following conditions hold: i) the underlying undirected graphieader or the first follower. Finally, if we put together the edge
is generically minimally rigid; ii) all vertices are of OUt'degreetopoIogies in Figures 23(a), 23(b), and 23(c), we obtain the
2, except that exactly one vertex is of out-degree 0, exacCHyected point formation shown in Figure 23(d).
one vertex is of out-degree 1, and these two vertices areye note that this algorithm permits an arbitrary choice

a0k .

neighbors to each other. of the first edge in the graph. There is a way to deduce
this directly from the assumption that the rigidity matrix has

V. CREATING A STABLY RIGID DIRECTED FORMATION independent rows and full rank. This is implicit in the paper
FROM A RIGID UNDIRECTED FORMATION by White and Whiteley [22]. Effectively, if we take out the

Apparently, stable rigidity of a directed formation depend®ur columns for the vertices that correspond to the global
not only on the underlying undirected formation but also oleader and the first follower, and the row for their connecting
the directions of links between agents. Given a genericallylge, we have a square matrix. If this is minimally rigid, we
minimally rigid undirected formation, how do we find thecan check this by taking the determinant - which must be non-
directions of links to create a stably rigid directed formationZero. If we decompose this determinant into blocks, ugirg
Below we present one way of doing this. minors for the columns of each of the remaining vertices, as

We start with giving preliminary definitions. A graph isa Laplace Expansion, then we have a sum of products of such
connected if there is a path from any vertex to any otheminors. Since the sum is non-zero, some term is non-zero.
vertex in the graph. Atree is a graph in which any two Each of these terms in the sum identifies two edges used in
vertices are connected by exactly one pattspanning treef the block for a vertex. We identify those edges as ‘out’ for
a connected, undirected graph is a tree which includes evéngt vertex. This identifies a direction for the edges, with out-
vertex of that graph. There is a standard way of partitioning tltegree 2 for all but the vertices corresponding to the global
edges in a generically minimally rigid graph with the followindeader and the first follower.
properties: (i) there are three trees; (ii) there are exactly twolf the graph has a simple peeling down to the initial edge,
trees at each vertex; (iii) no two non-empty subtrees span tihen there will be only one term in this ‘sum’ - and the directed
same set of vertices. These properties defi@&rae2partition graph to the initial leading edge will be unique. For example,
of the edges [24], [25]. For a generically minimally rigid grapttonsider the graph shown in Figure 24 with the vertite}

G = (V,L), it is also known that, for eacki,j) € £, the that represent the global leader and the first follower. It has
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Fig. 21. A minimally rigid point formation is shown in (a). The graph withFig. 23. The oriented spanning tree down to the global leader is shown in
the double edg€2, 1) is shown in (b). The global leader is labeled with (a). The oriented two trees down to the global leader or the first follower are
and the first follower is labeled witB. The graph in (b) can be partitioned shown in (b) and (c). If we put together the edge topologies in (a), (b) and
into two spanning trees as shown in (c) and (d). (c), we obtain the directed point formation shown in (d).
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Fig. 24. A minimally rigid undirected point formation is shown. We pick

the global leader and the first follower labeled with 1 and 2, respectively.
(@) (b) We would like to know how to determine the directions of links once the

undirected formation and the global leader-first follower pair are given.

Fig. 22.  When we remové¢2,1) from one of the two spanning trees in
Figures 21(c) and 21(d), in this case from Figure 21(d), we now have three

trees: one spanning as shown in Figure 21(c), and one each containing the ) .
original two vertices as shown in (a) and (b) in this figure. If there is a directed graph towards a selected follower-

leader edge, with out-degree 2 on all other vertices, which

has a cycle, then all directed graphs towards this follower-
the simple peeling down to initial edge and it is shown if¢ader edge also have a cycle. In fact, any two such graphs
Figure 25. If the sum has more than one term, then the ter@f€ interchanged by reorienting a finite set of simple cycles in
actually differ by re-orienting cycles in the one (and all) opne of the graphs.
the possible directed graphs with out-degree 2. What about cycles vs. no cycles? No cycles and minimal

Given a generically minimally rigid grapl®, there may rigidity, requires the construction sequence using only vertex

be no choice for leader-follower which generates a simpésldition - a ‘simple peeling down’ if reversed (see above).
peeling. Given a graph, there may be some choices for tB@ce we have such a sequence, then all directed graphs with
leader-follower edge which produce a simple peeling, afdit-degree at least 2 for all but the ‘leading vertices’ will
other choices which do not permit a simple peeling. F&so have no cycles, or equivalently, with no vertex of out-
example the graph on the top right of Figure 26 shows dggree greater than 2, will also have no cycles, and all acyclic
choice of leader-follower pair, which does not permit a simplkeoverings will have out-degree at most 2.
peeling. If there is a simple peeling, for selected edge, thenMoreover, this follows for any other choice of the initial
there is a unique orientation with out-degree at most 2 towaredge. All choices of an initial edge result in a simple peeling
this edge. down, and a unique acyclic directed graph to this edge
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2 Given a set of vertices and independent edges, the algorithm
can select additional edges to extend this to an (oriented)
minimally rigid graph, in ordefV| time. Given a rigid graph,

2 the algorithms can select a minimally rigid sub-graph in order

) s || time.

7/

2 VI. CONCLUDING REMARKS

1
1 5 2 I Propositions 3.3 and 4.1 provide the necessary and sufficient
conditions for stable rigidity in directed formations. The algo-
2 rithm given in§V establishes a sequential way of determining
7 the directions of links from a given undirected rigid formation
\ - so that the necessary and sufficient conditions are fulfilled. We
expect that the framework given in this paper will be useful in
, o analysis of formation rigidity and stability problems and will
be a useful tool to create stably rigid directed formations.
Fig. 25. Once the undirected graph, the global leader-first follower pair are We want to draw' the attentlor,] of ,the reader tha}t this paper
given, this figure shows a simple peeling down sequence to determine §léggests both cyclic and acyclic directed formations can be
directions of links. stably rigid. The question of whether one is better than the
other or both types are equivalent in terms of the performance
of stable rigidity is still an open question. Qualitatively we can
say that acyclic formations seem much simpler to work with
compared to cyclic formations, but this question requires more
guantitative analysis. From a topological point of view, acyclic
formations are easier to work with for more decentralized and
local operations, such as agent departures, formation splitting
and merging. On the contrary, cyclic formations can easily get
complicated for such operations. Furthermore, the set point of
an agent on a cycle depends its own position. A quantitative
analysis of convergence of agent positions to set points will be
useful to realistically compare cyclic and acyclic formations.
Although cyclic formations are more difficult to work with
at the topological level, they have some advantages over
acyclic formations. Acyclicity provides position information
flow only in one direction, thus reduces the level of cooper-
Fig. 26. Given the point formation shown top left, if the global leader Iabele%tlon effort _between _agent_s' If an age”t located at the back
with 1 and the first follower labeled with 2 are chosen as shown on top rig}f an acyclic formation fails, there is no way that leaders
then we obtain a cyclic rigid formation. Cycles are shown on bottom right ar[;bn realize this failure. On the other hand, cycles can provide

bottom left with dotted edges. This selection of global leader-first follower p : ;
results in only cyclic formations, and does not permit any acyclic formatiorléedba(:k among the leaders and followers in a formation, thus

increasing the coherence between formation members.
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