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ABSTRACT

Eliminating the Internal Instability in Iterative Learning Control for Non-minimum Phase

Systems

Te Li

Iterative Learning Control (ILC) iterates with a real world control system repeatedly performing
the same task. It adjusts the control action based on error history from the previous iteration, aiming
to converge to zero tracking error. ILC has been widely used in various applications due to its high
precision in trajectory tracking, e.g. semiconductor manufacturing sensors that repeatedly perform

scanning mancuvers.

Designing effective feedback controllers for non-minimum phase (NMP) systems can be
challenging. Applying Iterative Learning Control (ILC) to NMP systems is particularly
problematic. Asking for zero error at sample times usually involves inverting the control system.
However, the inverse process is unstable when the system has NMP zeros. The control action will
grow exponentially every time step, and the error between time steps also grows exponentially. If
there are NMP zeros on the negative real axis, the control action will alternate its sign every time

step.

ILC must be digital to use previous run data to improve the tracking error in the current run.
There are two kinds of NMP digital systems, ones having intrinsic NMP zeros as images of
continuous time NMP zeros, and NMP sampling zeros introduced by discretization. Two ILC
design methods have been investigated in this thesis to handle NMP sampling zeros, producing

zero tracking error at addressed sample times: (1) One can simply start asking for zero error after



a few initial time steps, like using multiple zero order holds for the first addressed time step only
(2) Or increase the sample rate, ask for zero error at the original rate, making two or more zero

order holds per addressed time step.

The internal instability can be manifested by the singular value decomposition of the input-
output matrix. Non-minimum phase systems have particularly small singular values which are
related to the NMP zeros. The aim is to eliminate these anomalous singular values. However, when
applying the second approach, there are cases that the original anomalous singular values are gone,
but some new anomalous singular values appear in the system matrix that cause difficulties to the
inverse problem. Not asking for zero error for a small number of initial addressed time steps is
shown to eliminate all anomalous singular values. This suggests that a more accurate statement of
the second approach is: using multiple zero order holds per addressed time step, and eliminating a

few initial addressed time steps if there are new anomalous singular values.

We also extend the use of these methods to systems having intrinsic NMP zeros. By modifying
ILC laws to perform pole-zero cancellation inside the unit circle, we observe that all of the rules
for sampling zeros are effective for intrinsic zeros. Hence, one can now achieve convergence to
zero tracking error at addressed time steps in ILC of NMP systems with a well behaved control

action.

In addition, this thesis studies the robustness of the two approaches along with several other
candidate approaches with respect to model parameter uncertainty. Three classes of ILC laws are
used. Both approaches show great robustness. Quadratic cost ILC is seen to have substantially

better robustness to parameter uncertainty than the other laws.
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Chapter 1

Introduction

1.1 Background of ILC

Iterative learning control (ILC) is a relatively new method of control that aims to achieve zero
tracking error of a finite time tracking maneuver that is repeated. The original ILC idea dates back
to the late 1970s when Uchiyama introduced the concept on high-speed motion control of a robot
arm following a desired trajectory through iterative trials [1]. However, the learning control
concept was not widely recognized until the initial explicit formulation of ILC in English was
given by Arimoto [2]. In mid 1980s, ILC starts to flourish and receive broad interest due to further
development of applications in robots [3-4]. Since then, the literature on ILC has increased
significantly. In addition to a considerable amount of journal and conference papers, there are also

major surveys [5-9], books [10-13], and special issues [14-16].

ILC has been applied in a wide range of areas. According to the survey performed in 2007 [9],
the top three application fields are robots, rotary systems and process control including
batch/factory/chemical process. Take computer disk drives for example. The data are written while
the disk is rotating so there is vibration which results in some high frequency wiggles in the tracks.
In order to read data on a disk, a control system follows these tracks on the disk. At the factory,
ILC is used on each track to improve the accuracy when the control system follows the track, so
that the storage can be increased. There are also applications to spacecraft operations for repeated
scanning maneuvers of fine pointing equipment. The learning process can learn to compensate for

both repeating effects from structural flexibility, and deterministic control system error is response



to time varying tracking commands. There is the potential for high precision pointing control

achieved through a learning process.

1.2 Instability of ILC Inverse Problem

In general, ILC considers situations in which a control system is to perform the same trajectory
repeatedly. The system is returned to the same initial conditions before the start of each repetition.
Based on the tracking error observed in the previous run or repetition, the command for the next
repetition is adjusted, aiming to make the tracking error converge to zero. Such ILC systems are
necessarily digital since data must be stored from each repetition for use in the control updates for
the next repetition. The ILC problem seeks the input history needed to produce a desired output
history. This is an inverse problem. To find the desired input, one can plug the desired output into
the left hand side of the governing difference equation and then that side of the equation becomes
a forcing function. The task is then to solve for the general solution which contains a particular

solution which is associated with the desired output and the homogeneous solution [17].

An important property of digital control systems is that when a zero order hold is used to feed
a continuous time plant, the resulting discrete time z-transfer function is then obtained, but it
usually has the property that the discretization has introduced zeros outside the unit circle. Take a
third order system with no continuous-time zeros for example, two zeros have been introduced
during the discretization. This must happen because when the input to the original differential
equation is changed at a time step, the output should change at the next sample time, and this
requires a one-time step difference between the most recent input on the right of the equation and

the most recent input on the left.

Reference [18] develops the asymptotic locations of the roots introduced in the discretization

as the sample time interval tends to zero, as a function of the pole excess in the original Laplace
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transfer function, i.e. the number of poles minus the number of zeros. For any Laplace transfer
function with pole excess of 3 or more, there will be at least one root introduced that is outside the

unit circle for fast enough sample rate.

If the original continuous time system has zeros on the right Laplace plane, there will be another
type of non-minimum phase zeros in the corresponding discrete time system. Following the
definition in Reference [19], we name the non-minimum phase zeros introduced during the
discretization process as sampling zeros, and the images of the original continuous time non-

minimum phase zeros as intrinsic zeros.

Therefore, the unique inverse solution for the necessary control action to produce zero tracking
error will almost always be growing exponentially with time. For example, a system with pole
excess of 3 has a zero at -3.7321 asymptotically as sample rate tends to infinity, then the solution
to the homogeneous difference equation consist a constant determined by initial conditions times
-3.7321 (using the asymptotic value) to the k™ power, where k is the time step number. This
solution achieves zero tracking error at every sample time, but the control action required grows
exponentially and alternates in sign every time step. It indicates that the actuator will hit saturation
after not that many time steps. In addition, the error between sample times also grows
exponentially. Thus, the ILC problem is an ill-posed problem whose solution fails to address the

intended problem, for any digital system with non-minimum phase zeros.

The ILC problem uses a matrix model of the convolution sum solution of the state space
equations, then the inverse of a matrix determines the input history needed to produce the desired
output at all time steps. This matrix is analytically guaranteed to have full rank, i.e. it is guaranteed
to have an inverse. Reference [20] shows that the singular value decomposition of this finite time

matrix is related to the frequency response of the discrete time system. This gives a very attractive



connection between z-transfer function models and time domain state space models. As the
dimension of the matrix gets larger, the singular values approach the magnitude frequency
response of the system at each discrete frequency that can be observed in the number of time steps
in the finite data length. The input and output singular vectors approach sinusoidal functions, and
the phase change going through the system is obtained by the phase difference of the corresponding

input and output singular vectors.

However, if a digital system contains NMP zeros, there will be one or more particularly small
singular values, and both singular values and associated singular vectors do not contain the
information of frequency response. For example, a system with one NMP zero has one particularly
small singular value. Incidentally, except for this singular value, the other singular values will
match the magnitude frequency response of the system as the number of time steps goes to infinity,
and is already close at relatively slow sample rate. Moreover, this anomalous singular value
decreases as the size of the matrix is increased. Looking at the magnitude of the reciprocal of the
unstable zero location taken to a power equal to the size of the matrix, we observe that this slope
matches the slope of the smallest singular value. This demonstrates the relationship between the
singular value producing the ill-conditioning, and the location of the root of the characteristic
polynomial for the right hand side of the difference equation that is outside the unit circle.
Reference [21] shows that the number of particularly small singular values is equal to the number

of non-minimum phase zeros considering systems with only sampling zeros.

When applying ILC in NMP systems, the error associated with normal singular vectors will
decrease and approach zero in a relatively reasonable amount of iterations. However, an
astronomical number of iterations can be needed to accomplish any significant learning in the error

part associated with the anomalous singular vectors.



In practice, it looks like the iterative process has finished its convergence, but one is perhaps
disappointed in the final error level because nothing significant has been accomplished in
eliminating error in the part of the error space associated with anomalous singular vectors. One
reason is that no one ever does that many of iterations (e.g. 10'% for a 3™ order system sampled at

0'% jterations, the

desired trajectory p steps long) in hardware. Even if one could perform 1
corrective update in error history on any given iteration can be extremely small. If it is so small
that the update is beyond the last digit in the digital to analog and analog to digital converters in

the hardware, then no accumulation of corrective signal is possible as the iterations progress. The

control action in this part of the space is then never updated.

These comments indicate that in practice, the application of ILC laws are mathematically very
often subject to this internal instability, but that one never observes the phenomenon. And what
one does observe is that the error in all other parts of the space goes to zero, and one is left with

the error one had initially in the part of the space associated with the small singular value.

Previous literatures have developed various ways that attempt to solve this problem. Reference
[22] proposed an approach based on advanced output data, this approach can stabilize the mapping
between input and output for a certain number of systems with non-minimum phase zeros that
satisfy a predefined assumptions. Instead of using zero order hold, [23] uses an interpolating hold
to solve the problem, and it does for a small class of problems, but it does not solve the problem
in general. References [24] proposed a learning strategy based on a reference shift algorithm. The
experimental results have shown that this algorithm achieves faster convergence and lower final
error in a reasonable time. Stable inversion based approaches can also been found in references
[25]-[26]. These approaches can successfully decrease the final error level that converge but fail

to converge to zero tracking error if using normal ILC learning laws.



Reference [27]-[30] suggests that leaving a few time steps at the beginning unaddressed can
produce extra freedom, doing this can make the system have the correct initial state so that the
control action won’t grow with time. In practice, one can append several time steps before the
execution of desired trajectory, and not asking for zero error at these time steps. The right number
of steps need to be added is equal to the number of non-minimum phase zeros. Applying this
approach, one can successfully obtain zero tracking error at all the time steps except for the

beginning. We call this approach as initial deletion in later chapters.

We know that using a single zero order hold throughout each time step will have the instability
problem. Suppose we allow the zero order control action to be updated a number of times within
each time step. One can think of this extra zero order hold value as a kind of generalized hold
replacing a simple zero order hold. This study shows that this can eliminate the particularly small

singular values and vectors which fail to follow the frequency response.

However, while examining the singular values and the singular vectors when using this skip
step approach, we observed yet another kind of anomalous singular value in some cases. Compared
to the original anomalous singular values, the deviation between the new anomalous singular
values and standard frequency response based ones are not as significant. The original ones had
the property that the associated input and output singular vectors contained one or more input
singular vectors that grow exponentially with time step, and the associated output singular vectors
that decay exponentially. However, the new kind of anomalous singular value has different
behavior. They are not as small, and hence might be tolerable. And the number of these new
anomalous singular values is smaller. When there are a reasonable number of time steps in the
trajectory, these singular values become unaffected by increases in the total number of steps in the

trajectory, rather than getting progressively worse. Moreover, both input and output singular



vectors decay with time step. This decay with time step suggests that there may be a relationship
between these singular values and the decaying of transient in the system, but no connection is

established yet.

It is shown that one can modify the problem further so that there are no anomalous singular
values. By not asking for zero error at a number of initial time steps equal to the number of new
anomalous singular values in the skip step matrix, all singular values will relate to the system
frequency response. This then can form the basis of a well posed inverse problem that can be used

to design ILC systems.

Based on this structure, a new quadratic cost control law was designed to ask for zero error at
each time step, and simultaneously minimizes the tracking error and the control action for each of
the introduced intermediate steps. If the penalty is chosen well, the exponential growth of
magnitude of the control is eliminated, and one can also aim for improved tracking at the
intermediate points. The simulation results show that the error at addressed time steps is
numerically zero and the error in between addressed time steps can approach 10'° and even

smaller.

Robustness to model parameter uncertainty is particularly important in ILC because it aims to
converge to zero error in the real world instead of in our model of the world. Thus, we examine
the robustness of the two approaches (initial deletion, multiple zero order holds) when incorporated
in three main ILC control laws, namely the Euclidean norm contraction mapping law, the partial
isometry law, and a quadratic cost ILC law. Both approaches have similar robustness towards
model error, and the quadratic cost law is shown to have the best robustness properties. This result
is based on Monte Carlo style evaluation of models based on probability distributions of the

coefficients in the model.



Multiple zero order holds and initial deletion approaches have been successfully applied when
system only contains the sampling zeros. However, our results suggest that the rules of the two
approaches no longer applies when system contains intrinsic zeros. We proposed a new ILC design
to incorporate a filter that cancels poles and zeros inside the unit circle. The simulation results

show that the design makes the original rules work again.

1.3 Thesis Layout

Chapter 2 gives the mathematical formulas for the ILC problem and the detailed description of
the internal instability issue. We first examine the instability problem by looking at poles and zeros
of the transfer function. And then we relate the instability to the ill-conditioning of the system
matrix. The properties of the singular values and vectors of this matrix are also investigated in this
Chapter.

Chapter 3 introduces the multiple zero order holds approach. A new quadratic cost law design
is developed utilizing the extra freedom, suggesting one can use this learning law to achieve zero
tracking error at addressed time steps and maintain a well-behaved intersample error and control
action at the same time. In addition, we show that initial deletion is another effective approach.

Chapter 4 demonstrates the difficulties when extending the two approaches (multiple zero order
holds and initial deletion) to systems with intrinsic zeros. Then a new design that incorporates a
filter to perform pole-zero cancelation is developed. Simulation shows that it makes the rules of
the two approaches effective for more general non-minimum phase system, meaning systems that
also contain intrinsic zeros.

Chapter 5 examines the robustness of the two approaches with respect to system parameters
uncertainty. Several other approaches are also investigated for comparison purposes. Three basic

learning laws are used to perform the robustness test.



Chapter 6 gives a summary of the study, and also a list of potential future topics we may keep

exploring.
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Chapter 2

The Internal Instability in ILC for NMP Systems

2.1 Introduction

ILC aims to achieve zero tracking error, thus it is trying to converge to the inverse solution. The
controllers can be obtained by using the input and output data to create a model, and then invert
this model to find the amount of change that the command should produce to eliminate output
errors. Non-minimum phase digital systems have zeros outside the unit circle in their discrete time
z-transfer functions. Thus, one is likely to encounter difficulties since the inverse transfer function
is unstable. In practice, the error often seems to stop decreasing after a number of iterations. If the
process is continued until zero error is reached, the control action grows exponentially with time
steps. This also makes the intersample error grow exponentially, and its sign alternates every time

step when an NMP zero is introduced on the negative real axis.

The learning process requires the use of data from previous runs to update the command used
in the next run, and hence it must be digital using sampled data. In digital systems, there are two
types of non-minimum phase zeros. The first type is introduced during discretization for systems
with pole excess of 3 or more using a zero order hold input. The second is mapping of non-
minimum phase zeros of the original continuous time system to their discrete time image.

Following Ref. 1, we name the first type as sampling zeros and the second type as intrinsic zeros.

Reference 2 developed an understanding of how the discretization process introduces sampling
zeros in the discrete time control system transfer function, when the original continuous time

system is fed by a zero order hold input. Unfortunately, when there is a pole excess of three or
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more in the continuous time system, the z-transfer function discrete time equivalent will have at

least one zero introduced outside the unit circle for reasonable sample rates.

References 1 and 2 study the intrinsic zeros. When sampling really fast, these zeros approach
1. And if considering extreme cases when sampling frequency become slower and slower, the
intrinsic zeros go to positive infinity first and then suddenly change from positive to negative
infinity. It is not easy to connect the location of intrinsic zeros with the locations of continuous
time NMP zeros. However, when sampling time is fast, the discrete zero is approximately equal

to the exponential of the continuous time zero.

In ILC one usually looks at the finite time problem using a matrix model that includes all time
steps of a given run. Reference 3 shows that the singular value decomposition of this finite time
matrix is related to the frequency response of the discrete time system. As the dimension of the
matrix gets large, the singular values match the magnitude frequency response of the system, and
the phase change going through the system is obtained by the phase difference of the corresponding

input and output singular vectors.

To invert the system is equivalent to the inverse of the matrix. But it is normally very badly ill-
conditioned. And this ill-conditioning is the manifestation of the unstable inverse transfer function.
References 4, 5, and 6 study this behavior, among other things extracting frequency response
information from the SVD of this matrix. The frequency response result is an asymptotic result,
and for any NMP system, there will be one or more anomalous singular values. One can show that
these are associated with the zeros outside the unit circle. These unstable poles of the inverted
system make the matrix very badly ill conditioned, in spite of the fact that the matrix is analytically
guaranteed to be full rank since all eigenvalues are nonzero for a given time delay through the

system. The result is that the control action required to obtain zero tracking error at each time step
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requires control action that grows exponentially with time. The inverse model produces zero error
at every sample time, but the exponentially growing control action magnitudes produce error

between sample times that grow exponentially with time step.

This chapter investigates the internal instability of ILC when applied to digital systems with
non-minimum phase zeros. We look at the two types of NMP zeros separately. For each type, we
look at the instability problem from the perspective of poles and zeros, and then from the analysis

of the singular values and vectors.

2.2 Statement of the Learning Control Problem

Consider a single-input, single-output (SISO) system of the general form

x(k+1)=Ax(k)+ Bu(k) k=0,1,2,---,p—1

(2-1)
y(k)=Cx(k)+v(k) k=1,2,---,p

which can be the dynamics of closed loop control system. The v(k) represents any disturbances

which occur every trial run appearing anywhere in the control loop, and written in terms of the

equivalent disturbance on the output. The u(k) is the input to the control system which is to be
adjusted in the learning process, aiming to converge to the input that produces the desired output.

The desired trajectory y,(k) is p steps long. Each iteration, also called run or repetition, is
considered to start from the same initial condition x(0). We define vectors giving the whole

history of the input and output for the j repetition as
u, =[0,0) w,() - w(p-D (2-2)

y,=ly;® y,@ - y@I (2-3)
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And we also define the desired output history Y, the error history ¢, = Y=Y, and the

disturbance history v analogous to Eq. (2-3). One can write the convolution sum solution of Eq.

(2-1) for any time step, and the solution history, and the error history, for any run j as follows

y(k) = CA*x(0) + kzll CA*""'Bu(i) +v(k) (2-4)

i=0

Y, = Pu, + Ax(0)+v

_ (2-5)
e, =—Pu;+(y, —Ax(0)-y)=—Pu,+ f
where
[ CB 0 0 e 0] [ CA |
CAB CB 0 e 0 cA’
P=| CA*B  CAB CB . 0| ; A=|c4 (2-6)
| CA”™'B CA"™™B CA"B --- CB] | CA” |

Define a backward difference operator in iterations for any variable =z(k) by
6,2(k)=z;(k)—z, (k). Then we can write relationships for the change in input history to the

resulting change in output history, and to the resulting change in the error history

0.y=Po.u

JZ Jj= ?

0,e=—Pou (2-7)

The initial conditions and the disturbances are assumed to be the same in every repetition, making

6,x(0)=0, J,v(k) =0. We assume that there is a one time step delay going from input to output

in Eq. (2-1), which implies that the scalar CB # 0. Therefore, all eigenvalues are equal to CB and

matrix P is guaranteed to be nonsingular. Simple modifications handle the case when CB is zero.
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A general linear ILC law takes the form

uj,=u;+Le; or o, u=1Le, (2-8)

where L is the learning gain matrix. Combining this with the second of Eq. (2-7) produces an
equation for the error from iteration to iteration
¢, =(U—-PL)e, (2-9)

One seeks learning gain matrices L that make the magnitude of the largest eigenvalue of 7 — PL
less than one, for convergence to zero error, and one would like to have the largest singular value
less than one for monotonic convergence of the Euclidean norm of the error.

Three basic learning laws are often used in our simulation

(1) Contraction Mapping Law (Reference 7): This is a contraction mapping of the Euclidean
norm of the tracking error from iteration to iteration. It is also referred as P transpose law. The

matrix L in Eq. (2-8) is given as

L=¢P" (2-10)

(2) Partial Isometry Law (Reference 8): High frequency components of the error can converge
slowly when using the contraction mapping law. Faster convergence can be obtained using the
partial isometry law. Denote the singular value decomposition (SVD) of P by P =USV", where
columns and rows of U and V are orthonormal unit vectors of dimension p . Thus the inverse of U

and V are equal to their transpose. The partial isometry law is
L=gvU’ (2-11)

(3) Quadratic Cost Law (Reference 9): This control law is designed by minimizing a quadratic

cost function

J. =" +r8., u' S, u (2-12)

Jj+l = j+1€j+1 jHIZ= i+l
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The 7 is a scalar gain which controls the speed of convergence from iteration to iteration.

Differentiating J with respect to u, gives

L=(P"P+rl)'P" (2-13)

2.3 Internal Instability Due to Sampling Zeros

First, we consider NMP system with only sampling zeros. These zeros are introduced during
discretization using a zero order hold. They move away from the unit circle towards asymptotical
locations when sampling faster, and approach -1 when sampling slower. If sampling really slow,
all extra zeros will go inside the unit circle. For reasonable sample rates, the pole excess determines
the number of unstable poles in the discrete time inverse model. We study the behavior of the
singular values of the Toeplitz matrix P as a function of pole excess, and also the associated

singular vectors.

2.3.1 Models Used to Investigate Behavior of Different Pole Excess

The following continuous time systems are used to generate the discrete-time systems which
contain NMP sampling zeros. These transfer functions have no zeros in continuous time, and the

subscript is the system order and the pole excess.

2
2

G (s)= S— G, (s) = =5 Gy(5) = G,(5)G, (5)

+a’ s>+ 2L w5+ o,
G,(s)-w,’
s*+24,0,5 + o,

G,(s)- w32
s*+ 20,08 + @,

G,(s)= =5 G5(5) =G, (5)G,(5); Gg(s)=

2-14
Gﬁ(S)'a)42 ( :

§*+24,0,5+ o,

G’/(S):G](S)G@(S); Gg(s): 75 Gq(s):Gl(s)Gg(s)

GS(S)‘C‘)SZ

G, (s)=
0(s) s* + 24 w55 + o

7> G,,(5) = G, (5)Gg(s)
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The constants are a=8.8,4,=¢,=¢,=¢,=¢,=05,0,,0,,0,,0,,o, equal 37, 125.7, 62.8,
94.2 and 157.1 rad/sec, approximately 6, 20, 10, 15, and 25 Hz. Note that these frequencies

increase monotonically except for o, .

2.3.2 The Ill-posedness of the ILC Inverse Problem (Poles and Zeros)

To illustrate the instability of the inverse problem addressed by ILC, consider the third order
model presented in previous section. Then there is an equivalent discrete time z-transfer function

G(2)

2

G(S):( a j( @, };G(z): bz’ +bz+bh, (2-15)

s+a )\ s*+28wos + ] 2 +a,z’ +az+a,

where a=8.8, £ =0.5, @, =37. The discrete time equivalent difference equation relating input

to output has the form
y(k+3)+a,y(k+2)+ay(k+1)+a,y(k)=bu(k+2)+bu(k +1)+byu(k) (2-16)

On the right hand side, two zeros have been introduced from the discretization process. When a
differential equation is fed by a zero order hold, a change in the input at one time step will produce
a resulting change seen for the first time in the output at the next sample time step, i.e. there is a
one time-step delay in the discrete time model. This implies that the most recent time step on the
right hand side of Eq. (2-16) must be one step behind the most recent time step on the left hand
side. Hence, generically an n'" order differential equation converted to discrete time will have n—1
zeros. These contain images of any zeros in the original differential equation, and the rest are
introduced by the discretization. The number of original poles minus original zeros is termed the

pole excess of the transfer function of the differential equation, and generically the pole excess of
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the discrete time transfer function is unity. (The one time step delay applies unless the differential
equation has the same number of zeros as poles which is close to being non-physical, or if the
sample time is so slow that the unit pulse response output happens to be going through zero at the

next sample time, i.e. CB=0.)

An iterative learning control law aims to converge to the input history needed to produce the
desired output history. Once it has converged, looking at Eq. (2-16), the solution can be viewed as
follows. One substitutes the desired output into the left hand side, and then one need to solve for
the input sequence u(k) that will satisfy the equation. The left hand side has now become a forcing
function, and we need to solve the resulting nonhomogeneous difference equation. The solution

contains a particular solution, and the solution of the associated homogeneous equation whose
characteristic polynomial is b,z* +bz+b, =0, the polynomial of the zeros of the z-transfer
function. If the zeros are 7;,r,, then the solution for u(k) contains C,(r,)" +C,(r,)", where the
arbitrary constants are determined by the initial conditions.

Reference 2 develops the asymptotic locations of the roots introduced in the discretization as
the sample time interval 7 tends to zero, as a function of the pole excess in the original Laplace
transfer function, i.e. the number of poles minus the number of zeros. These are presented in Table
1-1. They are all on the negative real axis (corresponding to Nyquist frequency). Odd pole excesses
introduce an even number of zeros, half of which are inside the unit circle and the other half are

outside the unit circle, located at the reciprocals of those inside. Even pole excesses introduce an

odd number of zeros, and this extra one is asymptotically located at -1.

For pole excess of 3 as in Eq. (2-15) the asymptotic locations for 7,7, are -3.7321 and -1/3.7321

(the sample rate has to be below 10 Hz to have the outside zero move inside the unit circle, too
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slow for reasonable control of the system). The u(k) is a solution of an unstable difference

equation with one solution growing exponentially with time step, but alternating sign every time
step, and it will dominate the solution after a few time steps. For dramatic impact, imagine the
solution for pole excess of 7 sampled at 1000 Hz, that would contain an arbitrary constant based
on initial conditions times -109.305 to the 1000™ power at the end of one second. Note also, for
every zero outside the unit circle, the asymptotic locations contain corresponding zeros inside the

unit circle at the reciprocal location.

Table 1-1. Asymptotic zero locations outside and on the unit circle.

Pole Excess Zero Locations

2 -1.0000
3 -3.7321

4 -9.8990, -1.0000
5 -23.2039, -2.3225
6 -51.2184, -4.5419, -1.0000
7

8

9

-109.3052, -8.1596, -1.8682
-228.5110, -13.9566, -3.1377, -1.0000
-471.4075, -23.1360, -4.9566, -1.6447
10 -963.8545, -37.5415, -7.5306, -2.5155, -1.0000
11 -1958.6431, -59.9893, -11.1409, -3.6740, -1.5123

There is a mathematical solution that achieves zero tracking error at every sample time, but the
control action grows exponentially and alternates in sign every time step (because the dominant
solution is a negative number to the & power). The fact that the control action grows exponentially
at the above rate means that the solution is impractical in the sense that the actuator will hit

saturation after not that many steps. But it fails to be a solution of the intended problem in a more
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serious way. The exponential growth with alternating sign makes the system move in opposite
directions between one pair of time steps and the next pair, at an accelerating rate. At every sample
time, the error is going through zero, but between sample times the tracking error is growing
exponentially. Thus, the ILC problem is an ill-posed problem whose solution fails to address the
intended problem, for any system with a pole excess of 3 or more, fed by a zero order hold, and

with a fast enough sampling rate.

Considering the same third order system sampled at 100 Hz, the left plot in Figure 2-1 shows
the control action for the first 20 time steps, on a logarithmic plot. One can see that the control
action grows to around 10'° and changes sign every time step after only 20 time steps. The right
plot shows the zero error for time step 11 to 20 marked with asterisk, and shows the growth of the

error between these time steps, which reaches 10° in magnitude.

5
10 15 w10
o -
= 5 10
O
n e
= o
3 ° g S
5
n "o | | 0
-10 -9
0 5 10 15 20 11 12 13 14 15 16 17 18 19 20
Index of time step Index of time step

Figure 2-1. The intersample error vs. time step and the control action on a logarithmic
scale using the inverse solution with only one zero order hold between addressed time steps.

2.3.3 Comments on the Singular Values and Singular Vectors of P Matrix

ILC uses a matrix model to represent the system dynamics as shown in Eq. (2-6). Reference 3
provides some insight concerning the meaning of the singular values and the singular vectors of

the Toeplitz matrix P. We sketch the development given in that reference. Consider Eq. (2-5) with
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the initial condition set to zero and the disturbance set to zero, y = Pu . This represents the

convolution sum solution for each time step from Eq. (2-4), which is also the output obtained from
the transfer function times the input, which automatically assumes zero initial conditions and no
disturbance. We can take the discrete Fourier transform (DFT) of the input and output history as

U=Hu and Y = Hy where

GG @

1,0 N1 1y=(p-1)
ne| B G T H' =/ pHY' z,=e" ,=Qxlp) (2-17)

(Zp—l)O (Zp—l)—l (Zp—l)—(p—l)
The p is the number of entries in the column vector histories, and superscript asterisk indicates
complex conjugate. Then we apply this to y = Pu obtaining Y = (HPH U = (I:IPI:I YU =EU

where H = {1/ \/;)H and H' = (I:I *)" contains normalized columns and rows. Therefore, the

frequency components of the input and output histories are related by

Y=EU E=HPH*' (2-18)
P=(H""EH (2-19)

In the limit as p tends to infinity, Eq. (2-18) tends to the steady state frequency response of the
system. The DFT frequency response Y e"“"* = G(e"“\U & = M U """ is given in
terms of complex exponential inputs, and to get the sine and cosine response one adds or subtracts
the complex conjugate responses. The G is the discrete time z-transfer function G(z) with

magnitude and phase responses as shown for the discrete frequencies observed in the finite number
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p of data points. In the limit, a single frequency input results in a single frequency output with the

amplitude and phase change of G(z), so we can know the value of £
E =diag(M e, M",...M, ") (2-20)

One can now eliminate complex functions since P is a real matrix, with the result that the singular
value decomposition P =USV" becomes the frequency response of the system, with S containing

the magnitude response M, , the singular vectors converging to sinusoids, with the phase change
0, through the system being the result of the phase difference between the input singular vectors

in ¥ and the output singular vectors in U.

For large p, this development suggests that each singular value will be related to a specific
frequency, and which frequency can be determined by doing a DFT of the associated singular
vectors. If the frequency response of the system is monotonic, then the monotonic descent of the
singular values produced by a singular value decomposition routine exhibit the same order as the
discrete set of frequencies visible in p steps. Otherwise some reordering can be needed. Note that
in the limit there will be two singular values for each frequency, since the space associated with

one frequency needs two functions like sine and cosine to span the space.

This thinking can apply for large p when essentially everything considered is steady state.
However, our P is a finite time and must also represent finite time phenomena. Viewed in terms
of transfer functions, the inverse system is governed by the reciprocal of the transfer function
whose poles are the original zeros and hence unstable. Viewed in terms of Eq. (2-16) whose
solution to get zero error in the next run requires the inverse of matrix P, this matrix must be ill

conditioned. We study this below.
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2.3.4 Anomalous Singular Values and Singular Vectors of Full Toeplitz Matrix P

The analysis given above indicates that the singular values of matrix P match the steady state
magnitude frequency response of the system as the number of time steps in the trajectory p tends
to infinity, i.e. the dimension of P goes to infinity. We will see that this relationship remains close
for rather short trajectories as well (Reference 4). However, for pole excesses of 3 or more there
are one or more singular values that do not lie near the frequency response curve, and we call these
anomalous or ‘bad’ singular values of P. These singular values make P ill conditioned, and make
the zero tracking error solution at every time step not usable. This section examines these

anomalous singular values and associated singular vectors for the full matrix P.

The Number of Anomalous Singular Values

Figures 2-2 and 2-3 consider systems with pole excess of 3 up to 10 using the models in Eq. (2-
14) fed by a zero order hold sampling at 100 Hz, Nyquist frequency is 50 Hz, and the P matrices
are square 50 by 50 matrices. There are 50 singular values most of which correspond to discrete
frequencies that can be observed in 50 time steps of data. With this even number of time steps, the
DFT computation in Egs. (2-17) to (2-20) will produce a single singular value that must map to
DC as the matrix gets large, 2 singular values that become associated with each individual
frequency between zero and Nyquist (48 such evenly spaced frequencies in this case) as the matrix
size increases, and one singular value related to Nyquist frequency. Provided the magnitude
frequency response is monotonically decreasing (it is not completely true for the systems in Eq.
(2-14), but nearly so), the singular values follow the frequency response curve. This gives the
mapping of singular values to frequencies in Hz that becomes more exact as the matrix size
increases. If it is not monotonic, Reference 3 tells one to do a DFT of the associated singular

vectors to know the appropriate frequency. The singular vectors may show an isolated peak for
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one singular value, alternating with a peak having two discrete frequencies in it, but in the limit
there must be two identical singular values for each frequency, and the mixed case must disappear.
Figures 2-2 and 2-3 show the frequency response curve as a solid line, and asterisks are used for
each singular value. We see that the singular values lie essentially on top of the magnitude response
curve, except for the few anomalous smallest singular values. For systems of pole excess of three
or more, at least one anomalous singular value appears, and the number of such particularly small
singular values for various pole excesses is shown in the third column of Table 1-2, the numbers

are equal to the number of zeros outside the unit circle.
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Figure 2-2. Singular Values and Magnitude Frequency Response (pole excesses of 3, 4, 5,
and 6)
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Figure 2-3. Singular Values and Magnitude Frequency Response (pole excesses of 7, 8, 9,
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and 10)

Table 1-2. Number of Particularly Small Singular Values

Pole excess Number of zeros Number of anomalous
outside the unit circle singular values
2 0
3 1 1
4 1 1
5 2 2
6 2 2
7 3 3
8 3 3
9 4 4
10 4 4
11 5 5
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The Anomalous Singular Values as a Function of Dimension of P

We comment that ILC often pushes the limits of numerical computation, and the MATLAB
algorithm used to compute the singular values given above is often unable to give correct values.
For example, looking at the bottom of Figure 2-3 it appears that there are 3 equal singular values,
but this is most likely not the case. Figure 2-4 looks at the anomalous singular value for the 3™
order model as a function of matrix size p using sample time 7 = 0.02. After about p = 35 the
singular value stops decaying and becomes numerical noise somewhere between -300 and -400
dB. One can extrapolate this curve to estimate the true value. For a 50 time step problem at 50 Hz
sample rate, extrapolating to p = 50, produces a smallest singular value roughly equal to -500 in
dB corresponding to 10 to the -25 power. Of course, this indicates a very ill conditioned matrix,
but nevertheless the lower triangular matrix is analytically guaranteed to be full rank since all

eigenvalues are CB #0.

-100

-200

dB

-300

———— smallest s.v.

-400 — 1/(2.9028)°
————— second smallest s.v.

-500 I I I I
0 10 20 30 40 50

Figure 2-4. Smallest and Next to Smallest Singular Value vs. Size of P.

Also shown in Figure 2-4 is a solid line corresponding to the value of the magnitude of the
reciprocal of the “unstable” zero location for this system, taken to a power equal to the size of the

matrix P. This is the root that asymptotically reaches -3.7321 as sample time interval 7 tends to

27



zero. It equals —2.9028 for the S0Hz sample rate. We see that the slope matches the slope of the
smallest singular value. This demonstrates that the anomalous singular values are associated with
the zeros outside the unit circle in the discrete time transfer function introduced using a zero order

hold input, in this case the right hand side of Eq. (2-16).

The Input and Output Anomalous Singular Vectors

If one examines the right and left singular vectors associated with singular values related to the
magnitude frequency response curve, they resemble sinusoids. Now we examine the singular
vectors associated with the anomalous singular values. Figure 2-5 considers the same third order
system, left plot for the 50 components of the output singular vector in U associated with the one
anomalous singular value, and the right plot shows the components of the corresponding input

singular vector in V.
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Figure 2-5. Magnitudes of the Components of Last Output and Input Singular Vectors.
Also shown, Magnitudes of Reciprocal of Zero Location and Zero Location to the k™ Power
(pole excess of 3)

The dashed line represents the absolute value of the zero location outside the unit circle and its
reciprocal each taken to the power & equal to the time step, or row number. The slope of the output

singular vector equals the absolute value of (-1/2.9028)*, and the slope of the input singular vector
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equals the absolute value of (-2.9028). These produce straight line slopes on the dB scales. Again

we see that the numerical computation is unable to compute all of the components of these vectors

accurately when these values are too small. It appears counterintuitive that a big error at the

beginning of a trajectory equal to the output singular vector, requires an input of the form of the

corresponding input singular vector. In other words, to correct an error at the beginning requires

control action that is very large at the final step. But this is a result of the instability of the inverse

system.
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Figure 2-6. Top left, magnitudes of the last three output singular vector components for 100
by 100 P matrix for 7% order model. Top right, solid line is magnitude of last output
singular vector components for 10 by 10, 20 by 20, and 100 by 100 P matrices. Also shown
are slopes associated with zeros outside unit circle. Bottom plots are corresponding plots
for input singular vectors.
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Now consider a larger pole excess so that there are several anomalous singular values. Based
on the result in Figure 2-5, one expects that there will be a different slope for the absolute values
of the singular vector components for each singular value, and each corresponds to one of the zeros
outside the unit circle. Initially we have trouble observing this. Consider the seventh order system,
sampling at 0.01 sec, there are three zeros outside the unit circle, which are equal to -1.3528, -
5.7910, and -77.8752. Figure 2-3 shows that the last two singular values are computationally
almost the same. The top left plot in Figure 2-6 shows the absolute values of the components of
the three singular vectors associated with the three smallest singular values. Unexpectedly, all
these curves are almost identical in terms of slope and the slope corresponds to the absolute value
of (-1/1.3528) taken to the k™ power shown as a dotted line. To investigate this phenomenon, the
top right of Figure 2-6 makes a plot of the magnitudes of the components vs. time step for the
output singular vector associated with the smallest singular value, for three different size P
matrices, 10 by 10, 20 by 20, and 100 by 100. The plot shows all three expected slopes associated
with three zeros outside the unit circle as dotted lines. When p is 10, the smallest singular value
has an output singular vector with slope related to the decay of (1/77.8752) associated with the
zero furthest outside the unit circle. When p is 20 the steepest slope is no longer present and the
last output singular vector exhibits the slope associated with the zero -5.7910, and when p is 100
the singular vector for the smallest singular value has the slope associated with the zero at -1.3528.
One expects that the numerical algorithms are not capable of correctly computing the actual
smallest singular values, and associated singular vectors. The bottom of Figure 2-6 gives the

corresponding figures for the input singular vectors.
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2.4 Internal Instability Due to Intrinsic Zeros
Intrinsic zeros are images of the original continuous time NMP zeros. It is not practical to use
a set of models to generalize this type of NMP system. Thus, here we demonstrate the instability

problem consider a simple system with one zero at 0.8 in continuous-time

0.8—s
(s+1.6)(s+0.5)

(2-21)

when sampled at 10 Hz using a zero order hold, there is a discrete time zero located at z = 1.0835.
Following the same analysis for sampling zeros, the inverse solution in this case contains an
exponentially growing term which is equal to a constant multiplied by (1.0835), and & reaches the
total time steps in the desired trajectory.

As shown in Fig. 2-7, the left plot is the control action, it grows to nearly magnitude 6000 in
100 time steps, and the right plot is the error if using this inverse solution. The error for all time
from time step 91 to time step 100 is shown in the plot. The errors at the sampled time steps are

zero, but the error between sampled times grows exponentially from step to step.
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Figure 2-7. Control action (left) and error (right) if using inverse solution for system
with intrinsic zeros

The left plot in Fig. 2-8 shows the singular values of a 100 by 100 P matrix, there is one bad

singular value at around 10™*. The associated singular vectors are shown in the right plot, one can
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observe the same behavior as for the sampling zeros, the output singular vector decays
exponentially and the input singular vector grows exponentially. Figure 2-9 shows the same
behavior as we observed in sampling zeros. The anomalous singular value get worse as the size of
the P matrix increases, decreasing by a factor of the reciprocal of the zero location magnitude for
each unit increase in dimension (solid line). This suggests that the anomalous singular value is

related to the NMP zero.
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Figure 2-8. Singular values (left), and singular vectors associated with the bad singular
value (right)
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Figure 2-9. Magnitude of the anomalous singular value vs length of trajectory
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2.5 What Happens in the Real World?

However, in the real world, one usually won’t see this instability of the control action needed
for zero error at the sample times. What one usually observes is that the error seems to stop
improving, and appears as if it has converged to a non-zero and disappointing level. An example
is shown in Fig. 2-10. Consider the same 3™ order system in Eq. (2-15) sampled at 100 Hz. Assume
the desired output is 1—cos(2z¢) and the disturbances and initial conditions are zero. Given the
desired output as the command in the first iteration, we use the P transpose law and perform 10,000
iterations. The left plot is the root mean square (RMS) error for each iteration, versus iteration
number. It decays very fast in the first few iterations and then stops at around 10~*. The right plot
gives the control action vs. time step in the last iteration. Except for some wiggles at the beginning

and at the end, the control action is well behaved.
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Figure 2-10. The RMS error in different iterations (left) and the control action in the
10,000" iteration (right)

Figure 2-11 gives the same simulation result for system in Eq.(2-21) sampled at 10 Hz. One
can see the decay of the RMS error with iterations for 1000 iterations, and the RMS error seems

to stop decaying after it reaches RMS error equal one. The input time history at iteration 1000 is
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given in the right plot of the figure. No internal instability is visible within the first 1000 iterations,

but the error seems to have stopped converging.
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Figure 2-11. RMS error in different iterations (left) and the control action in the 1000th
iteration (right)

It is of interest to examine how the particularly small singular value influences the performance

of an iterative learning control law. Consider the quadratic cost ILC law in Eq. (2-13). Denote the

singular value decomposition of matrix P by
P=USV" (2-22)
U:[ﬁl i, - g] V:[Vl v, ‘7] (2-23)

and S is the square diagonal matrix of singular values. We will look at only the behavior associated
with the smallest singular value. Totally analogous equations apply to other small singular values
when there is more than one zero outside the unit circle introduced by the discretization. The

vectors u, and v, are the singular vectors associated with the smallest singular value in the
bottom right corner of the matrix S, denoted o, . Convert the error vector to a new set of
coordinates using the orthonormal basis functions in U, i.e.let &, =U" e ;- Then the component of

. . . . . =T
the error that is in the part of the space associated with the small singular value is €;,(p)=1u, ¢,
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where the argument p indicates the p™ component, and P is a p by p matrix. For simplicity, let the

ILC start up conditions be u, =0, so that Y= 0 and ¢, = y,-In these coordinates Eq. (2-13)

becomes
&, =[1-S(S* +11)" S, (2-24)

and the initial error &,(p) in the part of error space under study, evolves with iterations according

to
&; (p)= RQng—l (p)= Récgo(p) 5 RQC = r/(o'jn‘n +r)=[1+ (O-élin /r)]_l (2-25)

Now consider the change in the control actions with iterations for this part of the error space. Use

the singular value decomposition in Eq. (2-13), and apply the result to Eq. (2-8) to produce
Up=u; +[Oin /(O-riin + r)]gj (p)vp 5 € (p)= RQng—l (p)= Rgfcgo(p) (2-26)

The input at iteration j =N is

Uy =[O | (O + 1)1 (PN Rge + Roe +++++ Ry I,
=[O in / (Tin +1)1E (DAL= RY:) / (1= Ry, (2-27)

- L iR (o7,
o

min

Note that for N =1 the factors multiplying &,(p)v, are approximately o,,, /7 so the control

action starts with a very small amplitude for this part of the space. But eventually it converges to

1 —
u, =——&(p)v, (2-28)
o

min
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If we say that the smallest singular value is 10™° (consider the case in Fig. 2-4 when p is 100), this

could require a control action of the size 10™° times the initial error to be corrected in this part of

the error space.

Let us examine the learning rate in Eqgs. (2-25) and (2-27). From Eq. (2-25), after N iterations,

the initial error component in this part of the space has been decreased by the factor

[1+ (o

min

/MY =1-N(c?

min

/r)+---. A rough estimate of how many iterations N are needed to
learn could be made by finding when the second term on the right is of the same order of magnitude

as the initial unity term, and this happens when N ~ (1/ o

. )r. If the true o, is something like

10", then we need to have N equal something like 10" r . Using any reasonable value for 7 in the

cost functional, this is truly an astronomical number of iterations needed to accomplish any

significant learning in this part of the space.

The analysis of the convergence speed for Eq. (2-27) is similar. Denote (. /7) by a . Then

the coefficient on the right of Eq. (2-27) multiplying the initial error, after using the same

expansion as above, is (1/o, )1-(1+a) "]~ No, /r. In order for u, to make a significant

change in the output for error in this part of the space, it has to be of the magnitude of (1/0,; ),

this magnitude can then be associated with having (1/ o,

min

)~ No,

min

/r. This produces the same
astronomical number for N.

Normally, one cannot use unstable control systems in practical applications. This is equally true
when the instability is an internal instability, as in this case in which the control action magnitude

grows exponentially with time step according to the reciprocal of the zero location to the power of

the time step. The fact that we are only interested in finite time trajectories can only help if the
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number of time steps in the trajectory is very small. The irony is that in application of ILC laws
designed to get zero tracking error, there is this internal instability, and nevertheless the laws
significantly reduce the error, and no difficulty is encountered related to the internal instability. Of
course, the reason is that no one ever does 10'” iterations in hardware. If the singular value is
sufficiently small, then the real world behavior for a reasonable value of N is that nothing

significant has been accomplished in eliminating error in this u, part of the error space, one feels

like the iterative process has finished its convergence, but one is perhaps disappointed in the final
error level. One often wonders, why did the ILC law not make more progress in eliminating the
tracking error? After enough iterations N to make the error negligible associated with all singular
values but the smallest one, and for an N that has made no significant progress in eliminating the

error associated with the smallest singular value, the Euclidean norm of what appears to be the

final error level will be ||g|| = |g( p)| = HLT pT ¢, 1.e. the initial error in the part of the space that did

not learn yet. Even though this is only one component of the error out of p components, where p
is the number of time steps in the desired trajectory, this error is not necessarily particularly small.
This behavior can be disappointing when one knows there is a rigorous mathematical proof that

the error converges to zero.

An additional irony is that perhaps in real hardware, there is no internal instability, that one
would not observe the instability even if one could perform 10'* iterations. The corrective update
in Eq. (2-26) on any given iteration can be extremely small. If it is so small that the update is
beyond the last digit in the digital to analog and analog to digital converters in the hardware, then
no accumulation of corrective signal is possible as the iterations progress. The control action in
this part of the space is then never updated. The finite word length of the converters has stabilized

the internal instability.
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These comments indicate that in practice, the application of ILC laws are mathematically very
often subject to this internal instability, but that one never observes the phenomenon. And what
one does observe is that the error in all other parts of the space goes to zero, and one is left with
the error one had initially in the part of the space associated with the small singular value. This

error is
&(p)=1u, e, (2-29)

The ILC user considers this the final error level achieved and may wonder why it is not closer
to zero. In simulations, when other parts of the space go to a numerical zero like 107", this slowly

learning component of the error can make the final error level appear to stop improving at numbers

such as 107 as shown in Fig. 2-10.

2.6 Conclusions

This section studies the instability of the ILC inverse problem. It is shown that if the system has
non-minimum phase zeros, ILC tries to converge to an inverse solution that is unstable. The control
action and intersample error both grow exponentially. We study this phenomenon from two

perspectives.

First, we look at the poles and zeros. When inverting the system, the NMP zeros become
unstable poles. Given a desired output, one can find the desired input by solving the difference
equation. However, because there are unstable poles in the inverse system, the homogeneous
solution has a growing term(s) that will not decay with time. We then examine the singular values
and singular vectors of the system matrix P. It is shown that the inverse of this matrix is ill-
conditioned. There are some anomalous singular values and singular vectors that do not possess

the frequency response information of the system.
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In practice, one may not see the growing control action. It is very likely that when ILC is applied,
the error decays very fast in a few iterations and then stops as if the learning has been finished.
The reason why the instability of the non-minimum phase zeros cannot be observed is due to the
fact that: 1) The error update at each iteration is so small that many more iterations are required
before the error component on the output singular vector associated with the bad singular value
will become small. 2) For digital systems with D/A and A/D converters, the error updates can be
so small that the update may be beyond the last digits of these converters, and so the corrective

action for the error in this part of the space cannot accumulate.

Thus, the aim here is to not only eliminate the internal instability, so that the intersample error
does not have an exponential growth, but also to succeed in making the error in this part of the

space go to zero. In later chapters, we will introduce a new design that can achieve this goal.
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Chapter 3
Eliminate the Internal Instability in ILC Due to Sampling Zeros

Using Multiple Zero Order Holds

3.1 Introduction

The original mathematical problem statement asks to produce zero error at every time step by
adjusting the zero order hold input each time step. But eventually we discover that this solution
does not address the intended physical problem that caused one to ask for zero tracking error at
sample times. First, the solution asks for control action whose magnitude grows exponentially with
time step and in rather few time steps one reaches actuator limits and cannot be implemented in
hardware. If the NMP zeros are on the negative real axis, the control action alternates in sign each
time step, so that at each sample time, the error can be zero, but the exponential growth of control
action produces peak errors between time steps that grow exponentially. Hence, the second issue
is, even if it were possible to implement the control producing zero error at sample times, the error
between sample times grows exponentially. That does not address the original physical objective

of obtaining little or no tracking error.

Reference 1 suggests that using an interpolating hold might solve the problem, and it does for
a small class of problems, but it does not solve the problem in general. Reference 2 compares the
phase-lead ILC with D-type and P-type ILC for NMP systems. It suggests that phase-lead ILC
outperforms D-type and P-type ILC, and performance can be maximized by using a carefully
selected filter to eliminate the influence of unstable frequencies. Reference 3 uses the phase-lead

based reference shift algorithm that can shift the reference from iteration to iteration. The
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experimental results demonstrate that this approach can achieve faster convergence speed and

smaller final error level for a finite number of iterations.

Reference 4 models the influence of NMP zeros in the application of Norm Optimal ILC. The
slow learning phenomenon is explained by introducing a model which predicts the error level at
which it seems to stop improving. It suggests this error level can be small if the initial error is small
in norm or small in some time interval.

Stable inversion presented by Paden in Ref. 5, was implemented to non-linear NMP systems,
aiming to produce stable non-causal inverse mapping between command and output. Many
researchers try to use the stable inversion in the context of ILC. Reference 6 studies the relationship
of adjoint-type ILC and stable inversion. Reference 7 designs a new inversion-based algorithm
which works for both minimum and non-minimum phase systems with gain and time-constant
uncertainty.

This chapter studies a different approach. Instead of using a single zero order hold throughout
each time step, we allow the zero order control action to be updated multiple times within each
time step. This makes a kind of generalized hold, and it implies that there is no unique answer to
the inverse problem. We wish to examine to what extent this can be used to eliminate instability

of the inverse model.

We also consider using a cost function that asks for zero error at each time step, and
simultaneously minimizes a quadratic function of the tracking error and the control action for each
of the introduced intermediate steps. If no limit is placed on the control action it will just be the
same unstable inverse solution at the fast sample rate. But if the penalty is chosen well, the
exponential growth of magnitude of the control is eliminated, and one can also aim for improved

tracking at the intermediate points.
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Here we focus on applying the multiple zero order holds approach in eliminating the internal
instability due to sampling zeros (NMP zeros introduced during discretization). In the next Chapter,

we will extend its use to NMP system with intrinsic zeros.

3.2 Multiple Zero Order Hold ILC
When a normal zero order hold is applied, there is only one scalar quantity at each time step

that can be used to adjust the output at the end of the time step. Given any initial run input-output

pair u,, Y, with output error ¢,, the needed change in the input to produce the desired output is

unique and given by su = —P 'Se = P 'e,. And this solution has the ill-conditioning as discussed

before. The concept that we want to investigate is to allow more zero order hold values between
the time steps for which one asks for zero error. For example, in the numerical results below we
ask for zero error every time step running at S0Hz sample rate, but we update the control action at
200Hz sample rate, thus allowing four zero order hold values to be used to adjust the error at the
next S0Hz sample time. One can think of this as a form of generalized hold. For purposes of
illustration below, consider that the trajectory is one second long, or 200 time steps at 200Hz. The

question is whether having this extra freedom can bypass the ill-conditioning problem.

In this section we investigate the ILC problem where we aim to converge to zero error for every
time step associated with the slower sample rate, we call these the addressed time steps. And for
the fast time steps between these addressed steps we ask that the error be the result of a compromise
between zero error and the size of the control action. This allows us to try to get small error at
these points while the penalty on the size of the control action can prevent exponential growth of

the control action magnitudes. The hope is:

(1) To converge to zero error at the slow steps.
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(2) This includes converging to zero error at a reasonable rate for what used to be the part of

the space that took astronomically long to learn.
(3) At the same time we want to eliminate the internal instability in the control action.
(4) And we want to get relatively small error between the addressed time steps.

To generate the mathematics needed for this ILC law, we rewrite Eq. (2-7) in Chapter 2 in the

5jya Pa 5j€a
= ou=- (3-1)
5y, | LG 98,

This starts with the P matrix including all time steps. Using the example values given above, it is

following form

a 200 by 200 matrix, and the 4" time step, and every integer multiple of 4 time steps, is an

addressed time step. These are collected in the output vector v, with the corresponding output

error e,. The associated rows of P are collected to form P, . The time steps that are not addressed

are collected to form the corresponding y , e,, and £, . For the example numbers used here, F,

no

is a 50 by 200 matrix, and P, is a 150 by 200 matrix. Form the singular value decomposition
P, =U,S, O, partition ¥/ into an upper part ¥, and lower part ¥, to match with the

partitions of [S, 0]. Define u = v u,,sothat u, =V, e and again partition “, into upper part

Ky and lower part = Then
u;= Va,lﬁl,j + Va,zﬁz,j 5./21 - Va,lé‘.fﬁl + VLIJ&/EZ (3-2)

Opp, =V, ' Opu 6,1, =V, 5;u (3-3)
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T

V
éiya :_5j€a =Pa5j£=Ua[Sa 0]|: al :|5jZ:UaSa5j£1 (3-4)

T
= Va,Z

Note that the control space has been portioned into two parts. The part associated with # is the

only part that influences the errors at the addressed points. At the same time it influences the errors

at the unaddressed time steps. The part associated with 4 represents the remaining freedom.

Anything done in this part of the space will not influence the addressed points, and we can
independently pick it to influence the errors at the unaddressed points. Of course, we should not
ask for zero error since this just produces the P inverse solution at the faster sample rate, so we

can consider a compromise between error and size of control action for this part of the space.

Considering the third system in Eq. (2-15) presented in Chapter 2, Figure 3-1 gives the singular

values of matrix P which 1s a matrix of dimension 50 by 200. The fact that the singular values

are now well behaved means that the process of introducing 3 extra zero order hold values between
addressed time steps solved the ill conditioning problem, and it is now reasonable to expect all
parts of the error space for addressed points to go to zero with iterations. When zero error was
requested for all time steps, there was a unique answer for the change in the input needed from the
initial input, to produce the needed change in th