Academic Commons

Theses Doctoral

New Constraints on Extensional Environments through Analysis of Teleseisms

Eilon, Zachary Cohen

We apply a variety of teleseismic methodologies to investigate the upper mantle structure in extensional environments. Using a body wave dataset collected from a regional deployment in the Woodlark Rift, Papua New Guinea, we image anisotropic velocity structure of a rapidly extending rift on the cusp of continental breakup. In the process, we develop a technique for azimuthal anisotropy tomography that is generally applicable to regions of relatively simple anisotropic structure. The Cascadia Initiative ocean bottom seismometer (OBS) deployment provides coverage of an entire oceanic plate in unprecedented detail; we measure attenuation and velocities of teleseisms to characterize the temperature and melt structure from ridge to trench.
Our study of shear wave splitting reveals strong azimuthal anisotropy within the Woodlark Rift with fairly uniform fast directions parallel to extension. This observation differs markedly from other continental rifts and resembles the pattern seen at mid-ocean ridges. This phenomenon is best explained by extension-related strain causing preferential alignment of mantle olivine. We develop a simple relationship that links total extension to predicted splitting, and show that it explains the apparent dichotomy in rifts’ anisotropy.
Finite frequency tomography using a dataset of teleseismic P- and S-wave differential travel times reveals the upper mantle velocity structure of the Woodlark Rift. A well developed slow rift axis extending >250 km along strike from the adjacent seafloor spreading centers demonstrates the removal of mantle lithosphere prior to complete crustal breakup. We argue that the majority of this rift is melt-poor, in agreement with geochemical results. A large temperature gradient arises from the juxtaposition of upwelled axial asthenosphere with a previously unidentified cold structure north of the rift that hosts well located intermediate depth earthquakes. Localization of upper mantle extension is apparent from the velocity structure of the rift axis and may result from the presence of water following recent subduction.
In order to resolve potential tradeoffs between anisotropy and velocity gradients, we develop a novel technique for the joint inversion of ∆Vs and strength of azimuthal anisotropy using teleseismic direct S-waves. This approach exploits the natural geometry of the regional tectonics and the relative consistency of observed splits; the imposed orthogonality of anisotropic structure takes care of the non-commutative nature of multi-layer splitting. Our tomographic models reveal the breakup of continental lithosphere in the anisotropy signal, as pre-existing fabric breaks apart and is replaced by upwelling asthenosphere that simultaneously advects and accrues an extension-related fabric. Accounting for anisotropy removes apparent noise in isotropic travel times and clarifies the velocity model. Taken together, our results paint a detailed and consistent picture of a highly extended continental rift.
Finally, we collect a dataset of differential travel time (δT) and attenuation (∆t*) measurements of P- and S-waves recorded on OBS stations that span the Juan de Fuca and Gorda plates. We observe large gradients in ∆t*, with values as high as 2.0 s for S-waves at the ridge axes. Such high values of differential attenuation are not compatible with a purely thermal control, nor are they consistent with focusing effects. We assert that melt, grainsize, and water enhance anelastic effects beneath the ridge. The combination of attenuation and velocity measurements enables us to place quantitative constraints on the properties of the upper mantle in the vicinity of the spreading axis.

Geographic Areas

Files

  • thumnail for Eilon_columbia_0054D_13471.pdf Eilon_columbia_0054D_13471.pdf binary/octet-stream 26.4 MB Download File

More About This Work

Academic Units
Earth and Environmental Sciences
Thesis Advisors
Abers, Geoffrey A.
Degree
Ph.D., Columbia University
Published Here
July 6, 2016
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.