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Rigid Formations with Leader-Follower Architecture
Tolga Eren, Walter Whiteley, and Peter N. Belhumeur

Abstract— This paper is concerned with information structures
used in rigid formations of autonomous agents that have leader-
follower architecture. The focus of this paper is on sensor/network
topologies to secure control of rigidity. We extend our previous
approach for formations with symmetric neighbor relations to
include formations with leader-follower architecture. Necessary
and sufficient conditions for stably rigid directed formations are
given including both cyclic and acyclic directed formations. Some
useful steps for creating topologies of directed rigid formations
are developed. An algorithm to determine the directions of links
to create stably rigid directed formations from rigid undirected
formations is presented. It is shown thatk-cycles (k ≥ 3) do
not cause inconsistencies when measurements are noisy, while2-
cycles do. Simulation results are presented for (i) a rigid acyclic
formation, (i) a flexible formation, and (iii) a rigid formation with
cycles.

I. I NTRODUCTION

Multiagent systems have lately received considerable atten-
tion due to recent advances in computation and communication
technologies (see for example [1]–[8]). In the context of
this paper, agents will simply be thought of as autonomous
agents including robots, underwater vehicles, microsatellites,
unmanned air vehicles, ground vehicles, and sensor nodes.
A formation is a group of agents moving in real 2- or 3-
dimensional space. A formation is calledrigid if the distance
between each pair of agents does not change over time under
ideal conditions. A formation is calledminimally rigid if it
loses it rigidity when any one of its links is removed from the
formation. In other words, a minimally rigid formation has the
minimum number of links to maintain rigidity. If a formation
is rigid but not minimally rigid, then it is called aredundantly
rigid formation. Minimally rigid formations are more energy-
efficient compared to redundantly rigid formations. This pa-
per is mainly concerned with minimally rigid formations.
Sensing/communication links are used for maintaining fixed
distances between agents. The interconnection structure of
sensing/communication links is calledsensor/network topol-
ogy. In practice, actual agent groups cannot be expected to
move exactly as a rigid formation because of sensing errors,
vehicle modelling errors, etc. The ideal benchmark point
formation against which the performance of an actual agent
formation is to be measured is called areference formation.

In reality, agents are entities with physical dimensions.
For modeling purposes, agents are represented by points
called point agents. Distances between all agent pairs can
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be held fixed by directly measuring distances between only
some agents and keeping them at desired values. A ‘dis-
tance constraint’ is a requirement that a distance between
two agents, depicted withd, be maintained through a sens-
ing/communication link and some control strategy. Distance
constraints are sometimes referred to as range or separation
constraints. With enough distance constraints, the whole for-
mation will be rigid, even without there being a distance
constraint between every pair of agents.

Two agents connected by a sensing/communication link are
called neighbors. There are two types of neighbor relations
in rigid formations. In the first type, the neighbor relation
is symmetric, i.e., if agenti senses/communicates with agent
j and uses the received information (such as distances) for
motion planning, so does agentj with agenti. A link with
a symmetric neighbor relation is represented graphically by
a straight line. In the second type, the neighbor relation is
asymmetric, i.e., if agenti senses/communicates with agentj
and uses the received information for motion planning, then
agentj does not make use of any information received from
agenti although it may sense/communicate with agenti. For
example, rigid formations with a leader-follower architecture
have the asymmetric neighbor relation. A link with an asym-
metric neighbor relation between a leader and a follower is
represented by a directed edge pointing from the follower to
the leader, i.e., head is the leader and tail is the follower.
Pointing direction from leader to follower is also used, e.g.,
see [9]. The termsundirected formationanddirected formation
are also used to describe formations with symmetric neighbor
relations and formations with leader-follower architecture [3],
respectively. We will also use those terms throughout the
paper.

Eren et al. [10]–[12] and Olfati-Saber and Murray [2]
suggested an approach based on rigidity for maintaining for-
mations of autonomous agents with sensor/network topologies
that use distance information between agents, where the neigh-
bor relation is symmetric. Rigidity of undirected formations
with distance information is well understood in 2-dimensional
space, and there are partial results in 3-dimensional space
[12]. For formations that have a leader-follower architecture,
Baillieul and Suri gave two separate conditions for stable
rigidity for formations that have distance information between
agents, one of which is a necessary condition and the other is
a sufficient condition [5]. Tanner et al. studied input-to-state
stability properties of formations with cyclic interconnections
in [13]. Desai et al. made use of both distance and bearing
information to maintain formations that have leader-follower
architecture [9]. This paper suggests an approach to analyze
rigid formations with leader-follower architecture and proves
that the necessary condition given by Baillieul and Suri is a
necessary and sufficient condition for stable rigidity in acyclic
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directed formations.
We show that redundantly rigid formations lead to overde-

termined systems. Inconsistencies in overdetermined systems
caused by redundant rigidity are calledredundancy-based
inconsistencies. Although 2-cycles cause redundancy-based
inconsistencies, we show that cycles of length 3 or more do
not cause redundancy-based inconsistencies. We then provide
necessary and sufficient conditions for stably rigid directed
formations that havek-cycles (k ≥ 3).

In this paper, we restrict our attention to minimally rigid
formations in 2-dimensional space. We wish to consider a
broader range of interconnection topologies, including both
cyclic and acyclic, and understand how the interconnection
topology and the directions affect the rigidity of a formation
as it performs a coordinated motion. Our ultimate goal is the
development of strategies to create minimally rigid directed
formations, which are scalable for any number of agents.

The contributions of this paper are:

1) to extend our previous approach for formations with
symmetric neighbor relations to include formations with
leader-follower architecture;

2) to give necessary and sufficient conditions for stably
rigid directed formations including both cyclic and
acyclic directed formations;

3) to develop some useful steps for creating sensor/network
topologies of directed rigid formations;

4) to present a procedure to determine the directions of
links to create a stably rigid formation from a rigid
undirected formation;

5) to show thatk-cycles (k ≥ 3) do not cause inconsisten-
cies when measurements are noisy, while2-cycles do;

6) to show that redundant rigidity is a source for inconsis-
tencies when measurements are noisy.

The paper is organized as follows. In§II, we start with
definitions of rigidity. We review point formations in§II-A,
and rigid formations with symmetric neighbor relations in§II-
B. We investigate rigid formations that have leader-follower
architecture in§III. Cycles in rigid formations are studied
in §IV. We focus on creating directed rigid formations from
undirected rigid formations in§V. Finally, concluding remarks
are given in§VI.

II. R IGIDITY AND POINT FORMATIONS

One way of visualizing rigidity with symmetric neighbor
relation is to imagine a collection of rigid bars connected
to one another by idealized ball joints, which is called a
bar-joint framework. By an idealized ball joint we mean
a connection between a collection of bars which imposes
only the restriction that the bars share common endpoints.
Now, can the bars and joints be moved in a continuous
manner without changing the lengths of any of the bars, where
translations and rotations do not count? If so, the framework
is flexible; if not, it is rigid. (Precise definitions will appear
in the sequel.) In a bar-joint framework, the length of a bar
imposes a distance constraint for both end-joints. This is the
same situation in a formation where two agents connected
by a sensing/communication link are mutually affected by the

information conveyed by this link. For example, if two agents
connected by a sensing/communication link are set to maintain
a ten meter distance between each other, then both agents
perform action to maintain this distance. In the graph theoretic
setting, the edge corresponding to this link is denoted by an
undirected edge.

The situation in a rigid formation where the relation between
agents has a leader-follower architecture is different, because
the information on a sensing/communication link between a
leader-follower pair is used only by the follower. For example,
with the same distance requirement as in the example above,
if two agents, labelled withi and j, are set to maintain a
ten meter distance between themselves wherei is the leader
and j is the follower, then only agentj performs action to
maintain this distance. Let us assume the following properties
in a formation of agents: (i) there is a global formation leader
that determines where the entire formation moves, and it does
not follow any other member; (ii) there is a first-follower of the
global leader that maintains a predefined distance only to the
global leader; (iii) every other agent of the formation maintains
predefined distances to some other agents in the formation; (iv)
if an agent, sayB, maintains a predefined distance to another
agent, sayA, thenA does not perform any action to maintain
a predefined distance toB (in this relationA is a leader andB
is a follower). As the formation moves with the leadership of
the global leader, if the distance between every pair of agents
does not change over time under ideal conditions, then such
a formation is a rigid formation.

Certain directed information patterns in a formation can
be described by bar-joint frameworks. To do that, consider
creating a bar-joint framework in the plane starting from two
joints connected by a bar. Once the end-joints are held fixed
(i.e., translations and rotations are avoided), we can insert a
new joint by connecting it to the existing joints using new bars.
In this scenario, the constraints imposed by the new bars act
only on the newly inserted joint because the initial bar-joint
framework is already fixed and cannot be affected by the newly
inserted bars and joints. (If the first two joints are regarded as
agentsi andj, and the new joint is regarded as agentk, then
agentk performs the actions to maintain its distance fromi
andj, while i andj do not perform any corresponding action
in relation to agentk.) If the resulting bar-joint framework is
not deformable, then this new resulting bar-joint framework
is rigid and it becomes the new fixed bar-joint framework
for the next step. In the graph-theoretic setting, the directed
edge points to the newly inserted joint from the fixed bar-joint
framework.

To summarize, there are two types of neighbor relations.
They can be symmetric, i.e., if agenti senses/communicates
with agent j and performs action upon the information it
receives, so does agentj. This corresponds to an undirected
graph. Alternatively, the formation can have a leader-follower
architecture, i.e., agentj senses/communicates with agenti
and performs actions upon the information it receives, but the
actions of agenti do not depend on the information conveyed
by the sensing/communication with agentj. The underlying
graph of such formations is a directed graph. A directed edge
points from the leader to the follower. We will consider these
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two cases separately in each section.

A. Point Formations

A point formationFp , (p,L) provides a way of repre-
senting a formation ofn agents.p , {p1, p2, . . . , pn} and the
points pi represent the positions of agents inR2 where i is
an integer in{1, 2, . . . , n} and denotes the labels of agents.L
is the set of “maintenance links,” labelled(i, j), wherei and
j are distinct integers in{1, 2, . . . , n}. Themaintenance links
in L correspond to constraints between specific agents, such
as distances, which are to be maintained over time by using
sensing/communication links between certain pairs of agents.

Each point formationFp uniquely determines a graph
GFp

, (V,L) with vertex setV , {1, 2, . . . , n}, which is
the set of labels of agents, and edge setL. A formation with
distance constraints can be represented by(V,L, f) where
f : L 7−→ R. Each maintenance link(i, j) ∈ L is used to
maintain the distancef((i, j)) between certain pairs of agents
fixed.

A trajectoryof a formation is a continuously parameterized
one-parameter family of curves(q1(t), q2(t), ..., qn(t)) in Rnd

which containp and on which for eacht, Fq(t) is a formation
with the same measured values underf . A rigid motion is
a trajectory along which point formations contained in this
trajectory are congruent to each other. We will say that two
point formationsFp andFr, wherep, r ∈ q(t), are congruent
if they have the same graph and ifp andr are congruent.p is
congruentto r in the sense that there is a distance-preserving
map T : IRd → IRd such thatT (ri) = pi, i ∈ {1, 2, . . . , n}.
If rigid motions are the only possible trajectories then the
formation is calledrigid; otherwise it is calledflexible [10].

B. Rigidity in Point Formations with Symmetric Neighbor
Relations

Whether a given point formation is rigid or not can be stud-
ied by examining what happens to the given point formation
Fp = ({p1, p2, . . . , pn},L) with m maintenance links, along
the trajectoryq([0,∞)) , {{q1(t), q2(t), . . . , qn(t)} : t ≥ 0}
on which the Euclidean distancesdij , ||pi − pj || between
pairs of points(pi, pj) for which (i, j) is a link are constant.
Along such a trajectory

(qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ L, t ≥ 0 (1)

We note that the existence of a trajectory is equivalent to the
existence of a piecewise analytic path, with all derivatives at
the initial point [14]. Assuming a smooth (piecewise analytic)
trajectory, we can differentiate to get

(qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0 (2)

Here, q̇i is the velocity of pointi. The m equations can be
collected into a single matrix equation

RL(q)q̇ = 0 (3)

where q̇ = [q̇1, q̇2, . . . , q̇n]T and RL(q) is a specially struc-
turedm× 2n matrix called therigidity matrix [15]–[17].

Example 2.1:Consider a planar point formationFp shown
in Figure 1. This has a rigidity matrix as shown in Table I.

Let Mp be the manifold of points congruent top. Because
any trajectory ofFp which lies withinMp, is one along which
Fp undergoes rigid motion, (2) automatically holds along any
trajectory which lies withinMp. From this, it follows that
the tangent space toMp at p, written Tp, must be contained
in the kernel ofRL(p). If the points p1, p2, . . . , pn are in
general position (which means that the pointsp1, p2, . . . , pn

do not lie on any hyperplane inIRn), thenMp is n(n + 1)/2
dimensional since it arises from then(n − 1)/2-dimensional
manifold of orthogonal transformations ofIRn and then-
dimensional manifold of translations ofIRn [15]. ThusMp

is 3-dimensional forFp in IR2. We haverank RL(p) = 2n −
dimension{kernel(RL(p))} ≤ 2n−n(n+1)/2. The following
theorem holds [15], [16]:

Theorem 2.2:AssumeFp is an n-point formation with at
least 2 points in 2-dimensional space whererank RL(p) =
max{rank RL(x) : x ∈ IR2}. Fp is rigid in IR2 if and only if

rank RL(p) = 2n− 3.

This theorem leads to the notion of the “generic” behavior
of rigidity. When the rank is less than the maximum, the
formation may still be rigid. However this type of rigidity
lacks the generic behavior and thus is not addressed in this
paper.

1) Generic Rigidity: We define a type of rigidity, called
“generic rigidity,” that is more useful for our purposes. A
set A = (α1, . . . , αm) of distinct real numbers is said
to be algebraically dependentif there is a non-zero poly-
nomial h(x1, . . . , xm) with integer coefficients such that
h(α1, . . . , αm) = 0. If A is not algebraically dependent, it
is calledgeneric[18]. We say thatp = (p1, . . . , pn) is generic
in 2-dimensional space, if its2n coordinates are generic. It can
be shown that the set of genericp’s form an open connected
dense subset ofIR2n [19]. A graph G = (V,L) is called
generically rigid, if Fp = (p,L) is rigid for a genericp.

The concept of generic rigidity does not depend on the
precise distances between the points ofFp but examines how
well the rigidity of formations can be judged by knowing the
vertices and their incidences, in other words, by knowing the
underlying graph. For this reason, it is a desirable specializa-
tion of the concept of a “rigid formation” for our purposes.
The following theorem holds for a generically rigid graph [16]:

Theorem 2.3:The following are equivalent:

Fig. 1. A planar point formation used to demonstrate the rigidity matrix.
The rigidity matrix corresponding to this point formation is shown in Table
2.1.
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RL(p) i j r s
(i, j) xi − xj yi − yj xj − xi yj − yi 0 0 0 0
(i, r) xi − xr yi − yr 0 0 xr − xi yr − yi 0 0
(i, s) xi − xs yi − ys 0 0 0 0 xs − xi ys − yi

(j, r) 0 0 xj − xr yj − yr xr − xj yr − yj 0 0
(j, s) 0 0 xj − xs yj − ys 0 0 xs − xj ys − yj

(r, s) 0 0 0 0 xr − xs yr − ys xs − xr ys − yr

TABLE I

RIGIDITY MATRIX EXAMPLE FOR DISTANCES

1) a graphG = (V,L) is generically rigid in2-dimensional
space;

2) for somep, the formationFp with the underlying graph
G has rank{RL(p)}= 2|V| − 3 where |V| denotes the
cardinal number ofV;

3) for almost allp, the formationFp with the underlying
graphG is rigid.

For 2-dimensional space, we have a complete combinatorial
characterization of generically rigid graphs, which was first
proved by Laman in 1970 [20].

Theorem 2.4 (Laman [20]):A graphG = (V,L) is gener-
ically rigid in 2-dimensional space if and only if there is a
subsetL′ ⊆ L satisfying the following two conditions: (1)
|L′| = 2|V| − 3, (2) For all L′′ ⊆ L′,L′′ 6= ∅, |L′′| ≤
2|V(L′′)| − 3, where |V(L′′)| is the number of vertices that
are end-vertices of the edges inL′′.

2) Sequential Techniques:In this section, we present se-
quential techniques to create minimally rigid point formations.
As noted earlier, Laman’s Theorem characterizes rigidity in
2-dimensional space. There are sequential techniques for gen-
erating rigid classes of graphs in 2-dimensional space based
on what are known as the vertex addition, edge splitting, and
vertex splitting operations. First, we introduce the first two
of these three operations, namely the vertex addition and edge
splitting operations. Then we present sequences to create rigid
point formations in which these operations are used. Before
explaining these operations and sequences, we introduce some
additional terminology. We shall omit discussion here of vertex
splitting.

If (i, j) is an edge, then we say thati andj areadjacentor
thatj is aneighborof i andi is a neighbor ofj. The verticesi
andj areincidentwith the edge(i, j). Two edges areadjacent
if they have exactly one common end-vertex. Thedegreeor
valencyof a vertex i is the number of neighbors ofi. If a
vertex hask neighbors, it is called avertex of degreek or a
k-valent vertex. The set of neighbors ofi, denoted byNG(i),
is called a (open) neighborhood. Wheni is also included, it
is called a closed neighborhood and is denoted byNG[i]. The
subscriptG is usually dropped when there is no danger of
confusion.

One graph expansion operation isvertex addition: given a
minimally rigid graphG∗ = (V∗,L∗), we add a new vertexi
with two edges betweeni and two other vertices inV∗ in 2-
dimensional space. A second operation isedge splitting: given
a minimally rigid graphG∗ = (V∗,L∗), we remove an edge
(j, k) in L∗ and then we add a new vertexi with three edges
by inserting two edges(i, j), (i, k) and one edge betweeni
and one vertex (other thanj, k) in V∗.

Fig. 2. Vertex addition in 2-dimensional space - undirected case.

Fig. 3. Edge splitting in 2-dimensional space - undirected case.

Now we are ready to present the following theorems:
Theorem 2.5:(vertex addition in undirected case - Tay,

Whiteley [21]) LetG = (V,L) be a graph with a vertexi
of degree 2 in2-dimensional space; letG∗ = (V∗,L∗) denote
the subgraph obtained by deletingi and the edges incident
with it. ThenG is generically minimally rigid if and only if
G∗ is generically minimally rigid.

Example 2.6:Vertex addition in 2-dimensional space for an
undirected graph is shown in Figure 2.

Theorem 2.7:(edge splitting in undirected case - Tay,
Whiteley [21]) LetG = (V,L) be a graph with a vertexi of
degree 3, and letG′ = (V ′,L′) be the subgraph obtained by
deletingi and its three incident edges. ThenG is generically
minimally rigid if and only if there is a pairj, k of the
neighborhoodNG(i) such that the edge(j, k) is not inL and
the graphG∗ = (V ′,L′⋃(j, k)) is generically minimally rigid.

Example 2.8:Edge splitting in 2-dimensional space for an
undirected graph is shown in Figure 3.

Vertex addition and edge splitting operations are used in
Henneberg sequences.

3) Henneberg Sequences:Henneberg sequences are a sys-
tematic way of generating minimally rigid graphs based on
the vertex addition and edge splitting operations [21]. In
2-dimensional space, we are given a sequence of graphs:
G2,G3, . . . ,G|V| such that:

1) G2 is the complete graph on two vertices;
2) Gi+1 comes fromGi by adding a new vertex either by

i) the vertex addition or ii) the edge splitting operation,
whereGi hasi vertices.
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Note that Gi and Gi+1 correspond toG∗ and G in the
statements of Theorem 2.5 and Theorem 2.7. All graphs in
the sequence are minimally rigid in2-dimensional space.

Theorem 2.9 (Henneberg’s Theorem [16]):A graph G
with at least two vertices is minimally rigid if and only ifG
has a Henneberg sequence.

III. R IGIDITY IN DIRECTED FORMATIONS

First, we give some definitions from graph theory, which are
relevant to point formations with leader-follower architecture.
A graph in which each edge is replaced by a directed edge is
called adigraph, also called adirected graph. When there is
a danger of confusion, we will call a graph, which is not a
digraph, anundirected graph. A digraph having no multiple
edges or loops (corresponding to a binary adjacency matrix
with 0’s on the diagonal) is called asimple digraph.

An arc, or directed edge, is an ordered pair of end-vertices.
It can be thought of as an edge associated with a direction.
Each directed edge is denoted with a line directed from the
first element to the second element of the pair. For example,
for a given directed edge(i, j), the direction is fromi to j.
Symmetric pairs of directed edges are calledbidirected edges.
In the context of formations, a birected edge is equivalent to
an undirected edge in the underlying graph of a formation.
We will use only directed graphs with no bidirected edges
in formations that have a leader-follower architecture. The
number of inward directed graph edges to a given graph vertex
i in a directed graphG is called thein-degreeof the vertex and
is denoted byd−G (i). The number of outward directed graph
edges from a given graph vertexi in a directed graphG is
called theout-degreeof the vertex and is denoted byd+

G (i).
The set of neighbors ofi such that the directed edge is pointed
from i to the other vertex, denoted byNG(i), is called a (open)
neighborhood. Wheni is also included, it is called a closed
neighborhood and is denoted byNG[i]. The out-neighborhood
N+
G (i) of a vertex i is {j ∈ V : (i, j) ∈ L}, and the in-

neighborhoodN−
G (i) of a vertexi is {j ∈ V : (j, i) ∈ L}. A

path is a sequence{i, j, k, . . . , r, s} such that(i, j), (j, k), . . . ,
(r, s) are edges of the graph. Acycleof a graphG is a subset of
the edge set ofG that forms a path such that the first vertex of
the path corresponds to the last. This definition usually refers
to what is known as a circuit, or closed walk. When stated
without any qualification, a cycle ofn vertices, denoted by
Cn, is usually assumed to be a simple cycle, meaning every
vertex is incident to exactly two edges. Thelength of a cycleis
the number of its edges. Cycles of length 1 are loops. Cycles
of length 2 are pairs of multiple edges. We call a cycle of
k edges ak-cycle. A k−cycle is represented by ann-tuple
consisting of its vertices separated by commas, e.g.,(i, j, k, i).
A directed cycleis an oriented cycle such that all arcs go the
same direction. A digraph isacyclic if it does not contain any
directed cycle.

In a formation with leader-follower architecture, each link
is denoted with a line directed from follower to leader. One
type of topology is as follows: There is one global leader and
one first-follower of the global leader. The global leader does
not follow any other agent, and the first-follower only follows

the global leader. They are connected with one link pointed
from the first-follower to the global leader. The rest of the
agents are followers of at least two other agents. They can
also be leaders of other agents. Figure 4(a) shows such an
architecture.

It is straightforward to see that ordinary agents (agents other
than the global leader and the first follower) have at least two
links. The global leader has 2 degrees of freedom, the first
follower has 1 degree of freedom, which makes 3 degrees of
freedom in total. This allows them to control translation and
rotation of a formation. If any one of ordinary agents has less
than two links, this results in an additional degree of freedom.
Then the formation cannot maintain rigidity anymore. Possible
selections of directions of links and the number of out-going
links from points are implicit in the paper by White and
Whiteley [22]. A an algorithm is given in detail in§V.

One can also consider other types of topologies. For ex-
ample, the first-follower follows only one agent, but not
necessarily the global leader. There will be still one global
leader of out-degree 0, one first follower of out-degree 1,
and other agents of out-degree 2. Figure 4(b) shows such an
example. Another possibility is that all agents have out-degree
2, except three agents of out-degree 1 as shown in Figure 4(c).

We will focus on the topology where the global leader
of out-degree 0, and the first follower of out-degree 1 are
neighbors. This will ensure that the global leader and the
first follower are not part of a cycle. Thus the translation
and rotation of formation are controlled by the global leader’s
and the first follower’s actions, including the measurement and
actuation errors they make, but not affected by measurement
or actuation errors that other agents make.

In a rigid formation with leader-follower architecture, once
we fix the positions of the global leader and the first-follower,
the formation cannot deform, including translations and rota-
tions. The global leader and the first-follower can make the
entire rigid formation translate and rotate in 2-dimensional
space by making maneuvers.

Recall that the global leader has no out-going links and the
first follower has one link of out-degree 1. Since every other
agent has at least two links with an out-degree of 2, we expect
at least2(n− 2) + 1 = 2n− 3 links in total.

For point formations with leader-follower architecture, Bail-
lieul and Suri define stably rigid formations [5]. They first
introduce a general model for distributed relative distance
control of a point formation:

(
ẋi

ẏi

)
=

∑

j∈N+
G (i)

uij(dij ,
√

(xi − xj)2 + (yi − yj)2)

(
xi − xj

yi − yj

)
(4)

for i 6= 1, 2 where dij is the set-point distance between
agentsi andj, anduij is a function of both the set-point and
the measured distance. The definition of stable rigidity is as
follows: a formation isstably rigid under a distributed relative
distance control law as given in (4), if for any sufficiently
small perturbation in the relative positions of the agents, the
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(a)

(b)

(c)

Fig. 4. Three different topologies for a leader-follower architecture are
shown. In (a), all vertices are of out-degree 2, except that there is one vertex
of out-degree 0 (labeled with 1), and another vertex of out-degree 1 (labeled
with 2), and these two vertices are neighbors. In (b), all vertices are of out-
degree 2, except that there is one vertex of out-degree 0 (labeled with 1), and
another vertex of out-degree 1 (labeled with 2), and these two vertices are not
neighbors. In (c), all vertices are of out-degree 2, except that there are three
vertices of out-degree 1. These vertices are labeled with1, 2, and3.

control law steers them asymptotically back into the prescribed
formation in which the relative distance constraints are satis-
fied. Notice that this requirement justifies why we avoid the
topologies in which all agents have out-degree 2, except three
agents of out-degree 1 such asC3 and the topology shown
in Figure 4(c). Any small perturbation in agents’ positions
causes such a formation to move from a desired position. The
following theorem is given in [5] as a sufficiency condition
for stably rigid formations:

Theorem 3.1 (Baillieul and Suri):If a formation is con-
structed from a single directed edge by a sequence of vertex
addition operation, then it is stably rigid.

The following proposition is given in [5] as a necessary
condition for stable rigidity:

Proposition 3.2 (Baillieul and Suri):If a formation with
directed links is stably rigid then the following three conditions
hold for the underlying graph: i) the undirected underlying
graph is generically rigid; ii) the directed graph is acyclic; iii)
the directed graph has no vertex with an out-degree greater
than 2.

For the time being, we assume that acyclicity is a necessary
condition for stable rigidity as it is given in Proposition 3.2.
In §IV, we will show thatk-cycles wherek ≥ 3 do not cause
instability. We will give the necessary and sufficient conditions
for stable rigidity for formations that have cycles in§IV. In
this section, we focus on acyclic graphs. It is stated in [5] that
the conditions in Proposition 3.2 are not sufficient because
there is a counterexample graph shown in Figure 5, i.e., this
graph satisfies the conditions of Proposition 3.2 but it is not
stably rigid. However, we note that this graph actually does
not satisfy the conditions of Proposition 3.2, because there is a
cycle(3, 5, 4, 6, 3) in the graph; hence it violates the condition
ii) of Proposition 3.2. It can be proved that the conditions
given in Proposition 3.2 are also sufficient conditions; hence
these conditions are necessary and sufficient conditions for
stable rigidity. Minimal rigidity together with acyclicity in a
directed graph implies all vertices have out-degree at most 2.
Therefore, the third condition in Proposition 3.2 is redundant.
We have the following proposition:

Proposition 3.3:A point formation in 2-dimensional space
with directed links is stably rigid if and only if the following
conditions hold for the underlying directed graphG = (V,L):
i) the undirected graph is generically minimally rigid; ii) the
directed graph is acyclic.

Proof: The necessity part of the proof is proved in [5].
Here we prove the sufficiency part only. Let us assume that the
directed graph is acyclic. Then we can take the directed edges
to define a partial order on the vertices:a ≥ b if the directed
edge is pointed froma to b. We can extend this by transitivity.
Since there are no cycles, this is a partial order with all vertices
distinct. Since the graph is minimally generically rigid, all
vertices have degree at least 2. Any maximal elements in this
partial order have only outgoing edges - and therefore has
two such edges. This can be removed (by the reversed vertex
addition operation) to give a smaller, minimally rigid graph
satisfying all of the conditions. We continue this down to one
directed edge. The end points of this directed edge become
the global leader and the first follower. Since this reduction
sequence can be reversed, the graph is constructed using only
the vertex addition operation. By Theorem 3.1, such graphs
are stably rigid.

Corollary 3.4: Equivalently a point formation in 2-
dimensional space that has a leader-follower architecture is
stably rigid if and only if the point formation can be con-
structed from the initial edge by the vertex addition operation.

Figure 6 shows a formation created by vertex addition
only. Notice that this formation satisfies the conditions in
Proposition 3.3. The agent with out-degree 0 (global leader) is
labeled with 1 and the agent with out-degree 1 is labeled with
2. Agents are fully actuated omnidirectional point agents, i.e.
they can move in any direction with any speed. The trajectories
of agents obtained in simulations are shown in Figure 7. As the
global leader moves on a zigzag trajectory, rigidity is preserved
as shown in Figure 8.

In simulations throughout the paper the following dis-
tributed relative distance control is used:
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Fig. 5. This is the digraph given in [5] as a counterexample to the
sufficiency of Proposition 3.2. Notice that there exist cycles in this digraph,
e.g.,(3, 5, 4, 6, 3), so it actually does not serve as a counterexample.

(
ẋi

ẏi

)
=

∑

j∈N+
G (i)

[
dij −

√
(xi − xj)2 + (yi − yj)2

]

(
xi − xj

yi − yj

)
(5)

for i 6= 1, 2 wheredij is the set-point distance between agents
i andj. The distances between all agent pairs remain (almost)
constant over time as the formation moves. Small deviations
from constant link lengths are due to actuation errors that
are allowed intentionally. Notice that the control law given
in (5) requires infinite amount of time to reach the desired
position, so small actuation errors are allowed. In simulations
throughout the paper, measurement noise levels on link lengths
are randomly chosen at the beginning of the program and
remain constant over time. Noise level ranges between0%
and15% of link lengths.

Recall that the global leader and the first follower control
the translation and rotation of the formation. In this simulation,
only the global leader’s trajectory is prescribed to control
translation. Intentionally, we did not prescribe the one degree
of freedom that the first follower had, so that more challenging
trajectories are generated to test rigidity. When we prescribe
the trajectories of both the global leader and the first follower
such that rotations are disallowed, then we obtain translation-
only motion.

Figure 9 shows a formation that does not satisfy the
conditions given in Proposition 3.3. In particular, it fails the
condition i). The agent of out-degree 0 (global leader) is
colored in red and the agents of out-degree 1 are colored
with green. The agents of out-degree 2 are colored in blue.
As the global leader moves, the rigidity is lost. This can be
seen in Figure 11. The distances between agent pairs, where
there is no sensing/communication link, change over time as
the formation moves.

The edge split operation is not used in [5] because this
operation, as described in [5], results in vertices of out-degree
3. However, the edge split operation can be defined in such a
way that the out-degrees of vertices remain less than 3. The
definition given below for the edge split operation on directed
minimally rigid graphs results vertices of out-degree 2.

4) Sequential Techniques:As with undirected graphs, one
operation for graph expansion isvertex addition: given a
minimally rigid graphG∗ = (V∗,L∗), we add a new vertexi

Fig. 6. A rigid formation created by vertex addition only. It satisfies the
conditions given in 3.3. The agent of out-degree 0 (global leader) is depicted
with color red and has index 1. The agent of out-degree 1 is depicted with
green and has index 2. The agents of out-degree 2 are depicted with color
blue and has indices 3, 4, 5.

Fig. 7. Trajectories of agents in the formation shown in Figure 6.

of out-degree 2 with two edges directed fromi to two other
vertices inV∗. The second operation isedge splitting: given a
minimally rigid graphG∗ = (V∗,L∗), we remove a directed
edge(j, k) (directed fromj to k) in L∗ and then we add a
new vertexi of out-degree 2 and in-degree 1 with three edges
by inserting two edges(j, i), (i, k), and one edge between
i and one other vertex (other thanj, k) in V∗ such that the
edge(j, i) is directed fromj to i and the other two edges are
directed formi to the other vertices.

Now we are ready to present the following theorems:
Theorem 3.5 (vertex addition - directed case):Let G =

(V,L) be a directed graph with a vertexi of out-degree2 in
2-dimensional space; letG∗ = (V∗,L∗) denote the subgraph
obtained by removingi and the edges incident with it. Then
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Fig. 8. Distances between agent pairs (of the formation shown in Figure 6)
are shown over time as the global leader moves. The blue solid lines show
the distances between agents where there exist links between those pairs. The
red dotted lines show the distances between agent pairs where there are no
links between those pairs.

G is stably rigid if and only ifG∗ is stably rigid.
Proof: Inserting/removingi from the undirected graphG

is equivalent to the vertex addition operation in an undirected
graph. Undirected minimally rigid graphs maintain rigidity
under the vertex addition operation. Hence condition i) in
Proposition 3.2 is satisfied in bothG andG∗.

If G∗ is acyclic (condition ii) in Proposition 3.2), adding
a new vertexi of out-degree 2 does not add a cycle to the
resulting graphG. This is because the inserted new vertex
has only out-going edges, hence no path can come and leave
that vertex. IfG is acyclic, then the graph resulting from
the removal of a vertex and its incident edges is also acyclic
because removal of vertices and edges do not create new paths.

Now suppose thatG satisfies the condition iii) in Proposi-
tion 3.2. If we removei, then the out-degrees of the vertices
of G∗ do not change. Similarly, suppose thatG∗ satisfies the
condition iii). If inserti with out-degree 2, then the out-degrees
of the remaining vertices do not change.

Example 3.6:The vertex addition operation for a directed
graph is shown in Figure 12.

Theorem 3.7 (edge splitting - directed case):Let G =
(V,L) be a graph with a vertexi of out-degree 2 and in-degree
1 (where this edge is betweeni andj), and letG′ = (V ′,L′)
be the subgraph obtained by deletingi and its three incident
edges. ThenG is stably rigid if and only if there is a directed
edge of a pairj, k (directed fromj to k) of the neighborhood
NG(i) such that the directed edge(j, k) is not in L and the
graphG∗ = (V ′,L′⋃(j, k)) is stably rigid.

Proof: Condition i) in Proposition 3.2 is the edge splitting
operation for undirected graphs as explained in§II-B.

It is straightforward to see that ifG is acyclic, i.e. it satisfies
condition ii) in Proposition 3.2, thenG∗ is acyclic because
removing a vertex and its incident edges from an acyclic graph
does not add any new paths to the graph and hence does not

Fig. 9. A flexible formation is shown. It does not satisfy the conditions
given in 3.3, i.e., the underlying undirected graph is flexible . The agent of
out-degree 0 (global leader) is depicted with color red and has index 1. The
agents of out-degree 1 are depicted with green and have indices 2 and 4. The
agents of out-degree 2 are depicted with color blue and have indices 3, 5, and
6.

Fig. 10. Trajectories of agents in the formation shown in Figure 9.

add any cycles. Now suppose thatG∗ is acyclic. If a new
vertex i is added as described in the edge splitting operation,
by removing the edge(j, k) and inserting the edges(j, i),
(i, k), (i, s) (wheres ∈ V ′), then there is a possibility of the
existence of a cycle that goes through the edges(j, i) and
(i, s). An example of such a possibility is depicted in Figure
13. However, if one of the new edges is inserted between the
new vertex and the first follower (directed from the new vertex
to the first follower) then a cycle can always be avoided.

Suppose thatG satisfies condition iii) in Proposition 3.2.
Then removingi only changes the out-degree ofj. However,
an edge is inserted fromj to k. So all the vertices ofG∗
have out-degree of 2. Conversely, suppose thatG∗ satisfies
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Fig. 11. Distances between agent pairs (of the formation shown in Figure
9) are shown over time as the global leader moves. The blue solid lines show
the distances between agents where there exist links between those pairs. The
red dotted lines show the distances between agent pairs where there are no
links between those pairs.

Fig. 12. Vertex Addition - directed case.

condition iii). The newly inserted vertexi is of out-degree 2.
These edges do not change the out-degree of other vertices.
In the replacement of the edge(j, k) by (j, i), the out-degree
of j is also preserved.

Example 3.8:The edge splitting operation for a directed
graph is shown in Figure 14.

When edge splitting does not lead to a cycle, the resulting
graph can always be created by using only vertex addition
(from Proposition 3.3 and Corollary 3.4). Hence all stably rigid
acyclic formations can be created by using the vertex addition
operation.

IV. CYCLES IN DIRECTED FORMATIONS

In undirected formations, both agents at the end-points of a
sensing/communication link maintain a set-distance between
each other. For this reason, an undirected link can be con-
sidered as two directed links between these two agents with
opposite directions, and the underlying graph of an undirected
formation can be considered to be a directed multigraph
where each link is replaced by a cycle of length 2 between
the end-points of the link. An example is shown in Figure
15. Let us assume that the desired distance between point
agenti and point agentj is dij . The actual distance between
these two point agents is‖pi − pj‖. In real applications,
there are measurement errors, for instance due to noise, and

Fig. 13. Two examples of the edge splitting operation on a minimally rigid
directed graph. The split edge is(d, b). We note that the resulting directed
graph on the left has no cycles. On the other hand, the resulting directed graph
on the right has a cycle(c, d, e, c). We note that the acyclic directed graph
on the left can also be obtained by a series of vertex additions starting from
a single edge.

Fig. 14. Edge Splitting - directed case.

it is reasonable to assume that these two agents will have
different measurement errors. Let us assume that agenti has a
constant measurement error ofni and agentj has a constant
measurement error ofnj .

Therefore the measured distance by agenti is ‖pi − pj‖+
ni, and the measured distance by agentj is ‖pi − pj‖ + nj .
When agents reach to positions where they satisfy the distance
constraint between each other, we would expect that agenti
satisfies‖pi − pj‖ + ni = dij , and agentj satisfies‖pi −
pj‖+nj = dij . We assume that agents act autonomously in a
decentralized, non-communicating way. Ifni 6= nj , then there
is no way that these two agents will reach positions such that
the distance constraint is satisfied by both agents. The agents
push and pull each other, or divert to infinity. Notice that this is
a result of inconsistency created by noise in an overdetermined
set of equations.

We say that a formation(V,L, f) is realizable if there
exists a mappingδ : V 7→ IR2n. If a formation is flexible,
it has infinite number of realizations. If a formations is rigid,
it has finite number of realizations. If a formation has a unique
realization then it is calledglobally rigid. We refer the reader
to [23] for an extensive treatment of globally rigid formations.
If the underlying graph of a minimally rigid formation is
rigid, it may still have no realization for a given set of link
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Fig. 15. A link in an undirected formation can be represented by two directed
links. Thus it forms a 2-cycle in 1-dimensional space. This results in redundant
rigidity in 1-dimensional space. Measurement errors cause redundancy-based
inconsistencies in this overdetermined system.

lengths. This is due to a choice of impermissible link lengths,
e.g., the triangle inequality is not satisfied. If a formation
is redundantly rigid, a choice of impermissible link lengths,
e.g., the triangle inequality, is still a source of the absence
of a realization. However, in redundantly rigid formations,
there is another source that may lead to the absence of a
realization. This is due to the fact that, in a redundantly
rigid formation, the set of equations for link lengths is
overdetermined and almost any noise in measurements results
in inconsistencies. Inconsistencies in overdetermined systems
caused by redundant rigidity are calledredundancy-based
inconsistencies. Thus noisy measurements are a source of
redundancy-based inconsistencies that disallow a realization
in redundantly rigid formations. In the example given above
with two links between two agents results in a redundantly
rigid formation in 1-dimensional space (along thex-direction
shown in Figure 15). One of the links is redundant, and noise
in any links results in inconsistency. In 2-dimensional space,
if an agenti has to satisfy three length constraints with agents
a, b, andc, then one of the links is also redundant in terms of
rigidity. If there is noise in the link length measurements, then
there will be almost always no realization. This can be seen
from the following set of constraint equations:‖pi−pa‖ = dia,
‖pi − pb‖ = dib, ‖pi − pc‖ = dic. pi is determined by
the intersection of three circles centered atpa, pb, pc with
radii dia, dib, dic. If there is noise in link lengths, the set of
equations for constraints are as follows:‖pi−pa‖+nia = dia,
‖pi − pb‖ + nib = dib, ‖pi − pc‖ + nic = dic. In that case,
for almost all choices ofnia, nib, nic, there is no solution
for pi, because three circles simply do not intersect at the
same point. Thus we conclude that redundant rigidity cause
inconsistencies if there are measurement errors. And the reason
behind the inconsistency in a 2-cycle is redundancy in the set
of constraints.

The behavior of agents on cycles of length 3 is strikingly
different. Let us consider the formation shown in Figure 16.
The underlying graph is minimally rigid. 1 is the global leader,
2 is the first-follower. Every other vertex has out-degree 2. It
can be verified that there is a cycle of length 3(4, 5, 6, 4).
Assume that the positions of agents 1, 2, 3 are fixed. Let us
denote the desired distance between agenti andj by dij , and
let us denotepi = (xi, yi). If there are no measurement errors,
we expect the following hold:

‖pi − pj‖ = dij ,

for (i, j) ∈ {(1, 4), (2, 5), (3, 6), (4, 5), (5, 6), (6, 4)}. Recall
that p1, p2, p3 are fixed. Therefore there are six unknowns in

Fig. 16. A point formation that has a 3-cycle,(4, 6, 5, 4). It is minimally rigid
in 2-dimensional space, and has no redundancy contrary to the redundancy
in the formation shown in Figure 15. Thus measurement errors do not cause
redundancy-based inconsistencies in this formation.

this set of equations. If the triangle inequality is satisfied,
then we would expect that a solution exists. Consider the
case where there are measurement errors denoted bynij on
each link(i, j) on the cycle (4,6,5,4). We expect the following
equations hold:

‖pi − pj‖ = dij , for (i, j) ∈ {(1, 4), (2, 5), (3, 6)}
‖pi − pj‖+ nij = dij , for (i, j) ∈ {(4, 5), (5, 6), (6, 4)}
There is no reason to expect that introducingnij ’s create

an immediate inconsistency as it happened in the case of a
2-cycle. There are no redundant measurements so the system
is not overdetermined. Note this is also true for formations
that have cycles of length 4 and higher. If, for example, the
triangle inequality is not satisfied, then the reason behind it
is not cycles themselves, but rather selection of link lengths.
Even acyclic formations with no noise can fail the triangle
inequality if link lengths are poorly chosen.

One can also infer the existence of a solution under noisy
measurements from the ‘generic’ property of rigidity and
global rigidity in 2-dimensional space. When we perturb link
lengths, the generic property of global rigidity ensures that
there is still a realization for the formation.

A geometric interpretation is as follows: Consider the case
with no noise in measurements in Figure 17(a). Given the
positions p1, p2, and p3 are fixed, then the pointsp4, p5,
and p6 are located such that all six equations are satisfied
for the positions shown in Figure 17(a). Now, let us add
noise to the edges(4, 5), (5, 6), and(6, 4) as shown in Figure
17(b). Clearly, the current positions of point do not satisfy
the measured link lengths. The new link lengths determine a
unique triangle as shown in Figure 17(c). Can we locate this
triangle such that its vertices touch the three circles but not
cross the circles? The answer to this question is ‘yes’ provided
the triangle inequality is satisfied. Therefore there is still a
new set of solutions for the positions of points that satisfy
the link lengths corrupted with noise. This is shown in Figure
17(d). For comparison purposes, the solution for the positions
of points with no noise are denoted with empty circles in this
Figure.

Figure 18 shows a formation with seven agents. It has
three cycles, two of which have length 4,(7, 6, 5, 3, 7) and
(4, 3, 7, 6, 4), and one of which has length 5, (4,3,7,6,5,4).
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(a)

(b)

(c)

(d)

Fig. 17. (a) This figure shows the distance constraints that need to be satisfied
by agents4, 5, and6 of the formation shown in Figure 16. The points in this
figure clearly satisfy the constraints; (b) If noise is added to the lengths of
links that lie on the 3-cycle(4, 6, 5, 4), then pointsp4, p5, and p6 fail to
satisfy the distance constraints at their current positions; (c) The new distance
constraints corrupted with noise can be represented by a triangle. It can be
seen that the triangle can be placed between the circles in such a way that
its vertices touch the circles at one single point, thus satisfying the distance
constraints. (d) The vertices of this triangle determine the new locations of
pointsp4, p5, andp6 as shown with filled circles. The previous positions of
the points are shown with empty circles.

Fig. 18. A rigid formation created by vertex addition and edge splitting.
The agent of out-degree 0 (global leader) is depicted with color red and has
index 1. The agent of out-degree 1 is depicted with green and has index 2.
The agents of out-degree 2 are depicted with color blue and has indices 3, 4,
5, 6, 7.

Fig. 19. Trajectories of agents in the formation shown in Figure 18.

The global leader moves on a zigzag trajectory. The plot of
the trajectories of agents are shown in Figure 19. The distances
between all agent pairs are shown in Figure 20.

Recall that there are three possibilities for a directed rigid
formation: (i) a formation with all agents have out-degree 2
except a global leader of out-degree 0, a first follower of
out-degree 1, and these two are connected by a link; (ii) a
formation with all agents have out-degree 2 except a global
leader of out-degree 0, a first follower of out-degree 1, and
these two are not connected by a link; (iii) a formation with all
agents of out-degree 2 except three agents of out-degree 1. As
we stated before, case i) is the focus of this paper, because the
positions of agents in case ii) and case iii) are not stable under
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Fig. 20. Distances between agent pairs (of the formation shown in Figure
18) are shown over time as the global leader moves. The blue solid lines show
the distances between agents where there exist links between those pairs. The
red dotted lines show the distances between agent pairs where there are no
links between those pairs.

small perturbations, i.e., translation and rotation of formations
are easily affected by measurement and actuation errors. For
directed formations that have cycles of length 3 or more, we
have the following proposition. The structure of the overall
proof will be clear with the algorithm given for selection of
links in §V, therefore the proof is omitted here.

Proposition 4.1:A directed point formation in 2-
dimensional space is stably rigid if and only if the
following conditions hold: i) the underlying undirected graph
is generically minimally rigid; ii) all vertices are of out-degree
2, except that exactly one vertex is of out-degree 0, exactly
one vertex is of out-degree 1, and these two vertices are
neighbors to each other.

V. CREATING A STABLY RIGID DIRECTED FORMATION

FROM A RIGID UNDIRECTED FORMATION

Apparently, stable rigidity of a directed formation depends
not only on the underlying undirected formation but also on
the directions of links between agents. Given a generically
minimally rigid undirected formation, how do we find the
directions of links to create a stably rigid directed formation?
Below we present one way of doing this.

We start with giving preliminary definitions. A graph is
connected, if there is a path from any vertex to any other
vertex in the graph. Atree is a graph in which any two
vertices are connected by exactly one path. Aspanning treeof
a connected, undirected graph is a tree which includes every
vertex of that graph. There is a standard way of partitioning the
edges in a generically minimally rigid graph with the following
properties: (i) there are three trees; (ii) there are exactly two
trees at each vertex; (iii) no two non-empty subtrees span the
same set of vertices. These properties define a3Tree2partition
of the edges [24], [25]. For a generically minimally rigid graph
G = (V,L), it is also known that, for each(i, j) ∈ L, the

multigraph obtained by doubling the edge(i, j) is the union
of two spanning trees [26].

Now we give a sequential algorithm to find the direction of
links to create a stably minimally rigid directed formation from
a minimally rigid undirected formation: (Let us assume that
i represents the global leader,j represents the first follower
connected toi by the edge(j, i).)

1) Double the edge(j, i) - The entire graph can now be
partitioned into two spanning trees;

2) Remove (j, i) from one of the two trees - We now
have 3-trees, one spanning, and one each containing the
original two vertices;

3) Orient the spanning tree down to the selected leader;
4) Orient each of the other two trees down to the global

leader or the first follower, whichever is in this revised
tree.

This algorithm gives a stably rigid directed formation with
out-degree 2 at each point except the first-follower of out-
degree 1 and the global leader of out-degree 0. We give the
following example to illustrate this algorithm:

Example 5.1:Consider the generically minimally rigid
point formation shown in Figure 21(a). Assume that the global
leader is labeled with1 and the first follower is labeled with
2. The graph with the double edge(2, 1) is shown in Figure
21(b). This graph can be partitioned into two spanning tress
as shown in Figures 21(c) and 21(d). When we remove(2, 1)
from one of the two trees, in this case from Figure 21(d),
we now have three trees: one spanning as shown in Figure
21(c), and one each containing the original two vertices as
shown in Figures 22(a) and 22(b). Figure 23(a) shows the
oriented the spanning tree down to the global leader. Figures
23(b) and 23(c) show the oriented two trees down to the global
leader or the first follower. Finally, if we put together the edge
topologies in Figures 23(a), 23(b), and 23(c), we obtain the
directed point formation shown in Figure 23(d).

We note that this algorithm permits an arbitrary choice
of the first edge in the graph. There is a way to deduce
this directly from the assumption that the rigidity matrix has
independent rows and full rank. This is implicit in the paper
by White and Whiteley [22]. Effectively, if we take out the
four columns for the vertices that correspond to the global
leader and the first follower, and the row for their connecting
edge, we have a square matrix. If this is minimally rigid, we
can check this by taking the determinant - which must be non-
zero. If we decompose this determinant into blocks, using2×2
minors for the columns of each of the remaining vertices, as
a Laplace Expansion, then we have a sum of products of such
minors. Since the sum is non-zero, some term is non-zero.
Each of these terms in the sum identifies two edges used in
the block for a vertex. We identify those edges as ‘out’ for
that vertex. This identifies a direction for the edges, with out-
degree 2 for all but the vertices corresponding to the global
leader and the first follower.

If the graph has a simple peeling down to the initial edge,
then there will be only one term in this ‘sum’ - and the directed
graph to the initial leading edge will be unique. For example,
consider the graph shown in Figure 24 with the vertices{1, 2}
that represent the global leader and the first follower. It has
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(a) (b)

(c) (d)

Fig. 21. A minimally rigid point formation is shown in (a). The graph with
the double edge(2, 1) is shown in (b). The global leader is labeled with1
and the first follower is labeled with2. The graph in (b) can be partitioned
into two spanning trees as shown in (c) and (d).

(a) (b)

Fig. 22. When we remove(2, 1) from one of the two spanning trees in
Figures 21(c) and 21(d), in this case from Figure 21(d), we now have three
trees: one spanning as shown in Figure 21(c), and one each containing the
original two vertices as shown in (a) and (b) in this figure.

the simple peeling down to initial edge and it is shown in
Figure 25. If the sum has more than one term, then the terms
actually differ by re-orienting cycles in the one (and all) of
the possible directed graphs with out-degree 2.

Given a generically minimally rigid graphG, there may
be no choice for leader-follower which generates a simple
peeling. Given a graph, there may be some choices for the
leader-follower edge which produce a simple peeling, and
other choices which do not permit a simple peeling. For
example the graph on the top right of Figure 26 shows a
choice of leader-follower pair, which does not permit a simple
peeling. If there is a simple peeling, for selected edge, then
there is a unique orientation with out-degree at most 2 towards
this edge.

(a) (b)

(c) (d)

Fig. 23. The oriented spanning tree down to the global leader is shown in
(a). The oriented two trees down to the global leader or the first follower are
shown in (b) and (c). If we put together the edge topologies in (a), (b) and
(c), we obtain the directed point formation shown in (d).

Fig. 24. A minimally rigid undirected point formation is shown. We pick
the global leader and the first follower labeled with 1 and 2, respectively.
We would like to know how to determine the directions of links once the
undirected formation and the global leader-first follower pair are given.

If there is a directed graph towards a selected follower-
leader edge, with out-degree 2 on all other vertices, which
has a cycle, then all directed graphs towards this follower-
leader edge also have a cycle. In fact, any two such graphs
are interchanged by reorienting a finite set of simple cycles in
one of the graphs.

What about cycles vs. no cycles? No cycles and minimal
rigidity, requires the construction sequence using only vertex
addition - a ‘simple peeling down’ if reversed (see above).
Once we have such a sequence, then all directed graphs with
out-degree at least 2 for all but the ‘leading vertices’ will
also have no cycles, or equivalently, with no vertex of out-
degree greater than 2, will also have no cycles, and all acyclic
coverings will have out-degree at most 2.

Moreover, this follows for any other choice of the initial
edge. All choices of an initial edge result in a simple peeling
down, and a unique acyclic directed graph to this edge
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Fig. 25. Once the undirected graph, the global leader-first follower pair are
given, this figure shows a simple peeling down sequence to determine the
directions of links.

Fig. 26. Given the point formation shown top left, if the global leader labeled
with 1 and the first follower labeled with 2 are chosen as shown on top right,
then we obtain a cyclic rigid formation. Cycles are shown on bottom right and
bottom left with dotted edges. This selection of global leader-first follower pair
results in only cyclic formations, and does not permit any acyclic formations.

(equivalently, a unique directed graph with out-degree at most
2 down to this edge).

The converse is that if there is one directed graph with out
degree at most 2 that does have a cycle, then there is no simple
peeling down for any choice of initial edge. Therefore, there
is no other orientation with out-degree at most 2 that has no
cycles, or no acyclic orientation which has out-degree at most
2.

Given a generically minimally rigid graphG, there is a
fast (the worst case order|V||L|) algorithm (the pebble game)
which can generate:

• an orientation towards a selected leader-follower edge
with out-degree 2 on all other vertices;

• can switch from one such choice to any graph for another
leader-follower edge in linear time;

• can detect whether there is an acyclic orientation for this
edge.

Given a set of vertices and independent edges, the algorithm
can select additional edges to extend this to an (oriented)
minimally rigid graph, in order|V| time. Given a rigid graph,
the algorithms can select a minimally rigid sub-graph in order
|L| time.

VI. CONCLUDING REMARKS

Propositions 3.3 and 4.1 provide the necessary and sufficient
conditions for stable rigidity in directed formations. The algo-
rithm given in§V establishes a sequential way of determining
the directions of links from a given undirected rigid formation
so that the necessary and sufficient conditions are fulfilled. We
expect that the framework given in this paper will be useful in
analysis of formation rigidity and stability problems and will
be a useful tool to create stably rigid directed formations.

We want to draw the attention of the reader that this paper
suggests both cyclic and acyclic directed formations can be
stably rigid. The question of whether one is better than the
other or both types are equivalent in terms of the performance
of stable rigidity is still an open question. Qualitatively we can
say that acyclic formations seem much simpler to work with
compared to cyclic formations, but this question requires more
quantitative analysis. From a topological point of view, acyclic
formations are easier to work with for more decentralized and
local operations, such as agent departures, formation splitting
and merging. On the contrary, cyclic formations can easily get
complicated for such operations. Furthermore, the set point of
an agent on a cycle depends its own position. A quantitative
analysis of convergence of agent positions to set points will be
useful to realistically compare cyclic and acyclic formations.

Although cyclic formations are more difficult to work with
at the topological level, they have some advantages over
acyclic formations. Acyclicity provides position information
flow only in one direction, thus reduces the level of cooper-
ation effort between agents. If an agent located at the back
of an acyclic formation fails, there is no way that leaders
can realize this failure. On the other hand, cycles can provide
feedback among the leaders and followers in a formation, thus
increasing the coherence between formation members.
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