What Drives Deforestation in the Brazilian Amazon?
Evidence from Satellite and Socioeconomic Data

by
Alexander S.P. Pfaff, Columbia University

June 1996

Discussion Paper Series No. 9596-27
WHAT DRIVES DEFORESTATION IN THE BRAZILIAN AMAZON?

Evidence from Satellite and Socioeconomic Data

Alexander S.P. Pfaff
Columbia University
Department of Economics, Department of International & Public Affairs,
and Center for Environmental Research and Conservation
ap196@columbia.edu

First Draft: April, 1994
This paper analyzes the determinants of deforestation in the Brazilian Amazon. From a model of optimal land use, it derives and then estimates a deforestation equation on county-level data for the period 1978 to 1988. The data include a deforestation measure from satellite images which is a great advance in allowing within-country analysis. Evidence exists that: most important for policy, both increased road density in a county and increased road density in neighboring counties lead to more deforestation; government development projects increase deforestation; greater distance from the economic center of the country leads to less deforestation; and better soil quality leads to more deforestation. The evidence on provision of subsidized credit is mixed. Addressing an oft-mentioned factor, the population density is significant when population is the sole explanatory variable, but not when other variables suggested by the model are included. A quadratic population specification yields a more robust (although still small), concave effect, suggesting the importance of the spatial distribution of population.

1 I want to thank in particular Richard Schmalensee, Rob Stavins, Jon Gruber, and Robert Solow for continuing support of and advice on this project. I also want to thank Jim Poterba, Kaivan Munshi, Amy Ando, Maureen Cropper, Richard Eckaus, David Genesove, Donald Marron, Bill Miracky, Chris Sanchirico and Matt Slaughter for helpful discussions, and participants in the MIT Public Finance Lunch and Seminar, MIT Economic History and Development Seminar, Harvard Environmental Economics and Policy Seminar, and Columbia Applied Microeconomics Lunch for helpful comments. I gratefully acknowledge funding from: a National Science Foundation graduate fellowship, the Schultz Fund, the University of Florida/FLAS, the Social Science Research Council’s International Predissertation Fellowship Program, the MIT World Economy Lab, and the MIT Joint Program on the Science and Policy of Global Change.

On another front, after much searching I discovered that David Skole at the University of New Hampshire had collected state of the art satellite vegetative land cover data, and that Eustaquio Reis at the Institute for Applied Economic Research in Rio de Janeiro (IPEA/Rio) had collected a fantastic databank for the Amazon. Both during my extended visit at IPEA/Rio and during my work at MIT, their efforts and those of their colleagues have helped me greatly in using these datasets. Among their colleagues, I want to thank in particular Walter Chomentowski at UNH, and Maria Jose Silveira Pessoa and the computational staff at IPEA/Rio. In making their data available to me and in their ongoing contributions, these two groups have been absolutely crucial in making this paper possible.
1. INTRODUCTION

The depletion of rainforests has demanded the attention of policymakers during the 1980's and 90's. Initial concern about potential extinction of species has been joined by alarm about possible future global warming caused by atmospheric accumulation of "greenhouse gases" such as the carbon dioxide released by deforestation. Policymakers must understand what drives deforestation if they are to respond appropriately to such concerns. However, important questions remain about why rainforests are being cut down and whether public policies can affect the rate at which deforestation takes place. It is these questions that this paper seeks to address. It is important to note that despite the attention given to Amazon rainforest depletion, over eighty percent of this rainforest remains. Thus these are not merely historical questions, but questions whose answers should inform policies which will significantly affect global rainforest survival.

Much has been written about these questions, but economic understanding remains rudimentary at best. Existing empirical research focuses heavily on population. This paper advances beyond previous empirical analyses in large part because of the innovative merging of state-of-the-art satellite data on deforestation with an outstanding, county-level dataset for the Amazon. In addition, the empirical work is motivated by a systematic presentation of a relevant economic framework which encompasses not only population but also other factors such as roads, credit, and soil quality. The equation for estimation is derived from this optimal land use model.

Across the empirical analyses, a number of significant effects are found: most important for policy, increased road density leads to more deforestation; also of policy interest, development projects lead to greater deforestation; and confirming economic intuition, greater distance from the economic center of the country is associated with less deforestation, while
higher soil quality is associated with more deforestation. The evidence on credit access policies
is mixed, however (although the data available may not capture this policy adequately).

Confirming the result which characterizes much of the existing empirical literature, population as a sole explanatory variable appears to have a significant positive effect on deforestation. However, when other variables suggested in the model are included, this result vanishes. A quadratic population specification, which allows population's level to affect its marginal impact, is more robust to the inclusion of other variables. Although still small, this more robust, concave result suggests the importance of the spatial distribution of population.

The paper is organized as follows: Section 2 provides geographic and historical background on the Brazilian Amazon. Section 3 reviews the existing literature. Section 4 describes a model of optimal land use, and from that derives first a plot-level land allocation decision rule and then a county-level deforestation equation for estimation. Section 5 describes the data, and then presents priors and issues for empirical implementation. Section 6 presents the results of estimation. Finally, Section 7 concludes and presents potential extensions.

2. BACKGROUND

2.1 Geography

The Legal Amazon\(^2\) is an immense area, most of which was covered by forest at one time,\(^3\) and

\(^2\) The Legal Amazon is the North region (the states Acre, Amapa, Amazonas, Para, Rondonia, and Roraima) plus parts of Maranhao, Mato Grosso, Tocantins, and Goias (the latter two used to be one). The southern border is the 16th parallel, and the eastern border is the 44th meridian.

\(^3\)
most of which remains forested today.4 Bordering a number of countries in the northwest corner of Brazil (see Figure 1), it contains 5 million of Brazil’s total area of 8.5 million square kilometers; the latter area is larger than the continental United States. Rivers permeate the region (see again Figure 1), including the Amazon River, which traverses the region from west to east.5

2.2 History

Since at least the 1960’s, occupation and use of the Amazon region has been at some level a national policy goal. The military government officially in power from the 1960’s into the 1980’s promoted occupation of the region.6 Many felt that such empty land was an ideal ‘release valve’ for the pressures arising from a growing population.7 Finally, many also felt that the region offered boundless resources and great hopes for progress, and those in power

3 Although it is difficult to determine what the truly "original" vegetation was in any location, in particular given any history of human habitation, a best guess (see Skole(1993)) is that all of the area was forested except for about one sixth of the region which was covered with a scrubby vegetation called cerrado and about three percent of the region which is varzea, or seasonally flooded land near rivers (see, for example, Goulding(1993)). This figure of one sixth may appear to contradict Table 1, which gives a mean of 0.30 for the fraction of Amazon county area covered by cerrado. However, that thirty percent figure is an unweighted average of the county cerrado densities. Only an area-weighted average would reproduce the one sixth figure that is correct for the region. The fact that not all land was originally forested affects the definition of the dependent variable below.

4 Exactly how much deforestation has taken place is disputed (see, for example, Skole and Tucker (1993), Fearnside \textit{et al.} (1990b), and INPE (1992)). However, the region is at most ten to fifteen percent deforested.

5 This massive river is the confluence of runoff from higher areas to the south, west, and north of its basin.

6 Hecht and Cockburn (1990) provide the following quotation from General Castello Branco, in 1964: "Amazonian occupation will proceed as though we are waging a strategically conducted war". As part of the ‘military philosophy of and strategy for regional development’ that they cite, motivations may have included the desire to discourage both incursions from bordering countries and the formation of domestic guerrilla opposition.

7 For example, Hecht and Cockburn (1990) provide the famous citation from General Emilio Medici, who offered to provide "a land without men for men without land". They also quote General Golbery de Couto de Silva as referring to "the vast hinterlands waiting and hoping to be aroused to life and to fulfill their historic destiny".
apparently shared those visions of progress and/or were happy to make use of such hopes.

This goal motivated a number of public actions. To open the region, roads were built, accompanied by colonization and land titling projects. Subsidized credit was offered as an incentive, and income taxes were forgiven if those funds were invested in approved development projects. In addition, dams were constructed, and a free trade zone was created in Manaus.

2.3 A Few Statistics

The actions listed above, taken as a whole, would appear to have stimulated occupation of the Amazon (although coincidence or correlation may not indicate causality). Table 1 presents a few county-level statistics which document significant changes. Kilometers of paved and unpaved roads per county grew significantly over the decade 1975-1985 (see also Figure 3). Total population more than doubled from 1970 to 1991. In particular, urban population more than tripled. Finally, and motivating the analyses below, cleared forest area increased significantly.

8 For example, Hecht and Cockburn (1990) cite the ideology of modernization, as in the phrase "Isto é um país que vai pród frente" (which might be translated: "This is a country that moves (or, is moving) forward"). They also quote President Getúlio Vargas, from 1940: "...the highest task of civilizing man: to conquer and dominate the valleys of the great equatorial torrents, transforming their blind force -- into disciplined energy".

9 It should be noted that the push into the Amazon region also appears to have involved factors other than public actions. For instance, droughts in the northeast made that region inhospitable enough to cause significant migration into the Amazon (an inhospitable environment). Also, a shift into more capital-intensive, mechanized agriculture in the South is alleged to have created a significant pool of landless unemployed, to whom migration to the Amazon may have looked relatively promising. Further mention of this phenomenon is found below.

10 All data are for the 1970 município, or county, structure of 316 counties. See section 5 for explanation.

11 The means for fraction cleared in Table 1 (e.g., 0.16 in 1988) are unweighted averages of the fractions cleared for each of the counties in the region. Only a weighted average using county areas as weights would reproduce the value obtained by dividing cleared area for the whole region by the total area of the whole region.
3. REVIEW OF EXISTING LITERATURE

While many have previously considered either tropical deforestation in general or deforestation in the Brazilian Amazon, little empirical work of the sort presented in this paper has been done. Here I briefly review cross-country analyses, within-country analyses of other countries, and within-country analyses of Brazil, and then indicate the ways in which the empirical work in these existing analyses differs from the empirical work below.\(^{12}\)

3.1 Cross-Country Analyses

A number of attempts have been made to correlate factors of interest with national measures of deforestation. These include: Lugo et al. (1981) using population, energy use, and terrain variables; Allen and Barnes (1985) and Palo et al. (1987), using population, land use and output measures; Rudel (1989); Cropper & Griffiths (1994), using population as well as income levels; and Deacon (1994), using population and measures of government weakness or instability. A number of results are of interest, such as Cropper & Griffiths’ ‘stage of development’ interpretation of the significance of income levels, and Deacon’s government variables. The dominant result, though, is that population (or its density) is the most significant factor in explaining deforestation. This is partially explained by the fact that such analyses often use few

\(^{12}\) This section addresses only related empirical work. At least three other literatures are of interest although not directly comparable with this paper. First is theoretical discussion of deforestation, for example Ehui & Hertel (1989), Vincent (1990), Nerlove (1991), Hyde & Sedjo (1992), Jones & O’Neill (1994, 1995, and others), Deacon (1995), and Hyde, Amacher and Magrath (1996). Second is a group of analyses of relevant Brazilian government policies, such as Hecht (1985), Repetto & Gillis (1988), Binswanger (1989), and Mahar (1992), which contain much policy information but little formal analysis of the determinants of deforestation. Third is field studies, of the Brazilian Amazon and/or deforestation, which address a wide range of relevant issues, but which differ in focus from this work, including in scale (e.g., addressing one or a few localities). These include Hecht (1982), Fearnside (1986, 1990a), Smith (1982), Uhl et al. (1991), Bunker (1985), Moran (1981, 1990), Branford & Glock (1985), Schmink & Wood (1992), Jones et al. (1992), Vincent & Binckley (1992), Amacher, Hyde & Joshee (1992), and Scherr (1995).
explanatory variables (and, in the extreme, population alone). While cross-country results should be applied to a given country only with caution, the studies that make up this sizable part of the existing empirical literature provide an important point of reference for this paper.

3.2 Within-Country Analyses Of Other Countries

Sungsuwan (1985) and Sungsuwan & Panoyotou (1989) find that deforestation in Thailand is drive by population density, wood price, income, and distance to Bangkok. Southgate et al. (1991) also focus in part on population, in Ecuador's Amazon region: they first explain population with variables expected to affect "the prospect of capturing agricultural rents", and then explain deforestation with population and other factors. Harrison (1991), studying Costa Rica, questions the simplest focus on population, allowing different effects in different regions, and questions whether population is a cause or a "shared symptom". Finally, Kummer (1991) is one of few to find only a small role for population growth in deforestation, and suggests further consideration of this issue.

3.3 Within-Country Analyses Of Brazil

Almeida (1992) provides a great deal of information at the level of the entire Amazon region. However, the book tries mainly to answer the question "Was agricultural colonization of the Amazon worth its cost, and the best option?". Thus it provides more measurement and aggregation than testing of the importance of given factors in deforestation. Reis & Margulis (1990) and Reis & Guzman (1992) present econometric analyses of deforestation in the Brazilian Amazon. They find population density, road density, and crop area to be important determinants
of their deforestation measure.

The obvious difference between the analyses of other countries and this paper is that they do not address Brazil, which is home to such an enormous amount of tropical rainforest.\(^{13}\) Reis’ work leads into this paper, including the use here of some of his dataset. However, this paper advances beyond these works in two principal ways: first, it motivates the empirical work by systematically laying out the suggested economic framework; second, it makes use of the innovative merging of state-of-the-art satellite data (containing multiple observations of deforestation over time for all counties in the region) with an outstanding county-level dataset for the Amazon (including new data on credit and development project policies).\(^{14}\)

4. THE CONCEPTUAL FRAMEWORK

Underlying the empirical analyses below is an optimal land use framework. Land is allocated between alternative uses in order to obtain the greatest expected total return. Here, I present this framework in a simple, static fashion (some dynamic issues are mentioned below). Then I derive the deforestation equation for estimation in two steps: first, I derive a plot-level, optimal, land-allocation decision rule as a function of variables which are in principle observable; and second, I adapt the derivation to generate a county-level, optimal, land-allocation decision rule which

\(^{13}\) Skole & Tucker (1993)’s figures indicate that Brazil contains thirty percent of the world’s forested area.

\(^{14}\) Since this paper was first circulated, two other papers have appeared using similar methodology with respect to these two points. These are Chomitz & Gray (1995), on Belize, and Cropper & Griffiths (1996), on Thailand. Note that at county-level, a satellite measure of deforestation may be no better than a census measure. However, satellite data may allow for additional geographic precision in the analyses, as the satellite measurements can be for units much smaller than, for instance, an average Amazon county. Chomitz & Gray’s analyses make use of this additional precision. Satellites may also provide additional observations over time at lower cost.
implies a deforestation equation which can be estimated with existing county-level data.

4.1 An Optimal Land Use Model

I assume that land will be allocated to maximize total expected return. Thus current land allocation is a function not only of its immediate returns, but also of its effect on expected future returns. For example, a property rights regime in which the likelihood of obtaining title is increased by current clearing might be expected to sway current land use toward clearing. However, in order to focus on the elements which can be incorporated into the empirical work below, I present the land allocation decision as a function solely of immediate returns (some dynamic issues are mentioned below; however, including them would require additional data).

For any land use, the immediate return is the current profits obtained:

\[
\pi_{ijt} = P_{ij} \cdot Q_{ijt}(I_{ij}, Z_{ij}) - R_{ijt} \cdot I_{ij}, \quad \text{where}
\]

- \(l\) = a given land use
- \(i\) = county
- \(j\) = a plot of land within county \(i\)
- \(t\) = the year

\(\pi_{ijt}\) = profits obtained from land use \(l\) on plot \(ij\) in year \(t\)

\(P_{ijt}\) = the vector of prices for outputs \(Q\) (all possible outputs from any land use); these are fixed, ‘farm gate’ prices, differing by time and by plot but not by \(Q\)

\(Q_{ijt}\) = the vector of all outputs produced (potentially including shelter); the production functions \(Q^{(\star)}\) are different for different land uses, and output is a function not only of chosen inputs \(I\) but also of fixed factors \(Z\)

\(^{15}\) Alston, Libecap and Schneider (1994) examine the effects of property rights in the Amazon. Interestingly, their preliminary findings included no significant effect of land title on clearing (personal communication, 2/95).
\(I_{ijt} \) = the vector of inputs to production for land use \(l \) on the plot; the plot size is small and fixed, so input choice does not include amount of land

\(R_{ijt} \) = the vector of prices for inputs \(I \) (all inputs to all possible outputs); these are fixed, 'farm gate' prices, differing by time and by plot but not by \(I \)

While (1) abstracts away many of the variables often linked with deforestation, it is temporarily useful in providing a simple view of the structure of the optimal land decision. Given the definitions above, choosing the greatest immediate return implies the land use decision problem:

\[
\max_{\{f, l\}} \pi'_{ijt} \tag{2}
\]

In a general model, many land uses might be differentiated. In this paper, only two land use states are possible: cleared and uncleared.\(^{16}\) Cleared land is the link to deforestation: if land was originally forested, cleared land is deforested land. To simplify notation below, the following definition of \(V_{ijt} \), the maximum value of land in land use \(l \), is useful:

\[
V'_{ijt} = \max_{\{f, l\}} \pi'_{ijt}, \quad \text{i.e. } V'_{ijt} \text{ includes optimal input choice given } l. \tag{3}
\]

This definition, and the fact that there are only two land use states, imply the decision rule:

Choose \(l_t = \text{cleared} \iff V'_{\text{cleared}ijt} > V'_{\text{uncleared}ijt} \tag{4a} \)

\(^{16}\) Further differentiation of land uses would be not only more general, but also of empirical interest. For instance, the effects of independent variables of interest may well vary across land uses which involve cleared land.
or, \[\text{Choose } l_{ijt} = \text{cleared iff: } V_{\text{cleared}}^{ijt} - V_{\text{uncleared}}^{ijt} > 0 \] (4b)

A land use decision rule of this sort will lead to the equation to be estimated. However, the components of this expression need to be rewritten for their empirical implications to be clear.

4.2 Potentially Observable Variables and A Plot-Level Decision Rule

The model above lacks ties to many variables which come to mind as possible determinants of deforestation. Here, variables are suggested in relation to the expressions above:

\[P_{ijt} \text{ are functions of: } p_{it}, p_t, n_{it}, h_{ijt}, m_{ijt}, d_{it}, c_{it} \] (5a)

\[R_{ijt} \text{ are functions of: } r_{it}, r_t, n_{it}, h_{ijt}, m_{ijt}, c_{it}, v_{ijt} \] (5b)

Fixed factors \(Z_{ijt} \) include: \(q_{ijt} \) (5c)

\(p_{it} \) = county-level output prices
\(p_t \) = national-level output prices
\(n_{it} \) = county population
\(h_{ijt} \) = plot access to roads and rivers
\(m_{ijt} \) = plot distances from important markets
\(d_{it} \) = county development projects
\(c_{it} \) = county (subsidized) credit infrastructure
\(r_{it} \) = county-level input prices
\(r_t \) = national-level input prices
\(v_{ijt} \) = plot vegetation type
\(q_{ijt} \) = plot soil quality

These relations merit some explanation. Plot-level prices for both outputs and inputs should be functions of whatever the relevant market prices may be (county, national, or world)

17 The plot-level, farmgate prices \(P_{ijt} \) and \(R_{ijt} \) are not directly observed.
plus transport costs, which should be affected by distances as well as by access to roads and rivers. Population may affect output prices as a demand shifter, and may affect input prices as labor supply. Development projects may serve to stimulate demand as well, while credit may both lower rental rates and release suppressed demand for outputs. Finally, vegetation density may indicate clearing costs of land, while soil quality should provide increased productivity. Note that variables may play multiple roles even with respect to a single land use. If these imply opposing effects, the direction of the variable’s net effect will be ambiguous.

Working from (4b) and the relations (5a-c), and collapsing to a more reduced form expression (again, a single variable may play several roles with respect to a single land use), the optimal land use decision rule can be restated in the following form:

\[
\text{Choose } l_i = \text{cleared iff:} \\
\begin{align*}
\forall_{\text{cleared}} \quad & (p_i, p_t, r_i, r_t, n_i, h_{ij}, m_{ij}, d_i, c_i, v_{ij}, q_{ij}) > \\
\forall_{\text{uncleared}} \quad & (p_i, p_t, r_i, r_t, n_i, h_{ij}, m_{ij}, d_i, c_i, v_{ij}, q_{ij})
\end{align*}
\]

As no differentiation in land use is observed within the categories \{cleared, uncleared\}, it is not possible to identify for each category the effects of variation in these variables on the gains from land use. Rather, only the variables’ effects on the relatives gains from the two land uses can be identified. This point is captured in the following version of the decision rule:

\[18\] From this point on, the variables within parentheses may be suppressed in the notation.
Choose \(l_t = \text{cleared} \) iff:

\[
D^{\text{cleared}}(\bullet) > 0, \quad \text{where} \quad D^{\text{cleared}}(\bullet) = V^{\text{cleared}}(\bullet) - V^{\text{uncleared}}(\bullet)
\]

(7)

Recall, it is a land use decision rule such as (4) or (7) which leads to the equation to be estimated below. However, the omission of factors from years other than \(t \) must be explained before (7) can be used as a basis for estimation. Perhaps the most significant omission in (7) from the determinants of current land use is past land use. Forest regrowth is not 'instantaneous' (on an annual timescale). Thus if a plot of land is cleared in year \(t-1 \), it may be impossible for that plot to be uncleared again by year \(t \), no matter what parameter values obtain. Empirically, though, the clearing observations are separated by 10 years. Thus I will assume here, as in all such static models, that forest regrowth is sufficiently fast that uncleared land is a viable option even for plots which were cleared in the previous observation.\(^{19}\)

Other obvious omissions from (7) are of factors affecting future returns. While issues such as property rights and forest regrowth rates are left for future treatment of dynamic issues, as discussed below, one interpretation of (7) does include expected future returns in a particular way. If expectations of future parameter values are formed on the basis of current (year \(t \)) values, then the variables in (7) may, in an additional role, imply consideration of the future.

Thus I arrive at a plot-level decision rule for optimal land allocation between potential uses. Expression (7) motivates an estimation of the effects of the variables listed above on land

\(^{19}\) The possible error here is in assuming that a plot which is currently cleared was worth clearing because of the current state of the independent variables when in fact it was not, but is instead cleared because of what was optimal in the past. Note that if in the process of frontier development "the right-hand side is always rising", i.e. if pressures to clear land generally grow stronger over time, in practice this situation may only rarely arise.

However, it must be conceded that without more data over time, it is hard to address dynamics completely. Finally, it should be noted that the forest which grows back may differ significantly from what was there.
use choice. Such an estimation would use plot-level data: first, a discrete dependent variable indicating whether a plot ij is cleared or uncleared in year t; and second, plot-level independent variables, such as distance from a plot to the nearest paved road. However, I am unable to estimate such an equation, for lack of plot level observations.\footnote{Most limiting is the availability of plot-level independent variables. The clearing observations in the satellite data are more easily obtained for greater geographic disaggregation.}

4.3 County-Level Observations and A County-Level Equation

As no variables are observed at the plot level, expression (7) must be adapted to the existing observations, which are at the municipio, or county level. Working from (7), one possible adaptation of the model to this data limitation would be to assume that $D_{cleared}^{ijt} = D_{cleared}^{it}$ for all plots j in each county i.\footnote{Where, as in the definition of D_{ij} above :}

\[
D_{cleared}^{it} = \frac{V_{uncleared}^{it}}{V_{cleared}^{it}} = \frac{p_i ; p_i ; r_i ; r_i ; n_i ; h_i ; m_i ; d_i ; c_i ; v_i ; q_i}{p_i ; p_i ; r_i ; r_i ; n_i ; h_i ; m_i ; d_i ; c_i ; v_i ; q_i}
\]

However, the model would then operate solely at a county level, as all plots within a county would be identical. Thus it would predict that at some threshold level of the appropriately weighted combination of factors affecting land use choice, a whole county would shift in land use from uncleared to cleared, or vice versa. That would be a clear problem with the model, as in fact, most counties contain both cleared and uncleared plots.

Thus I assume, along the lines of Stavins & Jaffe (1990), the existence of within-county, payoff-relevant, unobserved, plot-level characteristics. More specifically, I define e_{ijt}, distributed across plots j within county i in year t. For a plot, e_{ijt} is the difference between additional maximum profits (added to $V_{uncleared}^{it}$) attainable from plot ij in year t when uncleared and additional maximum profits (added to $V_{cleared}^{it}$) attainable from that plot when cleared. Thus:
\[D_{\text{cleared}}^{i}(\bullet) = D_{\text{cleared}}^{i}(\bullet) - \varepsilon_{ijt} \] \hspace{1cm} (9)

From (7), given (9), if for a given plot a net positive influence of the observed determinants which may affect \(D_{\text{cleared}}^{i}(\bullet) \), i.e. may favor cleared land use for the county, overcome a net influence of the unobserved determinants which may affect \(\varepsilon_{ijt} \), i.e. may favor uncleared use for the plot, then plot \(ij \) is allocated for cleared use in year \(t \).\(^{22}\) This implies:

\[\text{Choose } l_t = \text{cleared iff:} \]
\[D_{\text{cleared}}^{i}(\bullet) > \varepsilon_{ijt} \] \hspace{1cm} (10)

Whatever the distribution of \(\varepsilon_{ijt} \) within county \(i \) in year \(t \), it follows that:

\[\% \text{Cleared}_{it} = F[D_{\text{cleared}}^{i}(\bullet)], \] \hspace{1cm} (11)

where \(F[] \) is the cumulative distribution function of \(\varepsilon_{ijt} \). It then follows that:

\[F^{-1}[\% \text{Cleared}_{it}] = D_{\text{cleared}}^{i}(\bullet). \] \hspace{1cm} (12)

If \(\varepsilon_{ijt} \) is distributed logistically, and \(\% \text{Cleared}_{it} \) is rewritten as \(y_{it} \), the following holds:

\[\ln(y_{it} / (1-y_{it})) = D_{\text{cleared}}^{i}(\bullet). \] \hspace{1cm} (13)

\(^{22}\) For more discussion of this approach, see, for example, Green(1990), chapter 20.
5. DATA, PRIORS, AND IMPLEMENTATION ISSUES

Here I present information relevant for moving from the conceptual framework to the results actually obtained. First, I present the raw data and the construction of the variables actually used in estimation. This motivates the specific versions of equation (13) which will be the basic equations for estimation. Then, for this equation, I present the priors for the estimation. Finally, I discuss potential concerns about multicollinearity and endogeneity. Regressions addressing these concerns are then simply included in the discussion of all results below.

5.1 Data And Variables

The data cover the entire Amazon region, at the municipio, or county, level. All variables are for the 1970 counties,23 including those created with the 'neighbor matrix'.24

5.1.1 Land Use and Land Characteristics Data

The land data include the satellite data, which come from specialists in state-of-the-art satellite measures at the University of New Hampshire (UNH).25 The original units of observation by the satellite, much smaller than counties, are aggregated to county level. The data exist for 1975, 1978, and 1988. For those years, they give the breakdown of county area into three categories: standing forest, cleared forest, and "never-forested", i.e. cerrado (a scrubby vegetation). *Cerrado*

23 *Municipios* are subdivisions of states. The county structure in the Amazon changed over time. The number of counties increased, as old counties split into multiple new counties. Since a uniform set of counties is required for analysis of more than one year of data, the more recent observations have been aggregated backwards using the county-structure transformations. There were 316 counties in 1970, 336 in 1980, 399 in 1985, and 506 in 1991.

24 This matrix of 1's and 0's, which indicates the other counties that border on any given county, is used to construct 'neighboring county' variables (averages for those counties). It is based on the 316 county, 1970 map.

25 The references to consult concerning this data are Skole and Tucker (1993) and Skole et al (1994).
is the main vegetation other than forest in the Brazilian Amazon, covering about one sixth of the total area. The cerrado areas are taken as constant. Thus the cleared forest measure omits any clearing which takes place in cerrado areas.

The deforestation variable is the fraction of the originally forested (i.e., non-cerrado) land in a cleared state in year t. Thus it varies over both space and time. However, note that because of limited observations for the independent variables, only two of the three deforestation observations (1978 and 1988) are used in generating the basic results. The cerrado variable is the cerrado area over total county area. This varies only over space.

Also from UNH come the soil quality measures. These are densities of nitrogen and carbon in the soil. These vary only over space, as they are computed from a cross-sectional map of large areas viewed as homogeneous in soil type. The county density measures are weighted averages across those types, weighted by how much of the county falls in each soil-type region. The two soil variables available are almost exactly collinear, and thus only one is used.

5.1.2 Transport Data

Road lengths (paved and unpaved), river lengths, and distance measures come from maps provided by Brazilian government agencies. Road and river variables are used in the estimation as densities, i.e. as lengths divided by areas. Distances are used simply as lengths. Road observations exist for 1976 and 1986. Thus roads vary over space and time, while rivers and distances vary only over space. The rivers included satisfy the "Class A navigability criterion"

26 This definition was chosen because to label as ‘deforested’ a county which was never forested seemed wrong.

27 It may be possible to further separate both paved and unpaved roads into federal and state subcategories.
(they exceed a minimum depth for a minimum period of time during a typical year).

5.1.3 Government Actions other than Roads

Credit extension data come from the Banco do Brasil (BdB). They indicate how many BdB agencies existed in the county in 1985, as well as in what year the first BdB agency appeared. For estimation, this information was used to construct two variables which vary over space as well as in a particular way over time. For the ‘credit agency density’ variable, for 1985 the number of agencies was divided by the county area. For 1975, if the first agency had appeared by 1975, then the 1985 number of agencies was assigned to 1975 and divided by the county area, yielding the same value as for 1985. If the first agency had not yet appeared by 1975, a zero was assigned. For the ‘credit existence’ variable, an indicator variable for having more than zero agencies was used in 1985, and then the same procedure was followed for using the date of the appearance of the first agency in order to construct the 1975 indicator value.

Development projects information comes from SUDAM (Superintendency for the Development of Amazonia). For each project, quantitative measures are provided for 1985, and certain dates (e.g., first year of implementation) are also provided. A procedure like that just described was used for constructing the 1975 values for two variables, project area and project existence. Then the county ‘project area density’ and ‘project density’ variables are constructed by adding the areas of or totaling the number of projects in the county and dividing by county area. In total, the information available lists 247 development projects, yielding 234 observations after missing values, with a mean area of 330 km². Yokomizo(1989) suggests that the bulk of these projects’ impacts occurred in the southeast of the region (near the rest of the country).
I do not have data on colonization projects, although they are often discussed. Also, to this point I do not use information on dams.

5.1.4 Census Data

Rural and urban population come from the Brazilian Demographic Census, for 1970, 1980, and 1991. Also from this source comes information on how many of the immigrants who arrived in a given Amazon county in a given decade came from each state within Brazil.

Because of concerns about endogeneity, the wage data collected is an average industrial wage (an 'outside option' for those working in deforesting activities). This comes from the Industrial Census, for 1975, 1980, and 1985. Local output prices are not used in this paper, out of concerns about measurement and about endogeneity.

5.1.5 ‘Neighboring-county’ Variables

In equation (13) and all discussion above, the following, common assumption was implicit: the

28 See, for example, Almeida(1992) on efforts by the colonization agency INCRA within the "national integration program". Whether the lack of this data implies that the key factors behind most immigration to the Amazon have been omitted from the analyses, however, remains in question, for these reasons: first, at least from general impressions, spontaneous immigration (responding to general conditions such as, e.g., soil quality and transportation) appears to greatly outnumber official, planned immigration in colonization programs; second, and applying even to official immigration, these programs could include (or be linked to) actions measured by data which are in these analyses, such as road construction or credit extension.

29 The information available includes the name of the county in which the powerhouse is located, plus total inundated area, but not flooded areas in "non-powerhouse" counties. The inundated areas for the six dams listed in IBGE(1992) is 5,500km². This is under 5% of total clearing in 1980. However, the construction of dams could well have a greater effect than the direct, one-for-one substitution of inundated area for forested area. For instance, an increased local supply of electricity and drop in the local price of electricity could act as a spur to local development which would lead to further deforestation. Such an overall effect could be seen in an elasticity resulting from the regressions below, but the dams are not yet included in the analyses, for lack of information on all the municipios which include inundated areas resulting from the dams.

30 The definition of "urban" is not precisely laid out in Census books. They refer one to "municipal law".
only factors that affect the land allocation decisions in a given county are the observed variables which describe that county. This assumption is worth testing. For instance, a paved highway running through a neighboring county might be expected to lower transport costs to a given county, even though it would not change the observed length of paved roads in that county. In order to test the 'spatial isolation' implications of this assumption, some regressions based on (13) will include "neighboring-county" versions of variables such as roads, population, projects, and credit. These are unweighted averages of the values for the variables described above for all the counties which share any common border with the county in question.\[31\]

5.1.6 Additional Data Needs for Dynamic Issues

As mentioned above, additional data would be necessary to address the empirical implications of dynamic issues which might be incorporated into the model. For instance, some information on variation across counties in policies affecting property rights would be necessary (although it is possible that such variation may only exist at greater geographic disaggregation than counties). Of course most basic would be additional observations over time for all variables.

Although their motivation remains speculative without a formal dynamic model and solutions (which are beyond the scope of this paper and will be addressed in future research), other variables might also be of interest. For instance, forest vegetation regrowth rates might

\[31\] Using PAVED, for own paved roads and PAVEDN, for neighbor paved roads, one can see by rewriting (β₁PAVED + β₂PAVEDN) as β₁(PAVED) + αPAVEDN that this variable inclusion effectively allows the data to determine the correct weighting of own and other roads in a "road access" variable.

Effects between counties may arise not only because of observable determinants of deforestation, but also because of unobservable determinants. This idea throws into question the assumption of independence of error terms across counties. Neighbors might be expected to be more alike than randomly paired counties. If so, residuals should be corrected for potential non-sphericality in order to obtain proper inferences.
affect optimal dynamic land use decisions. Such data could in principle be collected.

5.2 Priors For The Estimation

5.2.1 The Basic Equation for Estimation

Given the data available, the form of (13) which will be the basic equation for estimation is:

\[
\begin{align*}
\ln\left(\frac{y_{i,78}}{1-y_{i,78}} \right) &= D^{\text{cleared}}_{i,j}(n_{i,70} ; h1_{i,76}, h2_{i,76}, h3_{i,75}, m_i ; d_{i,75}, c_{i,75} ; w_i, v_i ; q_i) \\
\ln\left(\frac{y_{i,88}}{1-y_{i,88}} \right) &= D^{\text{cleared}}_{i,2}(n_{i,80} ; h1_{i,86}, h2_{i,86}, h3_{i,85}, m_i ; d_{i,85}, c_{i,85} ; w_i, v_i ; q_i)
\end{align*}
\] (14-1) (14-2)

\[
\begin{align*}
y_{i_t} &= \text{area of cleared forest over originally forested area} \\
n_{i_t} &= \text{density of county population} \\
h1_{i_t} &= \text{density of the length of paved roads in the county} \\
h2_{i_t} &= \text{density of the length of unpaved roads in the county} \\
h3_{i_t} &= \text{fixed density of the length of rivers in the county} \\
m_i &= \text{fixed distances to the national and state capitals} \\
d_{i_t} &= \text{density of the area of the development projects in the county} \\
c_{i_t} &= \text{density of the number of Banco do Brasil branches in the county} \\
w_{i_t} &= \text{county average industrial wage} \\
v_i &= \text{fixed percentage of county area in cerrado} \\
q_i &= \text{fixed density of nitrogen in the soil}
\end{align*}
\]

5.2.2 Priors

The following table gives the priors for the independent variables. A positive prior indicates that a higher value for the variable should lead to more cleared forest land. Explanations follow:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>PRIOR</th>
</tr>
</thead>
</table>

\[\text{...}^3\] In the runs in the tables below, the independent variables will be assumed to be linearly additive within \(D(*) \). Also, the runs in the tables result from pooling all the observations. Other runs discussed use different specifications. Note that the transformations required to obtain this equation introduce heteroskedasticity in the error term.
Population may increase demand and thus output prices, and by increasing labor supply may lower input prices. Roads and rivers are expected to lower transport costs, raising farmgate output prices and lowering farm-gate input prices. Distances, in contrast, raise transport costs. Development projects and credit infrastructure may increase demand and thus output prices, and credit should lower input costs. As an outside option, the industrial wage should raise the labor input price for use of cleared land. Soil quality may provide increased productivity particularly in uses of cleared land. Finally, cerrado should have lower clearing costs. Recall, clearing in cerrado is not reflected in the dependent variable. The reasoning behind the prior, then, is that, all else equal, having more lower-clearing-cost cerrado in a county may draw clearing away from forested areas, such that a smaller fraction of the originally forested area is cleared.

33 The expectation on soil’s relative effect is based in part on the observation that the biological productivity in standing tropical rainforests is largely independent of the soil, because of efficient nutrient cycling processes.

34 This claim requires justification. Here I suggest two rationales related to differences in clearing costs. First, Brazilian law with respect to the Amazon suggests that landowners should keep some percentage of their land uncleared. This law may not be respected at all. However, for example, Alston, Libecap and Schneider (1994) find a mean fraction cleared of 40 percent in a sample of small landholders in the Amazon (personal communication, 2/95). If the law is respected, and cerrado clearing costs are indeed lower than forests’ clearing costs, then all else equal, cerrado should be cleared and denser forest vegetation left uncleared in order to satisfy the law.

Second, increased economic activity within a county may in fact raise marginal input prices up and lower

Population	+
Roads	+
Rivers	+
Distances	-
Projects	+
Credit	+
Wage	-
Cerrado	-
Soil Quality	+
5.3 Multicollinearity and Endogeneity

The basic equations for estimation (14) assume that all the determinants of deforestation are taken as exogenous to the land use decision. However, the ongoing process of frontier development may be thought to involve a number of behaviors, such as clearing, migration, and government actions, all of which take each other into account. Thus it seems natural to ask whether some of the independent variables might be endogenous, at least for the purposes of the estimation. Here, I consider additional relationships which could imply statistical difficulties with estimating the basic equations. Then I suggest that endogeneity is less of a problem with the estimation below than might be imagined: first, the existing data impose the use of lagged independent variables, which reduce the likely extent of endogeneity in the estimation; second, some relationships imply not endogeneity but multicollinearity of independent variables. However, this potential problem of endogeneity will be given additional attention below.

An obvious candidate for endogeneity is output and input prices, which may be affected by the amounts of land use activity in a county. For this reason, as well as measurement problems, I do not use these prices (other than the industrial wage, a more exogenous proxy).35

Another common suggestion is that population is endogenous. However, to be truly endogenous in the basic equations, 1970 (and/or 1980) population would have to in some way

marginal output prices (unlike in the model above, in which prices are given). If, all else equal, cerrado is used first because of lower clearing costs, then having more cerrado in a county raises the clearing cost for the first plot of forested land considered for clearing, and should lower the fraction of originally forested area which is cleared.

There are stories independent of clearing costs, though. For instance, cerrado may exist where the soil is poor, or where little rain falls, i.e. in places where returns to cleared land are relatively low. However, at least this soil story would appear to be wrong, as soil quality and cerrado density are not strongly correlated in this data. This result is perfectly plausible, as superb nutrient cycling systems allow lush rainforest to grow on quite poor soil.

35 Proxies for county output prices could in principle be constructed from national output prices, using information on the breakdown of total output from a county between distinct categories of outputs.
result from 1978 (1988) clearing behavior, or of factors that jointly cause them both. This seems unlikely. Further, population may not result from clearing itself. Rather, for example, it might respond to previous population or to access (e.g., roads, rivers, and distances). For example:

\[n_{it} = n_{it}(h1, h2, h3, m,) \]

(15)

may be the relationship which in fact underlies the sense of 'endogeneity' here. This type of possible multicollinearity is considered in the estimation and interpretation below. Finally, note that the expected bias from endogeneity would be positive, as, for instance, more clearing would be expected to lead to more population. However, in the results below we find a quite weak positive effect of population; this throws into question the existence of a large bias.

Another common suggestion is that government behavior may imply that policy variables such as roads, development projects, and credit infrastructure are caused by, or jointly caused along with, clearing behavior. However, it is again important to note that the basic equations (14) indicate the use of lagged independent policy variables. In addition, the policy variables

36 It is possible that serially correlative processes could generate a link between these variables. However, the process would have to be quite strong in order to generate a significant correlation.

37 In terms of the theoretical model, even should a form of (15) in which clearing were a determinant of population describe migration behavior and imply statistical endogeneity, it would not necessarily belong in the land model. If land decisionmakers do not take into account their effect on migration, they take \(n_p \) as exogenous. The same comment applies to taking into account other relationships, such as for government road construction behavior.

38 Clearing behavior and policy variables could be jointly caused by unobserved factors. One such unobserved variable could be additional spatial heterogeneity in soil quality. Such heterogeneity could lead to clearing and also, independently, affect government actions like road location (assuming the government observes the heterogeneity). Another type of unobserved variable might be announced policies. These may presage, for instance, a future road location (and thus 'cause' future roads). Further, if they lead to the purchasing of land in the future path of the road solely for speculative financial gains, then the transport cost interpretation of the observed road variable may be mistaken. However, despite stories about information leaks and speculation within government agencies in the Amazon, the scale of such land speculation seems likely to be relatively low.
may be functions not of clearing itself, but of an independent variable such as population or roads. For example, an equation in the style of (15) might apply to credit infrastructure if governments find it worthwhile to establish a bank agency only if there exists a minimal population density. While such behavior would not imply endogeneity, the implied multicollinearity would indeed matter for interpretation of the credit and population results in the estimation below. Such possibilities are considered below.

For the reasons above, then, endogeneity may not be quite the problem for the estimation of the basic equations (14) that might be implied by the characterization of frontier development above. However, the road and population results are sufficiently central to this paper to warrant attempts to instrument for these variables. Thus the results include regressions involving instrumentation for roads as well as regressions involving instrumentation for population.

The instrument for roads will be lagged roads. The instruments for population will be conditions in the "weighted-average migrant state of origin" for an Amazon county. As noted above, the breakdown by state of origin is known for the migrants to a given county in a given decade. This breakdown, i.e. the shares of migrants which come from each of the states, is not

Further, frontier development may be thought to involve more dynamic relations alongside (13), such as:

\[
\begin{align*}
n_{i,t+1} &= n(h_{i,t}, n_{i,t}), \\
n_{\text{NeighborCounty, } t+1} &= n(h_{i,t}, n_{i,t}) \quad \text{and} \quad h_{l,t+1} &= h(l(h_{i,t}, n_{i,t})).
\end{align*}
\]

These relationships describing migration and government behavior imply multicollinearity of population and roads in (13), as the two variables are caused by the same things. Further, the interpretation of coefficients in (13) would be less straightforward than in a static model, as the effects of past variables are more important. However, this would not change the underlying focus on effects of, for example, roads. Conclusions based on specific magnitudes of coefficients might change, but roads would be a mechanism for policy intervention.

Note that Figure 3 appears to imply that roads grow up into the Amazon from where activity already exists. Interrelationships affecting public infrastructure have been studied explicitly in Binswanger et al (1993).

One could imagine other factors affecting road location, such as the location of particular ecological or Indian reserves. However, it seems likely that the causation may run instead from road location to reserve location, as a number of reserves are quite recent, and they were most likely located where access was relatively difficult.
obviously related to clearing. However, it might be relevant for migration, as it shows how regional shocks are likely to affect differently the migration to different Amazon counties.

This breakdown generates weights for the computation for each county in the Amazon of weighted averages of state-level variables which are assumed to be relevant to the migration decisions: average industrial wage, employment rate, and labor intensity in agriculture. Higher wages and employment rates in migrants’ states of origin are presumed to lead to a lower level of emigration from those states and thus less immigration to the counties which receive immigrants from those states. A higher labor intensity in agriculture at the beginning of a decade is presumed to lead to a higher level of emigration from a state, as it implies a larger out-of-work labor pool should agricultural mechanization occur, as it often did during this period.41

6. RESULTS

Recall from above that the basic equations for estimation are:

$$\ln \left(\frac{y_{i,78}}{(1-y_{i,78})} \right) = D^{cleared}_{i,78} \left(n_{i,70}; h1_{i,70}, h2_{i,70}, h3_{i,70}, m_{i,70}, d_{i,75}, c_{i,75}, w_{i,75}, v_i, q_i \right)$$ (14-1)

$$\ln \left(\frac{y_{i,88}}{(1-y_{i,88})} \right) = D^{cleared}_{i,88} \left(n_{i,80}; h1_{i,80}, h2_{i,80}, h3_{i,80}, m_{i,80}, d_{i,85}, c_{i,85}, w_{i,85}, v_i, q_i \right)$$ (14-2)

Here I discuss the results of estimation, including those presented in the tables below. Table 4 is for population only, Table 5 puts population and other factors together, and then Table 6 presents variations relative to Table 5 in how population is treated. All runs in the tables involve

41 Particularly in the southern states, government programs encouraged a shift from a labor-intensive crop (coffee) to a more capital- and energy-intensive crop (soybeans). See, for example, World Bank (1982).
pooling all the observations, and assume that \(D(\cdot) \) is linearly additive. Other runs discussed use different specifications. In focusing on one category of effect at a time, this presentation will cut across tables, as well as other specifications not presented in the tables.

6.1 The Effects of Population on Deforestation

The first column of Table 4 confirms that here, as in the literature, if population is the only independent variable then it appears to be a significant determinant of deforestation, although it does not by itself explain a great deal of the variation in deforestation. The second column’s quadratic specification considers the intuitive hypothesis that an additional person in a population-dense county has less marginal impact on land clearing than one in a relatively empty area. The positive sign on the population density level and negative sign on its square support this hypothesis. However, the overall explanatory power is still not overwhelming.

With this basic specification, the result just given is quite robust (for instance time and state dummies do not change the flavor of the result much; nor does running the regression in differences). The most important change in specification in this case, however, is the introduction of other factors motivated by the optimal land use model. The two population coefficients in the first column of Table 5 indicate that the basic population result does not stand up to this inclusion. The large drop in the coefficients relative to Table 4 suggest that the earlier coefficients were picking up the effects of other, omitted factors. This point is confirmed in the second column of Table 5. Interestingly, though, the nonlinear (concave) effect of population from Table 4 is confirmed as well; the quadratic specification for population is more robust to the inclusion of other factors. This basic shift in results, produced by the most fundamental
change in specification, is robust to other types of changes in specification.

Table 6 makes two additional points about population. The credit agency coefficient and standard error which result from dropping population (in the first column) indicate that the population and credit variables may well be multicollinear (as suggested by, for instance, (15) above). This confounding of effects is a consistent result across specifications. The second column of Table 6 indicates perhaps most of all that the "conditions in the average migrant state of origin" instruments do not perform well in the first stage regression for population. As a result, the two-stage least squares regression yields significantly higher standard errors.

6.2 The Effects of Transport on Deforestation

The paved road coefficients in both columns of Table 5 clearly support the intuition that, given the size of the Amazon, roadways must be important in lowering the cost of access to the region. This is the dominant policy-relevant result in the empirical work. It is supported by Table 6\(^{42}\), robust to the inclusion of year and state dummies, and always among the strongest results, including in differences regressions. The 'distance to the national seat' results also support intuition about transport costs. As distances are greater, transport costs are higher, and the incentive for clearing land is lower as output prices are lower and input prices are higher for use of cleared land. While this is a consistent result in the pooled cross-section regressions, it is of interest that introducing this fixed variable into a differences regressions yields a very significant

\(^{42}\) Note that the roads (or other) coefficients in the first column of Table 6 could be seen as a form of "full derivative" of deforestation with respect to roads if a relation such as (15) holds, such that roads are a factor in the level of population. However, note also that these coefficients are virtually identical to those in Table 4. This is not surprising, as any indirect effect of roads through population must be small if population’s effect is small.
positive effect. This would appear to indicate a movement outward of the development frontier.

It should be noted, though, that not all results concerning transport are as strong. First, the unpaved road coefficients are consistently insignificant in the pooled cross-section regressions (including with dummies). This is so even if paved road variables are not included; further, a total roads variable is significantly weaker than the paved roads variable.\(^{43}\) In contrast, though, the unpaved roads are strong, alongside the paved roads, in differences regressions.

Most surprisingly, while the prior for rivers was positive, rivers' effects are found to be significantly negative. This might be explained by two differences between rivers and roads, which otherwise provide similar, although not identical, transport services: first, these rivers feature significant seasonally flooded areas, or *varzea*, which may function like *cerrado* in making forested lands relatively less desirable lands within the county (although because of higher productivity instead of lower clearing cost); and second, rivers provide food through a production technology that does not require forest clearing (other than on banks).\(^{44}\) However, at the very least this result bears further investigation. For instance, introducing this fixed variable into a differences regression yields a significant positive effect.

6.3 The Effects of Development Projects and Credit Infrastructure on Deforestation

Table 5 shows a significant, positive effect of development projects on clearing. However, the

\(^{43}\) The distance to state seat result also contradicts the priors above. As this distance is more 'idiosyncratic' with respect to the location of the economic center of the country, it is more likely that this distance does not in fact represent an increase in the costs of access to markets. The main results do not depend on its inclusion, however. Further, it may be of interest that introducing this fixed variable in a differences regressions yields little effect.

\(^{44}\) It is important to note that this result is not driven by the inclusion within the river variable of bodies of water such as small streams which could not be expected to really affect transport costs. All the rivers included here satisfy the "class A navigability criterion", and are thus significant transport options.
neighbor version of the project variable is not significant. This suggests that an identity of the form ‘projects always involve clearing (even if abandoned later)’ may be the most important link from projects to deforestation. This would contradict the idea that projects are the bases for outwardly-spreading regional development.\(^{45}\) An additional result should be considered, though. This is that the inclusion of state dummies reduces the measured impact of these development projects (they lose significance). This may suggest the lack of an ongoing effect of projects.

Credit agency density is insignificant in Table 5. It may be important to keep in mind that the credit variable is mostly likely a poorly measured variable. The first column of Table 6 provides additional perspective, as dropping population makes the credit coefficient significantly higher and its standard error lower. This may indicate multicollinearity between credit agency location and population. As noted above, in (15), such multicollinearity could have meaningful interpretation in terms of government behavior (as opposed to being just a statistical fact). The second column of Table 6 then provides even further perspective. First, the poor performance of the instruments for population in the first stage should explain the great increase in the standard errors of the credit variables (as well as the projects variables). However, it may still be of note that the coefficient for one of the credit variables rises significantly.

6.4 Other Effects on Deforestation

Tables 5 and 6 show not only the expected positive coefficients but also consistent significance for soil quality as a determinant of cleared land. This result may be a little surprising, as the soil

\(^{45}\) Note that the coefficients for projects in the first column of Table 6 may represent some form of a "full derivative", if projects are thought to be determinants of population. Not surprisingly, as population is not strong in Table 5, these development project coefficients are much the same as those in Table 5.
quality measure is rather coarse, with homogeneity asserted for regions large enough that they must in fact contain heterogeneous sub-regions. However, the result is robust even to the (noisy) instrumentation for the population variables in the second column of Table 6.

The results for cerrado density are similar, in that they are in keeping with priors but perhaps surprisingly strong. Such strong results may be evidence that clearing costs are a significant component of the costs of using cleared land. Further, they may be evidence that the law mandating that some portion of a landholder’s property remain uncleared has effect, and that people are more likely to comply, or are likely to comply in greater degree, when they have an option for generating cleared land other than clearing originally forested land. 46

7. CONCLUSIONS, EXTENSIONS, AND POLICY IMPLICATIONS
This paper has analyzed the determinants of deforestation in the Brazilian Amazon. A deforestation equation was derived from a model of optimal land use, and estimated using county-level data for the period 1978 to 1988. This empirical analysis advanced beyond previous analyses in large part because of the innovative merging of state-of-the-art satellite data on deforestation with an outstanding, county-level dataset for the Amazon. In addition, the empirical work was motivated by a systematic presentation of a relevant economic framework which encompassed not only population but also other factors such as roads, credit, and soil quality.

Evidence exists that: most important for policy, increased road density led to more

46 It is important to note that while an idiosyncratic, non-uniform distribution of cerrado within the Amazon region could be behind this result, making it a spurious one, the facts do not support this. Cerrado is if anything more heavily concentrated in the south and east of the region, closer to the rest of the country, such that if anything one might expect that cerrado areas would be areas where conditions would lead to more clearing of forest.
deforestation; also of policy relevance, development projects led to greater deforestation; and confirming economic intuition, greater distance from the economic center of the country led to less deforestation, while better soil was associated with more deforestation. However, the evidence on credit access was mixed. The population density was significant as the sole explanatory variable for deforestation, but its effect disappeared with the inclusion of other factors suggested in the model. A quadratic population specification was more robust to the inclusion of other variables. While the more robust effect was still small, the nonlinear (concave) result suggested the importance of the spatial distribution of population.

There are a number of potential extensions of this work, many of which involve additional data. These include further disaggregation of land use choices beyond ‘cleared and uncleared’ (for instance to crops, ranching, and timber within the cleared category), and data for independent variables at a sub-county level, which would allow better use of high-resolution satellite images. In addition, as mentioned above, empirical implications should arise from further attention to dynamic issues, such as property rights. Their inclusion requires not only more data, but also proper motivation through formal modeling. The latter will be addressed in future research.

The mixed evidence for credit access raises the point that existing results too must be qualified by the extent of the existing data. The measured variables may not capture these policy actions adequately. Explanations for mixed results related to multicollinearity are of interest as well, though. While multicollinearity of credit and population could be merely a statistical problem, it might instead arise because the government locates credit agencies where they are expected to be successful in spawning development, e.g. in population centers. Thus policy choices may follow determinants of deforestation, such that the policies themselves could be, for
example, furthering development after deforestation has taken place. This sort of speculation raises the point that the dynamics of frontier deforestation really have not been adequately addressed, and suggests again the need for additional observations over time.

In terms of policy implications that emerge from the analyses, the results for roads suggest clearly how policymakers could affect the rate of deforestation. Regardless of other factors included in the analyses, roads appear to be strong determinants of deforestation. Even if past government decisionmaking was such that roads were partially a function of other variables, it might not matter for future policy purposes: as long as roads play one important causal role, even within a complex system of frontier expansion and development, they are a policy tool.

More speculatively, the road and quadratic population results could suggest that in order to achieve any desired level of regional development with minimal deforestation, the government might want to build good roads to existing cities instead of roads out into sparsely populated areas (and perhaps use subsidies for urban employment instead of rural agriculture). This suggestion arises from the results that roads do seem to channel development and that the per-person impact of population on deforestation is lower in areas of concentrated population.

Finally, it is important to note that the questions addressed in this paper are distinct from questions about socially optimal amounts of deforestation. Answering the latter type of question would require knowledge of the value of the standing forest. However, while these results do not suggest whether the rate of deforestation would optimally be higher or lower than it is now, they may suggest how best to go about effecting a given policy goal.
Bibliography

INPE (1992). "Deforestation in Brazilian Amazonia". Instituto Nacional de Pesquisas Espaciais, Sao José dos Campos, Brazil.

TABLE 1

Road and River lengths (kilometers per county; means over all counties):

<table>
<thead>
<tr>
<th></th>
<th>1975</th>
<th>1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved Roads, length</td>
<td>16.7</td>
<td>36.7</td>
</tr>
<tr>
<td>Unpaved Roads, length</td>
<td>76.4</td>
<td>146.2</td>
</tr>
<tr>
<td>Rivers, length</td>
<td>44.8</td>
<td>44.8</td>
</tr>
</tbody>
</table>

Population (number per county; means over all counties):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Population</td>
<td>8463</td>
<td>16180</td>
<td>28974</td>
</tr>
<tr>
<td>Rural Population</td>
<td>14524</td>
<td>19282</td>
<td>23519</td>
</tr>
<tr>
<td>Total Population</td>
<td>22987</td>
<td>35462</td>
<td>52493</td>
</tr>
</tbody>
</table>

Fraction of a county which was never forested (from satellite data source).\(^47\)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerrado density</td>
<td>.30</td>
<td>.42</td>
<td>0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fraction cleared in county (ratios of areas; mean over all counties):

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction Cleared, 1975</td>
<td>.01</td>
<td>.04</td>
<td>0</td>
<td>.37</td>
</tr>
<tr>
<td>Fraction Cleared, 1978</td>
<td>.04</td>
<td>.08</td>
<td>0</td>
<td>.45</td>
</tr>
<tr>
<td>Fraction Cleared, 1988</td>
<td>.16</td>
<td>.25</td>
<td>0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

\(^{47}\) The means for the cerrado and cleared fractions above are unweighted averages of the cerrado and cleared fractions for each of the counties in the region. Only a weighted average using county areas as weights would reproduce the value obtained by dividing, e.g., cleared area for the whole region by the total area of the region.
Table 2 - Variable Names and Definitions

% fraction cleared - the ratio of sq.km of cleared forest area to sq.km. of the originally forested area

"neighbor versions" - for any variable, equally-weighted averages of the variable level in the surrounding counties

Paved Road density - the ratio of kilometers of paved road length to sq.km. of county area

Paved Ngbr density - the neighbor version of Paved Road density

Unpvd Road density - the ratio of kilometers of unpaved road length to sq.km. of county area

Unpvd Ngbr density - the neighbor version of Unpvd Road density

River density - the ratio of kilometers of river length to sq.km. of county area

River Ngbr density - the neighbor version of River density

Population density - the ratio of number of people to sq.km. of county area

Population density2 - the square of Population density

Popul.Ngbr density - the neighbor version of Population density

Popul.Ngbr density2 - the square of Popul.Ngbr density

Project Area density - the ratio of sq.km. of projects' area to sq.km. of county area

Project Ngbr density - the neighbor version of Project Area density

Credit Agency density - the ratio of number of agencies to sq.km. of county area

Credit Ngbr density - the neighbor version of Credit Agency density

Distance To State Seat - kilometers to the state capital

Distance To Nat'l Seat - kilometers to Brasilia (representing the way to markets)

Industrial Wage - an average wage (salary expenditures over salaried employees)

Nitrogen density - a ratio of units of nitrogen to units of soil (representing typical soil quality)

Carbon density - a ratio of units of carbon to units of the soil (representing typical soil quality)

Cerrado density - the ratio of sq.km. of cerrado area to sq.km. of county area

Origin Wage - a weighted average of all states’ average industrial wages, with weights equal to the fraction of immigrants to a county from the state (represents the attractiveness of the ‘average state of origin’ of immigrants)

Origin Empl.Rate - a weighted average of all states’ average employment rates, with weights as for Origin Wage

Origin Intensity - a weighted average of all states' labor intensities in agriculture, with weights as for Origin Wage; represents the size of the pool of labor potentially released by agricultural mechanization
TABLE 3 - County Level Descriptive Statistics

<table>
<thead>
<tr>
<th>Transport densities:</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved Road 1975</td>
<td>.007</td>
<td>.015</td>
<td>0</td>
<td>.098</td>
</tr>
<tr>
<td>Paved Road 1985</td>
<td>.015</td>
<td>.031</td>
<td>0</td>
<td>.222</td>
</tr>
<tr>
<td>Unpaved Road 1975</td>
<td>.011</td>
<td>.016</td>
<td>0</td>
<td>.116</td>
</tr>
<tr>
<td>Unpaved Road 1985</td>
<td>.023</td>
<td>.030</td>
<td>0</td>
<td>.243</td>
</tr>
<tr>
<td>River</td>
<td>.006</td>
<td>.016</td>
<td>0</td>
<td>.140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Development projects:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># per county 1975</td>
<td>.52</td>
<td>3.4</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td># per county 1980</td>
<td>.63</td>
<td>3.8</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td># per county 1985</td>
<td>.78</td>
<td>4.2</td>
<td>0</td>
<td>59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit agencies:</th>
<th>(counties included here only if they have >=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td># per county 1975</td>
<td>1.4 (1.14) 1 (7)</td>
</tr>
<tr>
<td># per county 1980</td>
<td>1.3 (.93) 1 (7)</td>
</tr>
<tr>
<td># per county 1985</td>
<td>1.2 (.75) 1 (7)</td>
</tr>
</tbody>
</table>

TABLE 4 - DEFORESTATION AND POPULATION

<table>
<thead>
<tr>
<th>Variables</th>
<th>Linear Population, Isolated</th>
<th>Quadratic Population, Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density</td>
<td>.0058 ** (.0014)</td>
<td>.0230 ** (.0071)</td>
</tr>
<tr>
<td>Population density<sup>2</sup></td>
<td>- .0018 ** (.0007)</td>
<td></td>
</tr>
<tr>
<td>Popul.Ngr. density</td>
<td>.0164 ** (.0058)</td>
<td>.0344 ** (.0124)</td>
</tr>
<tr>
<td>Popul.Ngr. density<sup>2</sup></td>
<td>- .0067 * (.0030)</td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td>- 5.136 * (.3394)</td>
<td>- 5.470 ** (.3516)</td>
</tr>
<tr>
<td>Adjusted R-Squared</td>
<td>0.048</td>
<td>0.078</td>
</tr>
</tbody>
</table>

Both regressions are pooled cross-sections, with 548 observations, from equations (14) [from which many variables are dropped]. In the parentheses are the corrected standard errors [also *, *, and ** indicate significance at the 90, 95, and 99% levels]. ¹⁰⁰: The coefficient and standard error are multiplied by 100(10,000).
TABLE 5 - DEFORESTATION, POPULATION, AND OTHER FACTORS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Linear Population, with Other Factors</th>
<th>Quadratic Popul., with Other Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved Road density</td>
<td>.0016 ** (.0003)</td>
<td>.0015 ** (.0003)</td>
</tr>
<tr>
<td>Paved Ngbr density</td>
<td>.0023 ** (.0009)</td>
<td>.0024 ** (.0009)</td>
</tr>
<tr>
<td>Unpvd Road density</td>
<td>-.0001 (.0004)</td>
<td>-.0002 (.0004)</td>
</tr>
<tr>
<td>Unpvd Ngbr density</td>
<td>.0010 (.0010)</td>
<td>-.0010 (.0010)</td>
</tr>
<tr>
<td>River density</td>
<td>.0006 (.0005)</td>
<td>.0006 (.0005)</td>
</tr>
<tr>
<td>River Ngbr density</td>
<td>-.0049 ** (.0017)</td>
<td>-.0051 ** (.0017)</td>
</tr>
<tr>
<td>Distance To State Seat</td>
<td>.0019 * (.0009)</td>
<td>.0020 * (.0009)</td>
</tr>
<tr>
<td>Distance To Nat'l Seat</td>
<td>-.0013 ** (.0005)</td>
<td>-.0013 ** (.0005)</td>
</tr>
<tr>
<td>Project Area density</td>
<td>.0015 ** (.0003)</td>
<td>.0014 ** (.0004)</td>
</tr>
<tr>
<td>Project Ngbr density</td>
<td>.0023 (.0080)</td>
<td>.0051 (.0090)</td>
</tr>
<tr>
<td>Credit Agency density</td>
<td>.0241 (.0197)</td>
<td>.0213 (.0208)</td>
</tr>
<tr>
<td>Credit Ngbr density</td>
<td>.0466 (.0420)</td>
<td>.0423 (.0424)</td>
</tr>
<tr>
<td>Industrial Wage</td>
<td>.0058 (.0140)</td>
<td>.0073 (.0139)</td>
</tr>
<tr>
<td>Nitrogen density</td>
<td>.0205 ** (.0043)</td>
<td>.0208 ** (.0043)</td>
</tr>
<tr>
<td>Cerrado density</td>
<td>-.5.111 ** (.6839)</td>
<td>-.5.019 ** (.6924)</td>
</tr>
<tr>
<td>Population density</td>
<td>.0009 (.0016)</td>
<td>.0100 * (.0044)</td>
</tr>
<tr>
<td>Population density²</td>
<td>- .0009 * (.0004)</td>
<td></td>
</tr>
<tr>
<td>Popul.Ngbr. density</td>
<td>-.0002 (.0045)</td>
<td>-.0023 (.0134)</td>
</tr>
<tr>
<td>Popul.Ngbr. density²</td>
<td>.0001 (.0025)</td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td>- 2.912 ** (.9999)</td>
<td>- 3.046 ** (1.008)</td>
</tr>
<tr>
<td>Adjusted R-Squared</td>
<td>0.371</td>
<td>0.371</td>
</tr>
</tbody>
</table>

Both regressions are pooled cross-sections, with 480 observations, from equations (14).
In the parentheses are the corrected standard errors [also *, ** indicate significance at the 90, 95, and 99% levels].
\[I(II)\]: The coefficient and standard error are multiplied by 100(10,000).
TABLE 6 - DEFORESTATION, OTHER FACTORS, AND POPULATION VARIATIONS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Other Factors, without Population</th>
<th>Other Factors, Instrumented Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved Road density</td>
<td>0.0016 ** (0.0003)</td>
<td>0.0026 * (0.0013)</td>
</tr>
<tr>
<td>Paved Ngbr density</td>
<td>0.0023 ** (0.0009)</td>
<td>0.0033 * (0.0022)</td>
</tr>
<tr>
<td>Unpvd Road density</td>
<td>-0.0001 (0.0004)</td>
<td>0.0004 (0.0008)</td>
</tr>
<tr>
<td>Unpvd Ngbr density</td>
<td>-0.0009 (0.0010)</td>
<td>-0.0012 (0.0016)</td>
</tr>
<tr>
<td>River density</td>
<td>0.0007 * (0.0004)</td>
<td>-0.0028 (0.0048)</td>
</tr>
<tr>
<td>River Ngbr density</td>
<td>-0.0050 ** (0.0014)</td>
<td>0.0039 (0.0082)</td>
</tr>
<tr>
<td>Distance To State Seat</td>
<td>0.0019 * (0.0009)</td>
<td>0.0016 * (0.0009)</td>
</tr>
<tr>
<td>Distance To Nat'l Seat</td>
<td>-0.0014 ** (0.0005)</td>
<td>-0.0017 ** (0.0007)</td>
</tr>
<tr>
<td>Project Area density</td>
<td>0.0015 ** (0.0003)</td>
<td>0.0020 (0.0021)</td>
</tr>
<tr>
<td>Project Ngbr density</td>
<td>0.0020 (0.0080)</td>
<td>-0.0007 (0.0188)</td>
</tr>
<tr>
<td>Credit Agency density</td>
<td>0.0298 ** (0.0114)</td>
<td>0.0049 (0.1323)</td>
</tr>
<tr>
<td>Credit Ngbr density</td>
<td>0.0467 (0.0398)</td>
<td>0.1872 * (0.1342)</td>
</tr>
<tr>
<td>Industrial Wage</td>
<td>0.0057 (0.0142)</td>
<td>-0.0158 (0.0199)</td>
</tr>
<tr>
<td>Nitrogen density</td>
<td>0.0205 ** (0.0043)</td>
<td>0.0177 ** (0.0045)</td>
</tr>
<tr>
<td>Cerrado density</td>
<td>-5.124 ** (0.6873)</td>
<td>-5.412 ** (.8555)</td>
</tr>
<tr>
<td>Population density</td>
<td>-0.0439 (0.0509)</td>
<td></td>
</tr>
<tr>
<td>Population density²</td>
<td>0.0057 (0.0055)</td>
<td></td>
</tr>
<tr>
<td>Popul.Ngbr. density</td>
<td>-0.0494 (0.0780)</td>
<td></td>
</tr>
<tr>
<td>Popul.Ngbr. density²</td>
<td>0.0000 (0.0179)</td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-2.901 ** (1.000)</td>
<td>-1.974 * (1.239)</td>
</tr>
<tr>
<td>Adjusted. R-Squared</td>
<td>0.373</td>
<td>---</td>
</tr>
</tbody>
</table>

Both regressions are pooled cross-sections from equations (14) [w/dropped variables or 2SLS]. Column 1 has 480 obs’s; Column 2 has 477. In the parentheses are the corrected standard errors [also * , ** and *** indicate significance at the 90, 95, and 99% levels].¹⁰⁰: The coefficient and standard error are multiplied by 100(10,000).
FIGURE 3

Map 8. Main Roadways of Access to the Amazon in 1960
Federal and state roads according to the DNER.

Map 9. Main Roadways of Access to the Amazon in 1970
Federal and state roads according to the DNER.

Map 10. Main Roadways of Access to the Amazon in 1975
Federal and state roads according to the DNER.

Map 11. Main Roadways of Access to the Amazon in 1980
(Federal and state roads according to the DNER.)

The following papers are published in the 1995-96 Columbia University Discussion Paper series which runs from early November to October 31 of the following year (Academic Year).

Domestic orders for discussion papers are available for purchase at the cost of $8.00 (U.S.) Per paper and $140.00 (US) for the series.

Foreign orders cost $10.00 (US) per paper and $185.00 for the series.

To order discussion papers, please write to the Discussion Paper Coordinator at the above address along with a check for the appropriate amount, made payable to Department of Economics, Columbia University. Please be sure to include the series number of the requested paper when you place an order.
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9596-01</td>
<td>Protectionist Response to Import Competition in Declining Industries Reconsidered</td>
<td>J. Choi</td>
</tr>
<tr>
<td>9596-02</td>
<td>New Estimates on Climate Demand: Evidence from Location Choice</td>
<td>M. Cragg, M. Kahn</td>
</tr>
<tr>
<td>9596-03</td>
<td>Enforcement by Hearing</td>
<td>C. Sanchirico</td>
</tr>
<tr>
<td>9596-04</td>
<td>Preferential Trading Areas and Multilateralism: Strangers, Friends or Foes?</td>
<td>J. Bhagwati, A. Panagariya</td>
</tr>
<tr>
<td>9596-05</td>
<td>Simplification, Progression and a Level Playing Field</td>
<td>W. Vickrey</td>
</tr>
<tr>
<td>9596-06</td>
<td>The Burden of Proof in Civil Litigation</td>
<td>C. Sanchirico</td>
</tr>
<tr>
<td>9596-07</td>
<td>Market Structure and the Timing of Technology Adoption</td>
<td>J. Choi, M. Thum</td>
</tr>
<tr>
<td>9596-08</td>
<td>The Emergence of the World Economy</td>
<td>R. Findlay</td>
</tr>
<tr>
<td>9596-09</td>
<td>The Global Age: From a Skeptical South to a Fearful North</td>
<td>J. Bhagwati</td>
</tr>
<tr>
<td>9596-10</td>
<td>A Conformity Test for Cointegration</td>
<td>P. Dhrymes</td>
</tr>
<tr>
<td>9596-11</td>
<td>Identification and Kullback Information in the GLSEM</td>
<td>P. Dhrymes</td>
</tr>
<tr>
<td>9596-12</td>
<td>Informational Leverage and the Endogenous Timing of Product Introductions</td>
<td>J. Choi</td>
</tr>
<tr>
<td>9596-13</td>
<td>Changes in Wage Inequality</td>
<td>J. Mincer</td>
</tr>
<tr>
<td>9596-14</td>
<td>The Design of Monte Carlo Experiments for VAR Models</td>
<td>P. Dhrymes</td>
</tr>
<tr>
<td>9596-15</td>
<td>A Topological Invariant for Competitive Markets</td>
<td>G. Chichilnisky</td>
</tr>
<tr>
<td>9596-16</td>
<td>Topology and Invertible Maps</td>
<td>G. Chichilnisky</td>
</tr>
<tr>
<td>9596-17</td>
<td>Smooth Infinite Economies</td>
<td>G. Chichilnisky</td>
</tr>
</tbody>
</table>
1995-96 Discussion Paper Series

9596-18 Measuring Neighborhood Investments: Urban Quality of Life Expenditures by Race
 by: D. Dipasquale
 M. Kahn

9596-19 The Silver Lining of Industrial Decline: Rust Belt Manufacturing's Impact on Particulates
 by: M. Kahn

9596-20 Education's Role in Explaining Diabetic Health Investment Differentials
 by: M. Kahn

9596-21 Limited Arbitrage and Uniqueness of Market Equilibrium
 by: G. Chichilnisky

9596-22 A Probabilistic Model of Learning in Games
 by: C. Sanchirico

9596-23 Minimal Inclusive Sets in Special Classes of Games
 by: C. Sanchirico

9596-24 'Globalization' and Vertical Structure
 by: J. McLaren

9596-25 Corruption, Black Markets and the Fiscal Problem in LDC's: Some Recent Findings
 by: J. McLaren

9596-26 Black Markets and Optimal Evadable Taxation
 by: J. McLaren

9596-27 What Drives Deforestation in the Brazilian Amazon?
 by: A. Pfaff