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ABSTRACT 

Single Molecule Junction Conductance and Binding Geometry 

Maria Kamenetska 

 This Thesis addresses the fundamental problem of controlling transport through a metal-

organic interface by studying electronic and mechanical properties of single organic molecule-

metal junctions.  Using a Scanning Tunneling Microscope (STM) we image, probe energy-level 

alignment and perform STM-based break junction (BJ) measurements on molecules bound to a 

gold surface.  Using Scanning Tunneling Microscope-based break-junction (STM-BJ) 

techniques, we explore the effect of binding geometry on single-molecule conductance by 

varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-

nanometer manipulation control to the junction.  These experiments are performed both in 

ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures.  

 First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we 

explore binding configurations and electronic properties of an amine-terminated benzene 

derivative on gold.  We find that details of metal-molecule binding affect energy-level alignment 

at the interface.  Next, using the STM-BJ technique, we form and rupture metal-molecule-metal 

junctions ~10
4
 times to obtain conductance-vs-extension curves and extract most likely 

conductance values for each molecule. With these measurements, we demonstrated that the 

control of junction conductance is possible through a choice of metal-molecule binding 

chemistry and sub-nanometer positioning.  First, we show that molecules terminated with 

amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant 

conductance levels even as the junction is elongated and the metal-molecule attachment point is 

modified.  Such well-defined conductance is also obtained with paracyclophane molecules which 



 

 

bind to gold directly through the π system.  Next, we are able to create metal-molecule-metal 

junctions with more than one reproducible conductance signatures that can be accessed by 

changing junction geometry.  In the case of pyridine-linked molecules, conductance can be 

reliably switched between two distinct conductance states using sub-nanometer mechanical 

manipulation.  Using a methyl sulfide linker attached to an oligoene backbone, we are able to 

create a 3-nm-long molecular potentiometer, whose resistance can be tuned exponentially with 

Angstom-scale modulations in metal-molecule configuration.  These experiments points to a new 

paradigm for attaining reproducible electrical characteristics of metal-organic devices which 

involves controlling linker-metal chemistry rather than fabricating identically structured metal-

molecule interfaces.  By choosing a linker group which is either insensitive to or responds 

reproducibly to changes in metal-molecule configuration, one can design single molecule devices 

with functionality more complex than a simple resistor.  

 These ambient temperature experiments were combined with UHV conductance 

measurements performed in a commercial STM on amine-terminated benzene derivatives which 

conduct through a non-resonant tunneling mechanism, at temperatures varying from 5 to 300 

Kelvin.  Our results indicate that while amine-gold binding remains selective irrespective of 

environment, conductance is not temperature independent, in contrast to what is expected for a 

tunneling mechanism.  Furthermore, using temperature-dependent measurements in ambient 

conditions we find that HOMO-conducting amines and LUMO-conducting pyridines show 

opposite dependence of conductance on temperature.  These results indicate that energy-level 

alignment between the molecule and the electrodes changes as a result of varying electrode 

structure at different temperatures.  We find that temperature can serve as a knob with which to 

tune transport properties of single molecule-metal junctions. 
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Chapter 1: Introduction 

Why study electron transport through single molecule-metal junctions?  Because 

interfaces between dissimilar materials, such as organics and metals, exhibit properties useful for 

making electronic devices.  A molecule is by definition, the smallest piece of any given material 

and thus the smallest functional element out of which a device can be made.  The goal of single-

molecule electronics is to make devices on the scale of a single nanometer using a junction 

between an organic molecule and an electrode.   

Current information technology runs on silicon-based devices.  In the middle of the 

century solid-state physicists who studied properties of semiconductors and metals found that a 

semiconductor-metal junction can exhibit diode behavior, where the current flows in one 

direction but not the other.  This property allowed them to create a ―switch‖—otherwise known 

as a transistor—made out of a three terminal silicon-metal junction.  Using one of the metal 

leads, the current between the other two metal terminals could be made to turn on or off.  This 

functionality emerges from the dissimilar way that semiconductors and metals conduct electricity 

and respond to electrical potentials.  Namely, silicon only conducts electricity at certain energy 

ranges while metals are transparent to electrons at all energies.  This band-gap of silicon is 

fundamentally a bulk property.  A single atom of the material will behave quite differently from 

a macro-sized piece of silicon; only in the limit of many atoms, will the bulk band gap reappear.  

This is fundamentally why attempts to make current semiconductor-based transistors smaller 

than tens of nanometers fail.   
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Aviram and Ratner [1] proposed that a single molecule could be engineered to act as a 

rectifier—a diode—and thus potentially used to make a single molecule switch.  In their 

formalism they imagined the electronic structure of a molecule as a set of discreet levels.  When 

attached to a metal lead, these discreet levels would be the functional elements of the metal-

molecule device.   

 But what actually happens when an organic molecule which is on the scale of one 

nanometer is brought in contact with a metal?  In reality the molecular spectrum is renormalized 

next to a metallic surface; the discreet molecular orbitals broaden because of the coupling to the 

electrons in the lead; the bond between the metal and molecule results in some charge transfer 

from one material to the other which further shifts molecular orbitals relative to the metal 

electron energies.  Under applied bias further rearrangement of charge occurs.  Finally, the nano-

scale structure of the electrodes and the orientation of the molecule in the junction can impact 

binding chemistry.  These effects are present at the junction of any two dissimilar materials.  But 

since they are interface effects which only influence properties within a few nanometers from the 

interface, they do not significantly interfere with bulk behavior.  But a molecule attached to a 

metal electrode serves as both the interface and the functional element of the device.  As a 

results, the nature of the metal-molecule interface—both the chemistry of the bond and the 

specific geometry of the metal-molecule junction—influence the electronic properties of that 

junction.  How these factors affect electron transport is the subject of this thesis.   

 Below, I lay out some fundamental properties of charge transport on the nano-scale.  

Metal-molecule-metal junctions are one-dimensional channels for electrons.  I consider 
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conductance through one-dimensional channels in general and discuss how a molecule bound in 

a junction will affect its electrical conductance.  

1.1 Electron Transport in One-Dimensional Channels 

Current is the flow of charged particles from areas of higher potential to areas of low 

potential.  In metal-molecule junctions, electrons are the current carriers.  Current is defined as 

𝐼 = 𝑛𝑒𝑣  where n is the number of electrons, e is the electron charge and v is the group velocity 

of the carriers.  We must sum up over all the occupied states n to count the electrons contributing 

to charge transport: 

 
𝐼 = 𝑒 𝑣  𝜀 𝑓 𝜀 𝑑𝑛 𝜀 

∞

0

 

= 𝑒  𝑣  𝜀 𝑓 𝜀 
𝜕𝑛

𝜕𝜀

∞

0

𝑑𝜀 

 

 

1 

where 
𝜕𝑛

𝜕𝜀
 is the density of states and 𝑓 𝜀 is the Fermi distribution function.   

At zero bias the above integral will yield zero because the average velocity of all 

electrons is zero; in 1D k-space, equal number of forward and backward propagating states are 

occupied.  At finite bias across a macroscopic-sized conductor, the occupied region of k-space 

becomes shifted.  Now there is an access of electrons traveling along the potential gradient and 

current flows.   

We are interested in calculating the current across a nano-sized junction with a bias V 

applied across it as shown in Figure 1.1-1.  A single-atom thick chain of gold atoms is an 

example of the type of  junction considered in this Thesis; a TEM image of a gold single-atom 
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contact from reference [2] is shown in Figure 1.1-1B.  Both at room and cryogenic temperatures, 

chains of more than 4 atoms are very rarely pulled out[3].  The length of such a constriction is 

~1nm and shorter than the mean free path of electrons in gold.  As a result, the electrons traverse 

the junction ballistically, without scattering as shown with a red arrow in Figure 1.1-1A.  

 

Figure 1.1-1: A) A 1-dimensional, nano-sized junction bound to a macroscopic circuit with a bias V 

applied across. The red arrow shows an electron scattering ballistically across the junction. B) A real 

example of a 1-dimensional conducting channel: a TEM image of a four-atom long chain pulled out 

between two gold electrodes from reference [2].   

No equilibrium is established in the constriction and the bias drops sharply across the junction. 

The chemical potential is higher on the source electrode than on the drain electrode by the 

amount eV as shown in Figure 1.1-1A where V is the bias.  The current through such a 1-

dimensional channel will be proportional to the difference in the number of electrons incident 

across the junction from the source than from the drain: 

 𝐼 = 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 − 𝐼𝑑𝑟𝑎𝑖𝑛   
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We can expect that the density of states and dispersion in both contacts is the same.  The only 

difference comes from the occupation of states on the two electrodes since the chemical 

potentials are no longer equal: 

 
𝐼 =  𝑒  𝑣  𝑛 

𝜕𝑛

𝜕𝜀
[𝑓𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑓𝑑𝑟𝑎𝑖𝑛 ]𝑑𝜀

∞

0
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To find the occupation of the energy states in a metal at finite temperature, one must use 

the Fermi distribution 𝑓(𝜀, 𝑇):  

 𝑓 𝜀, 𝑇 = 1/(𝑒
𝜀−𝜇

𝑘𝑇 + 1) 3 

It defines the probability that a state at energy 𝜀 is occupied at a temperature T for a given 

chemical potential µ.  The Fermi function changes little from 0 to ~300K.  Since all experiments 

in this Thesis were performed at temperatures below 330K we use the zero-temperature Fermi 

distribution to estimate the occupation of states:𝑓 𝜀, 𝑇 < 330 ≈ 𝑓 𝜀, 0 = 1 𝑓𝑜𝑟 𝜀 <

𝜇, 0 otherwise.  Assuming T~0, we get from Equation 2: 

 
𝐼 =  𝑒  𝑣  𝑛 

𝜕𝑛

𝜕𝜀
𝑑𝜀

𝜇+𝑒𝑉

𝜇

 
 

Substituting density of states in 1D and group velocity of electrons 𝑣 𝜀 =
1

ℏ

𝜕𝐸

𝜕𝑘
 we obtain: 

 
𝐼 =

2𝑒2𝑉

ℎ
 

 

The conductance through a 1D perfectly transmitting channel is 𝐺 ≡ 𝐼/𝑉 is  
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𝐺 =

2𝑒2

ℎ
≡ 𝐺0 = 77.5𝜇𝑆 

4 

as derived by Landauer [4].  In the case of a junction where several channels are present in 

parallel—such as two or three-atom thick metallic chain, each channel will contribute G0 

conductance so that more generally, conductance through a nano-sized perfectly transmitting 

contact is:  

 𝐺 = 𝑀𝐺0 5 

where M is the number of channels. 

 In the case of a scattering nano-sized contact, Equation 5  must be modified to include the 

transmission probability T: 

 

𝐺 = 𝐺0  𝑇𝑀

𝑀

0
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Conductance through metal-molecule-metal junctions is governed by Equation 6.  But what 

determines the transmission T of a particular metal-molecule junction?  Below I discuss how the 

spectrum of the molecule and the nature of the metal-molecule binding affect the transport 

properties of a single molecule junction. 

1.2 Molecular Energy Spectrum—the Tight Binding Model 

 The unique molecular energy spectrum is derived from the underlying atomic orbitals 

which have hybridized with each other through bonding.  An example of an atomic or molecular 

spectrum is shown in Figure 1.2-1A.  During bonding, the low energy part of the spectrum—the 
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filled states such as the S core states for example—are changed little as virtually no charge 

transfer occurs there; the energies of these states do shift as a result of chemical bonding as 

revealed by spectroscopy [5, 6] but their atomic character is preserved.  They remain localized 

on the original atom and their symmetry—whether S, P or D—is largely unchanged. As depicted 

in the cartoon in Figure2B, only the valence electrons in the higher HOMO and LUMO orbitals 

in each species participate in bond formation; the HOMO‘ and LUMO‘ (as well as other valence 

levels) of the end product are linear combinations of the original valence orbitals and are thus 

delocalized over the molecule. 

Figure 1.2-1: A) Energy spectrum of a sample molecule.  B) Charge transfer that may result from 

bonding between two species with different initial spectra.   

 To estimate the spectrum of the valence and conducting orbitals on a molecule, the tight 

binding approach is often used.  The approximation assumes that only electrons on the nearest-

neighbor atoms overlap with each other.  Starting from the atomic basis set  |𝑎𝑖 , we assume 
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coupling between neighboring atomic orbitals of strength Δ so that the Hamiltonian is no longer 

diagonal in  |𝑎𝑖  : 

  𝑎𝑖
  𝐻  𝑎𝑗  =  𝜀    𝑓𝑜𝑟 𝑖 = 𝑗 

 𝑎𝑖
  𝐻  𝑎𝑗  =  ∆    𝑓𝑜𝑟  𝑖 − 𝑗 = 1 

 𝑎𝑖
  𝐻  𝑎𝑖 =  0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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The so called on-site energy ε is the eigenenergy of the original atomic Hamiltonian.   

We can apply the tight-binding model to a benzene ring in Figure 1.2-2A.  Every other 

carbon-carbon bond is a double bond.  Since all C-C bonds are identical, the double bonds have 

equal probability of being found anywhere on the ring, but neighboring double bonds are 

energetically unfavorable.  There are two ways to draw a series of alternating double bonds on a 

benzene ring as shown in Figure 1.2-2A and both are equal in energy and indistinguishable; these 

two states coexist simultaneously.  This means that the π electrons have equal probability of 

being found anywhere on the ring and are delocalized between the six carbons of the backbone.  

This high degree of delocalization means that the π orbitals are least bound in the nuclear 

potentials, have the highest energy and constitute the valence electrons that participate in binding 

and charge transport.  We can model this delocalized π system of electrons with a tight-binding 

approximation where every atom is coupled only to its neighbors with energy Δ as in Equation 7; 

initially each orbital is degenerate with self-energy ε.  We get: 

𝐻 =

 
 
 
 
 
 
𝜀 ∆ 0
∆ 𝜀 ∆
0 ∆ 𝜀

0 0 ∆
0 0 0
∆ 0 0

0 0 ∆
0 0 0
∆ 0 0

𝜀 ∆ 0
∆ 𝜀 ∆
0 ∆ 𝜀 

 
 
 
 
 

 



9 

 

 

Setting ε = 0eV and the coupling Δ = −0.5eV we get the energy spectrum is shown in Figure 

1.2-2B.  The six equivalent atomic orbitals have been split into a band of levels, with an energy-

splitting proportional to the coupling parameter Δ; levels at ±∆ are doubly degenerate.  In the 

case of the π-system in benzene, the coupling is fairly strong and so the HOMO-LUMO gap is on 

the order of several eV[7].  In saturated systems, such as an alkane shown in Figure 1.2-2C 

which are bonded through single σ bonds, the overlap of neighboring orbitals, modeled as the 

parameter Δ, is even greater and so the splitting between the HOMO and LUMO is larger than in 

π-conjugated systems.  

 

Figure 1.2-2: A) The chemical structure of benzene shown in two identical representations. B) A spectrum 

of the π electrons in benzene calculated using the tight-binding model.  The on-site energy ε in the model 

was set to zero and the coupling parameter ∆ set to 0.5eV.  C) The chemical structure of an alkane with 

six carbons bonded through single bonds.   

1.3 Metal-Molecule Bonding 

In molecular electronics the glue that attaches the electrodes to the active element of the 

device—an organic molecule—is a chemical bond.  Because of the nanometer scale of the metal-
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molecule-metal junctions, the nature of the bond affects not only the stability and structure of the 

device, but also its electrical properties and thus its functionality.  In order to engineer functional 

devices based on single molecules it is important to understand the metal-molecule interface and 

how bonds between these materials influence transport properties. 

Above, we considered the binding between six degenerate π-orbitals in a benzene ring.  As 

we saw, as a result of bonding, electron density is delocalized around the ring.  In general, during 

bonding electron density will shift so as to minimize the total energy of the final product.  

Charge transfer, therefore, is an inherent part of bond formation.  I now consider what 

determines the direction of charge transfer during binding, specifically molecule-metal binding, 

and how that will affect conductance through the metal-molecule interface. 

1.3.1 Chemical Potential and Metal-Molecule Binding 

Within a molecule, electrons will have a higher probability of being found close to the 

atomic element with the highest attraction for electrons [8, 9].  For a molecule, the 

electronegativity will depend on the spectrum[10] of its discrete molecular orbitals and their 

occupation.  As defined by Mulliken in 1935, electronegativity 𝜖 is proportional to the average of 

the electron affinity (EA) and ionization potential (IP) of a molecule[8]. 

 
𝜖 ∝ −

1

2
 𝐼𝑃 + 𝐸𝐴  

8 

 

EA is the energy required to add an extra electron and give the element a charge of -1.  The IP is 

the energy cost of removing an electron from the system.   How do these values relate to the 
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molecular energy spectrum?  Figure 1.2-1A is a diagram of an energy spectrum of a molecule.    

We see that the least costly way of adding an electron from the vacuum level at infinity to a 

neutral molecule is to place it in the lowest unoccupied molecular (LUMO) orbital available.  

Thus 

 𝐸𝐴 =  −𝐸𝐿𝑈𝑀𝑂  9 

Similarly, removing electrons from the HOMO is the least energetically expensive way of 

ionizing the molecule to a charge of +1, so that 

 𝐼𝑃 =  −𝐸𝐻𝑂𝑀𝑂  10 

 As two systems come together to form a bond, as shown in Figure 2B, the relative 

ionization potentials and electron affinity will determine the direction of charge transfer.  

Molecular orbitals of the two elements will align and hybridize, so that energy gained by 

partially donating charge from element 1 to element 2 is offset by the resulting Coulomb  

repulsion.  Some possible routes of charge transfer during bonding are depicted in Figure 2B.  In 

general charge transfer will occur until a steady state is reached where the energy cost of 

marginally changing the number of electrons on the two elements will be equal: 

 𝑑𝐸1

𝑑𝑁1
=

𝑑𝐸2

𝑑𝑁2
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The marginal energy cost of removing (or adding) electrons to an element is defined as 

the chemical potential ≡
𝑑𝐸

𝑑𝑁
 .  Mulliken‘s law of equalizing electronegativity can be written in 

terms of the chemical potential of the elements involved in the reaction; in steady state 𝜇1 =  𝜇2.  

Substituting Equations 9 and 10 into 8 we have:   
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𝜇 =

1

2
(𝐸𝐿𝑈𝑀𝑂 + 𝐸𝐻𝑂𝑀𝑂) 

12 

An electrode contacting a single molecule in break junction experiments has dimensions 

that are much larger than the inter-atomic spacing of a few angstroms.  The number of atoms in 

such a crystal is on the order of Avogadro‘s number 6.022 x 10
23

.  The overlap of the initially 

degenerate atomic orbitals from each atom will result in hybridization and splitting, so that the 

resulting energy spectrum is a wide band of at least ~10
23 

energy levels.  The spacing of such 

orbitals will approach zero as the crystal reaches macroscopic dimensions.  The occupation of 

these states is governed by the Fermi function.  Just as nearest neighbor coupling in a benzene 

creates orbitals with a non-zero amplitude on much of the molecule, so the electrons in the metal 

will delocalize over the entire lattice.  Of course only the valence electrons in the top-most 

energy levels behave as free particles; the core electrons are tightly bound to the nuclei of each 

atom and remain localized in the strong coulombic potential.   

To find the occupation of the energy states in a metal at finite temperature, one must use 

the Fermi distribution 𝑓(𝜀, 𝑇) defined in Equation 3.  We assume T is small so that all states 

below µ are filled with probability 1 as shown in Figure 1.3-1.  We conclude that, the electrons 

fill up the nearly continuous energy levels with exactly one electron per state (counting the 

degenerate spin degree of freedom) until all electrons in the metal are accounted for up to an 

energy we call EF which is the chemical potential of the metal.  

 What happens as a single molecule with a discrete set of energy levels is brought into 

contact with a vast, flat metal surface?  First, the position of the molecular orbials will become 

renormalized as a result of screening in the metal surface[11].  This image charge effect will 
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reduce the HOMO-LUMO gap and bring the orbitals closer to the Fermi energy.  In general 

some charge transfer will also occur so as to equalize the chemical potentials of the two species.  

The direction of charge transfer and the final distribution of electrons will depend on the initial 

alignment between the molecule‘s chemical potential and the metal Fermi energy.   

 

Figure 1.3-1: Charge transfer that occurs at the metal-molecule interface when the molecular chemical 

potential is lower (A) and higher (B) than the metal Fermi energy. In the case of A, the LUMO becomes 

partly occupied, while in B, the HOMO becomes partly vacant. 

As is shown in Figure 1.3-1, if the chemical potential of the molecule is higher than the 

Fermi energy, the molecular HOMO as defined by Equation 12, is closer to Fermi than LUMO 

is.  The least costly way to equilibrate this metal-molecule junction is to transfer electrons from 

the HOMO to the Fermi because the HOMO-EF gap is the smallest.  This transfer lowers the 

energy of the HOMO through Coulombic repulsion, and brings the molecular chemical potential 

in equilibrium with the metal surface.   
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Inversely, if the chemical potential is lower than the metal Fermi energy, charge transfer 

will occur in the opposite direction.  In this way, the molecular LUMO, which is closer to the 

metal work function than the HOMO, will become partly occupied and moved higher up in 

energy, shifting the chemical potential up as well.  The amount of charge transfer depends on the 

strength of the bond but in general it is much less than 1e.    

1.3.2 The role of link groups 

 The presence of link groups can skew the energetic of bonding described above.  A flat 

conjugated molecule such as a benzene or a biphenyl binds in a flat-lying configuration on a flat 

metal surface so that the π-system overlaps with the metal[12].  However, the presence of link 

groups such as amines, pyridines, or others changes the binding configurations of such molecules 

to gold[13-15].  Conjugated amines, bind to gold through the lone pair on the Nitrogen and tilt 

slightly[15].  The lone pair in these molecules is part of the same molecular orbital as the π 

system—the HOMO—and the ring can still donate to the gold.  In contrast, when bipyridines 

bind to gold through the nitrogen lone pair, they orient vertically.  In this case, the lone pair is 

part of the σ system and is orthognal to the π system[14].  

In this thesis we rely primarily on donor-acceptor bonds between undercoordinated atoms 

on the electrodes and the molecular linkers to bind molecules into our junctions[16].  We use 

molecules substituted with chemical groups such as amines and pyridines discussed above and 

others which donate charge density of the lone pair to under-coordinated gold atoms which 

protrude out of the surface and carry a slight positive charge[17-19]. However, as we will see, 
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modulating junction geometry may allow direct binding to the energetically close-lying π-

system[19].   

1.4 Transmission through a Metal-Molecule Junction 

Following binding and charge rearrangement, molecular orbitals will shift relative to 

Fermi as discussed above.  In principle, it is possible that after coordinating to gold, μ lies on one 

of the molecular orbitals which is half-filled[20] and the junction is fully transmitting so that TM 

from Equation 6 is ~1.  However, in all the molecules considered in this Thesis, Fermi energy of 

the leads falls in the HOMO-LUMO gap of the molecule and molecular orbitals are not in 

resonance with the valence electrons in the metal.  In this case, the overlap of the molecular 

spectrum at EF will be determined by the degree of broadening of the orbitals due to the 

interaction with the gold. 

The valence molecular orbitals broaden as a result of charge transfer between the 

molecule and metal because their lifetime decreases as electrons spend less time on the molecule 

and more at the Fermi energy on the metal.  In other words, by bonding to the metal, the discrete 

molecular spectrum hybridizes with the continuum of states in the metal.  Clearly, the orbital 

most involved in binding will be most broadened by the interaction.  The decrease of the lifetime 

correlates with increase in energy broadening according to the Heisenberg uncertainty principle.  
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Figure 1.4-1: The effect of coupling to metal on the molecular spectrum from Figure 1.2-2C.  The 

molecule is coupled to the leads through the 1st and 4th carbon as shown in the inset with the coupling 

parameter Γ.  As Γ increases, the broadening and the electron density at EF  grows. 

Figure 1.4-1 shows the spectrum of a π-bonded benzene from Figure 1.2-2A coupled to 

metal electrodes through carbons at the 1 and 4 position on the ring.  This spectrum is calculated 

within the tight-binding formalism by the non equilibrium Greens function method[20].  In this 

model, even weak bonding at ½ of the intramolecule bonding parameter ∆ results in some level 

broadening as shown.  As the coupling increases, the orbital density at EF grows.  This signifies 

increased hybridization with the metal states.  The overlap of the molecular spectrum at EF is the 

transmission probability TM of the molecular junction in Equation 6; the orbital with the highest 

weight at EF will be the dominant transport channel of the metal-molecule junction.  Thus, the 

position of the molecular orbitals relative to Fermi—controlled by the molecular chemical 

potential and the amount of charge transfer—as well as the degree of orbital broadening due to 

coupling to the metal will dictate transport properties through single molecules.  
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1.5 Thesis Outline 

 In the rest of this Thesis, I present my work investigating the interplay between geometry 

and chemistry in determining single molecule junction transport properties.  In Chapter 2, I 

introduce the experimental techniques we use to probe electronic properties of metal-molecule-

metal junctions in cryogenic and ambient conditions.  In Chapter 3, I discuss our surface study of 

amine-terminated molecules on gold where we find that binding configurations and energy-level 

alignment can depend on the geometry of the gold electrode.  In Chapter 4, I present single 

molecule conductance measurements with families of molecules which display reproducible 

conductance signatures insensitive to metal-molecule orientation.  We find that highly selective 

donor-acceptor bonds between gold and amines, methyl sulfides and diphenyl phosphines as well 

as direct gold-π electron binding in paracyclophane can result in reproducible transport 

characteristics.  Chapter 5, on the other hand presents results where the interaction between the 

molecule and the electrodes can be tuned via mechanical manipulation.  Here the nature of the 

gold-metal bond allows us to probe different conducting configurations in conjugated bipyridines 

and methyl sulfides by changing the coupling between EF and the π system on the molecule.  

Finally, in Chapter 6, I outline our findings on the effect of temperature on non-resonant 

transport through amine and pyridine-linked molecules.  There again, we believe that gold 

electrode structure changes with temperature and modifies the energy alignment between the 

molecular spectrum and EF, affecting transport properties.  Overall, these experimental results 

suggest that the interplay of binding chemistry and junction geometry can lead to different 

functionality of the metal-molecule-metal junctions. By tuning the linker chemistry and electrode 
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structure, we may be able to engineer single molecule junctions with desirable electrical 

properties. 
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Chapter 2: Experimental and Analysis 
Techniques 

 The bulk of the experiments reported in this thesis were realized using a Scanning 

Tunneling Microscope (STM) based apparatus.  The measurements performed in ultra high 

vacuum at cryogenic and room temperatures were done using a commercial Createc STM.  In 

this chapter, I describe some basic principles of STM operation and detail the modified home-

built STM used in our lab for measuring transport through single molecule-metal junctions.  I 

then describe the procedures I employed measure and analyze single molecule conductance and 

junction evolution data. 

2.1 Scanning Tunneling Microscope 

The STM was invented in 1982 by Binnig and Rohrer.[1]  It revolutionized condensed 

matter physics, allowing for atomic imaging and manipulation.  It achieves this sub-angstrom 

resolution by using electron tunneling current, rather than electron or radiation beam as its 

probe.[2]  Because tunneling probability decays exponentially with length, the distance between 

the electrodes z is proportional to the logarithm of the tunneling current 𝐼: 

 
𝑧 = 𝑧0 −

1

𝛽
ln⁡(𝐼) 

13 
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where 𝛽 is the decay constant related to the work function 𝜑 of the electrodes.  Given a bias V 

across the tip-sample gap 𝛽 is given by: 

 
𝛽 =

 2𝑚(𝜑 + 𝑉)

ħ
 

14 

A schematic of the STM is shown in Figure 2.1-1A.  In this work, we use a commercial 

Createc STM pictured in Figure 2.1-1B.  The main chamber where the microscope is located is 

beneath the cryostat which cools it to liquid Nitrogen or Helium temperatures.  The operating 

pressure is below 1e-10Torr.  The tip and sample are loaded into the load lock chamber (not 

Figure 2.1-1: A) A diagram of basic STM components.  B) The Createc low temperature STM located at 

the Center for Functional Nanomaterials at Brookhaven National Laboratory. C) A magnified inside of 

the STM chamber.  The tip used in these experiments is made out of a hand cut gold wire.  The sample is 

an Au(111) single crystal. 
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visible in Figure 2.1-1A) and after pumping to high pressure (HP), transferred into the 

preparation chamber where the pressure is below 1e-9Torr.  There the tip and sample are pumped 

down and cleaned and then transferred into the STM chamber for cooling and imaging. 

The imaging is done using a sharp metal tip, in our case made out of gold, which is held 

above a substrate of interest with a piezoelectric positioner which provides sub-angstrom motion 

control in all three spacial direction.  A magnified picture of the inside of the STM in figure 1C 

shows our hand-cut gold tip and a single crystal Au(111) substrate.  A bias is applied between 

the tip and substrate and tunneling current monitored using a current amplifier.  In imaging 

mode, a proportional-integral-derivative (PID) controller is used to provide feedback on the 

measured tunneling current in order to keep it constant at a preset value.  The tip scans above the 

surface in the x-y plane and the PID adjusts the z-position by moving the piezo to maintain the 

set-point tunneling current.  Computer software then converts the piezo voltage at every point on 

the x-y plane into an image of the surface.  

The resolution of the STM is highly sensitive to the parameters used during scanning.  By 

adjusting set-point tunneling current, tip-sample bias and the amplifier gain one can adjust the 

resolution of the image.  A higher set-point tunneling current 𝐼 or lower bias  𝑉 leads to smaller 

tip-sample distance 𝑧.  A small distance may be desirable because larger tunneling currents can 

be detected with greater precision (though changing the amplifier gain settings can be used to 

adjust current resolution).   

Figure 2.1-2 shows images of Au(111) taken with a gold tip.  The (111) surface of gold 

uniquely reconstructs to create the ―herringbone‖ pattern visible in the image [3, 4].  Individual 
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atoms are visible inFigure2.1-2B where the tunneling current was a factor of ~10 higher than in 

the previous image.   

 

Figure 2.1-2: STM images of clean Au(111) surface taken at 5K.  A) A large scale image at 100mV tip-

sample bias with set-pointcurrent at 0.2nA.  The terraces of Au(111) show a herringbone reconstruction 

pattern.  The edges between (111) terraces are steps with a height of ~0.26nm, corresponding to a 

diameter of a single gold atom. B) A small scale image taken under 200mV bias with set-point current at 

1nA.  Under these imaging conditions single atoms of gold are visible.   

On the other hand, when imaging physisorbed, weakly bound molecules, a tip scraping 

close to the surface to maintain 1nA current disturbs the molecular layer.  For that reason, all 

images of amine-terminated molecules on Au(111) were taken with 0.1nA tunneling current or 

lower, under 0.1V bias[5].  Figure 2.1-3 shows the result of imagining on a sub-monolayer of 

2,3,5,6-tetramethyl-1,4‘-benzenediamine, which is an amine-terminated aromatic molecule 

which binds weakly on flat Au(111) terraces[5, 6].  As the tip scans above the surface, it drags 

molecules behind it as visible in Figure 2.1-3B.  As a result, after imagine, the layer becomes 

disordered as shown in Figure 2.1-3C. 
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Figure 2.1-3:  Images of ~0.5 of a monolayer of 2,3,5,6-tetramethyl-1,4’-benzenediamine taken at 5K at 

~100mV, 0.1nA tunneling current.  A) A large scale image of a fresh area of the sample not imaged 

previously.  The herringbone pattern is unchanged from the clean Au(111) reconstruction, indicating that 

the molecule binds weakly on Au(111) terraces.  Molecules bind preferentially on the fcc and hcp regions 

of the surface, away from the herringbone lines. B) A small scale image of the same sub-monolayer.  As 

shown by the blue arrow, some molecules are still organized as in A, but some disruption of the original 

pattern has been caused by imaging.  The wavy lines in the image are a result of molecules dragging 

behind the tip as it scans the surface.  Details of intermolecular structure are visible in the inset.  C) A 

large scale image of the same area as in B.  The results of imaging are visible in the top part, where 

molecules are now arranged randomly on the surface. 

2.2 STM-based Single-Molecule Conductance Measurements 

2.2.1 Experimental Setup and Procedure for Measurement in Ambient 
Conditions 

To measure single molecule conductance in ambient conditions at room temperature we 

use a modified, home-built STM table-top setup shown in Figure2.2-1A.[7, 8]  A National 

Instruments 200kHz, 24-bit precision data acquisition card (DAQ) is used to measure current and 
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voltage at the junction while driving the piezoelectric positioned (Mad City Labs) with sub-

angstrom precision to move the substrate relative to the tip.  A Keithley 428 current-voltage 

converter detects the current at the junction, converts it to a voltage measurement and outputs it 

to the DAQ.  An air table and acoustic hood are used to provide stability and insulate the setup 

from vibrations.  The DAQ is connected to a computer which runs an script written in Igor Pro 

to perform the experiment.   

 

Figure 2.2-1: A) The STM-based setup used in this thesis for measuring transport through single 

molecule-metal junctions in ambient conditions.  B) A circuit diagram of the apparatus. 

The procedure we use for measuring single-molecule conductance is the break-junction 

technique realized in an STM geometry.[7]  In STM parlance this is also known as I(z) 

measurement where the current I is measured as a function of the tip distance above the substrate 

z with no feedback engaged[9].  Our automated experimental protocol is as follows: the tip is 

smashed into the substrate until a conductance larger than 5G0 is reached so that the geometry of 

the tip and sample is reshaped to a new configuration; the tip and substrate are then pulled apart 
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at a pre-specified rate (usually ~15nm/s) while the voltage is held fixed and the current is 

measured at 20kHz or more; after a pre-specified (usually 5 or 10 nm) extension is achieved, the 

pull is terminated, the data is saved and the protocol starts again.  Including computer processing 

times, each pull-out trace takes about 1 sec to complete.  In a typical experiment we measure as 

many as 30000 traces.      

We use gold electrodes to bind our molecules into the junction.  Most metals are too 

reactive to be used as nano-sized electrodes for binding molecules.  Even platinum can form a 

thin layer of oxide on the surface that will distort conductance measurements and interfere with 

molecular binding.  Gold, however, is sufficiently inert to allow reproducible quantum point 

contact (QPC) and single-molecule conductance measurements.  We make our gold samples, 

shown in the inset of Figure 2.2-1A, by evaporating in high vacuum (~1e-6 Torr) high-purity 

gold onto freshly cleaved mica glued with silver epoxy onto cleaned metal pucks.  Typically, we 

evaporate about 100nm thick gold layers.  Bias is applied to the sample, while the current is 

measured at the tip.  A piece of 0.25mm high purity gold wire serves as the tip electrode.  It is 

inserted into the tip-holder and cut manually with wire-cutters before every experiment.  When 

the tip and sample are in contact, the circuit is closed and current can flow.     

Current is converted to a voltage using the Keithley 428 current amplifier.  At gain 6, 1e-

6A is converted to 1V and the range is 20µA with a resolution of ~1e-4V =~0.1nA.  We perform 

most measurements at gain 6 at a low bias of 25mV.  As the conductance of a gold nano-contact 

which is one atom thick is 1G0=77.5 µS, in these conditions the current measured through such a 

junction is: 𝐼 = 𝐺 × 𝑉 = (77.5 × 10−6𝐴) × 0.025𝑉 ≈  2 × 10−6𝐴.  Since the dynamic range is 
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20 µA, the Keithley will saturate once the conductance exceeds ~10G0 and may take time to 

recover once the current goes back within range, affecting our measurement.   

To increase the effective measuring range of our apparatus, we insert a resistor in series 

with the junction as shown in a circuit diagram in Figure2.2-1B.  To see the effect of this on our 

measurement, consider the case of a 10kΩ series resistor.  As the tip is smashed into the 

substrate, the conductance of that initial constriction is usually hundreds of G0.  The resistance of 

the series resistor dominates in this case and the current measured through the entire circuit is 

roughly 2 µA.  In other words, the series resistor prevents the Keithley from saturating even 

when the conductance of the junction is very high.  On the other hand, when the QPC breaks and 

the conductance of the junction falls to small fractions of G0, the 10kΩ series resistance hardly 

matters compared to the MΩ or even GΩ tunneling current and can be ignored.  Since the 

voltage across the junction changes, we measure the bias drop across the junction along the with 

the current.  Conductance is calculated using the simultaneously measured current and bias.  An 

important consequence of the series resistor is the fact that the voltage drop across our junction is 

not constant throughout the measurement even though the applied bias is held fixed.  We solve 

for the bias drop at our junction in terms of the constant series resistance RS, the variable junction 

resistance RJ, and the total biased applied across the circuit V as shown in Figure2.2-1B.  We use 

 𝑉 = 𝑉𝑆 + 𝑉𝐽 = 𝐼 𝑅𝑆 + 𝑅𝐽   

to obtain: 

 
𝑉𝐽 = 𝐼𝑅𝐽 =

𝑉𝑅𝐽

𝑅𝑆 + 𝑅𝐽
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When RJ is low compared RS, the voltage drop measured across it virtually zero.  However, after 

the rupture of QPC, 𝑅𝐽 → ∞, and almost the entire voltage drop in the circuit occurs at the 

junction so that 𝑉𝐽 = 𝑉.    

To measure conductance of gold-molecule-gold junctions, a few drops of molecular 

solution is added using a dropper onto the surface of the gold sample.  Typically, we make 

~1mM solutions of our molecules in 1,2,4-trichlorobenzene (TCB) (obtained from Sigma-

Aldrich) which is a non-polar organic solvent; in the case of molecules longer than ~2nm, less 

concentrated solutions of 0.001-0.1mM are used[10, 11].  Alternatively, molecules can also be 

evaporated onto the gold sample[10]. 

2.2.2 Pull-out Procedure 

 Figure 2.2-2: A&B) Sample conductance trace (red) measured at 25mV on a gold substrate without 

molecules on a linear (A) and logarithmic (B) scales.  The bias measured at the junction is shown in blue.  

As the conductance of the junction changes during elongation, the distribution of bias-drops across the 

junction and the series resistor varies accordingly.  Insets to B are illustrations of possible junction 

configurations responsible for the different conductance signatures observed.  C) Sample conductance 

traces measured in the presence of 1,4-benzenediamine shown in the inset. 
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A sample trace showing the measured conductance (I/V) along with the voltage across 

the tip-sample gold junction without molecules is shown in Figure2.2-2A and B.  Stepwise 

decreases in conductance are clearly visible as the junction is pulled apart.  These drops 

correspond to the thinning out of the metallic bridge connecting the two electrodes[12, 13].  As 

the number of gold atoms in the cross-section decreases, the number of available channels for 

conductance is reduced and conductance drops in integer values of the quantum of conductance 

G0[14-16].  This behavior is in stark contrast to the predictions of Ohm‘s law and appears only 

when one or more dimensions of the channel become nanometer-sized.  This is because the 

electrons become confined in those dimensions leading to energy quantization phenomena as 

discussed in the previous chapter.  The final conductance step visible before rupture occurs at 

1G0 and corresponds to the formation of a single-atom thick contact between the two electrodes.  

As the junction is pulled further, the contact breaks and tunneling across the tip-sample gap is 

observed as shown in Figure2.2-2.  In this regime, conductance falls exponentially with 

elongation (previous section). 

Traces measured in the presence of 1,4-diaminobenzene are shown in Figure2.2-2C.  

Additional steps below 1G0 at a molecule dependent conductance value are found in ~35% of all 

measured traces in the presence of this molecule [17];  however, trace-to-trace variation in 

conductance values is present as seen in the figure.  As a results, we require large data sets and 

statistical analysis to determine most likely molecular conductance value [8, 10, 17]. 
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2.2.3 Pull-push Procedure  

Figure 2.2-3: A) Voltage ramp applied to the piezo (grey) and a sample conductance trace (red) 

measured during the pull-push procedure.  B) A histogram of snap-back distance measured in 10000 

pull-push traces. 

Sometimes, it is useful to observe how conductance evolves while the junction is 

compressed rather than stretched.  In particular, pulling the junction apart and then pushing it 

back together can give insight into the dynamics of the gold electrodes immediately after 

junction rupture.  The grey trace in Figure2.2-3A shows the voltage ramp applied to the 

piezoelectric positioner in order to perform such experiments.  Starting from a smashed junction 

with conductance greater than 5G0 as always, the junction is stretched, then compressed, then 

stretched once again.  As with the regular pull-out experiments, this procedure can be performed 

thousands of times.   

A sample conductance trace shown in red in Figure2.2-3A demonstrates a typical 

junction evolution during the pull-push procedure.  After the rupture of the QPC, the pushing 

distance Lpush required to regain 1G0 conductance is greater than the original pulling distance 

Lpull.  This suggests that immediately after junction rupture, the electrodes rearrange in order to 

relieve the strain built up during stretching.  We can measure and average this ―snap back‖ 
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distance by taking the difference Lpush-Lpull in every pull-push trace and binning the results into a 

histogram.  Such a histogram of snap back distances from 10000 traces is shown in Figure2.2-

3B.  The distribution is well described by a Gaussian centered at 0.65nm, suggesting that on 

average the gold electrodes relax by 6 - 7 Å immediately after rupture.[18, 19]  Gaps of this size 

are ideal for binding molecules on the order of 1nm. 

2.2.4 Pull-hold-push Procedure  

 

Figure 2.2-4: The piezo bias ramp (dashed grey) during the pull-hold-push procedure.  Sample traces 

collected in the presence of three diamino alkanes of varying length.  Inset: Histograms of push back 

distance for each molecule. 

We are also interested in learning about the distance between electrodes while molecules 

are bound in the junction.  Such information can give insight into the binding configuration of 

the metal-molecule-metal junctions and the source of conductance variations.[19, 20]  To make 

this measurement we modify the pull-push procedure slightly.  Figure 2.2-4 shows the piezo 
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ramp used for these experiments.  After smashing to 5G0 or greater to form a new geometry, the 

junctions are pulled apart by a few nms, then held still for .025 seconds and pushed together 

again.  We are interested in finding the inter-electrode separation of the junction during the hold 

segment of the trace and correlating it to the conductance at that separation.  To that end, we 

measure the distance required to push the junction back to 0.5G0 conductance after the hold; this 

distance is marked by the dark black arrow in Figure 2.2-4 for the case of the pale blue trace 

measured in the presence of butanediamine.  We measure this distance Lpush along with the 

average conductance during the last ~0.01 seconds of the hold section on every trace in the 

dataset.  We then select traces that maintained the molecular conductance during the hold and 

make a histogram of the Lpush distances measured on those traces.    

The resulting histograms for three diaminoalkanes are shown in the inset to Figure 2.2-4.  

There is a clear correlation between the length of the molecule and the most commonly observed 

inter-electrode separation.  This suggests that longer molecule can bind in the junction when the 

electrodes are further apart than shorter molecules.  On the other hand, there is significant 

overlap between the push back distributions, indicating that longer molecules can bridge small 

tip-sample gaps by binding higher up on the electrodes[19].  Furthermore, although the 

distribution of electrode separation is wide—roughly 5Å—the distribution of conductance is 

small as shown in the next section.  This is consistent with earlier findings that amine-terminated 

molecules show a narrow range of conductance values because they bind preferentially to under-

coordinated gold atoms[8]. 
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2.3 Analysis Procedures 

2.3.1 Conductance Histograms 

We collect thousands of traces of the type shown in Figure 2.2-2 in the course of each 

experiment[8, 10].  This statistical sampling is critical because each measured trace corresponds 

to a unique starting configuration involving tens of gold atoms; we ensure that every trace starts 

from a new geometry by smashing our junction prior to elongation to erase memory of the 

previous measurement.  The initial configuration evolves through a series of elastic and plastic 

deformations as the junction is stretched to a unique final geometry right before the breaking of 

the QPC[12, 21].  Because we do not control the atomic configurations we probe, we cannot 

assign an event in the measured current to a known atomic configuration.  Instead, we can 

average over thousands of traces to identify the most commonly observed transport 

configurations[7, 13]. 

Figure 2.3-1: A) A linear histogram constructed from 2000 measured conductance traces using a bin size 

of 0.001G0.  The inset shows a histogram of the same dataset constructed using a bin size of 0.0001G0 on 

a log scale. B) Conductance histograms constructed out of at least 10000 traces collected in the presence 

of olygophenyl diamine molecules.  Clear peaks below 1G0 appear at a molecule-specific value.   
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This average is performed by creating histograms of conductance traces.  All the current 

data points measured in the course of a trace are binned along the conductance axis.  The 

resulting histogram constructed from 2000 consecutively measured traces on a clean gold 

substrate is shown in Figure 2.3-1A; a bin size of 0.001G0 was used.  Peaks in conductance 

centered at integer values of G0 indicate that geometries corresponding to these conductance 

values occur most often during junction elongation[13].  More than 99% of our measured traces 

contain a plateau near 1G0 which corresponds to a single atom-thick neck between the tip and 

substrate right before rupture of the QPC[18].  Once the single-atom thick chain ruptures, a 

tunnel gap opens up between tip and substrate.  Conductance drops, but quantum tunneling leads 

to small currents which decrease exponentially with tip-sample distance as discussed in the 

previous section.  In histograms, this vacuum tunneling signature results in a power law 

dependence at conductance values below 1G0 as shown in the inset of Figure 2.3-1A. 

Once molecules are added to the sample, additional plateaus in conductance traces are 

visible at a molecule dependent value as shown in Figure 2.2-2C in the previous section.  As for 

clean gold measurements, histograms are constructed without any data selection, but smaller bin 

sizes are used to resolve the molecular conductance peaks at a fraction of 1G0.   A histogram of 

at least 10000 traces is shown in Figure 2.3-1B.  Each dataset was collected in the presence of an 

oligophenyl diamine of different length.  A well defined peak is visible for each molecule.  The 

peaks can be fit to extract the most commonly observed conductance value.  A graph of 

conductance against molecule length is shown in the inset to Figure 2.3-1B.  We see that as the 

length of the molecule increases, the conductance decreases exponentially, consistent with the 

Simmons tunneling model which assumes that electrons tunnel through the molecular backbone 
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as across a barrier[22].  The decay parameter β depends not on the work function as in Equation 

14, but on the difference between the metal chemical potential and the closest molecular orbital.  

We find that each family of molecules we study—olygophenyls, alkanes or polyenes—has a 

unique β characteristic of the single molecule HOMO-LUMO gap.  These trends argue strongly 

that the conductance plateaus observed in traces and the resulting peaks in histograms are indeed 

a result of transport through single molecules trapped between metal electrodes.   

2.3.2 2D Histograms of Conductance and Displacement 

 Our measured traces show conductance as a function of junction elongation.  But 

conductance histograms only preserve conductance information and discard information about 

how conductance evolves with pulling.   To analyze this displacement information in a statistical 

manner, we construct 2-dimensional histograms, binning along both the conductance and 

elongation axis.   We set the 1G0 rupture event as the origin of the elongation axis on each trace 

and then bin each measured trace by assigning every data point to a position on a 2D 

conductance vs displacement grid.  The conductance axis  uses logarithmic bins with 10 

bins/decade. Figure 2.3-2A shows a histogram constructed using this procedure out of the same 

data set as used for Figure 2.3-1A.  Because all the traces have been aligned along the x-axis by 

the G0 rupture event, peaks in conductance at integer multiples of G0 can be mapped to a position 

relative to 0.  We see that at room temperature in ambient conditions, 1G0 plateaus are on 

average shorter than ~0.2nm.  In addition, 2 and 3G0 plateaus precede the formation of the 
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single-atom thick chain as expected.  Following junction rupture, current decays exponentially 

with displacement, consistent with tunneling through the tip-sample gap.  

 

Figure 2.3-2: A) A 2D conductance histogram which preserves displacement information constructed out 

of 2000 traces collected on a clean gold sample.  B) A 2D histogram for 2,2’,6,6’-tetramethyl-4,4’-

biphenyldiamine; molecular structure is shown in the inset. 

We can use a 2D conductance histograms to obtain displacement information about 

molecular junction formation and evolution.[11, 19, 23]  To examine molecular plateaus, we 

focus on all data points after the G0 rupture.  Figure 2.3-2B shows a 2D histogram constructed 

from 15000 traces for 2,2‘,6,6‘-tetramethyl-4,4‘-biphenyldiamine.  A clear peak centered at the 

most likely conductance value is visible as in the linear 1D histograms.  In addition we obtain 

information about how metal-molecule junction conductance evolves with elongation. We see 

that for diamine molecules, average conductance remains unchanged as the junction is stretched.  

Junctions persist for displacements far larger than the length of the nitrogen-gold bond—more 
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than 4Å in the case of the biphenyl derivative shown in Figure 2.3-2B— suggesting that atomic 

rearrangements are occurring upon elongation.[19] 
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Chapter 3: Amine-Terminated Molecules on 
Gold 

 Transport properties through metal-molecule-metal junctions will depend on the 

properties and structure of the metal-molecule bond.  Here we use the Scanning Tunneling 

Microscope (STM) and spectroscopy techniques to study how an amine-terminated conjugated 

molecule arranges on a gold surface.  We find that the structure of the gold-amine bond affects 

energy level alignment.  This understanding will inform our transport measurements through 

such metal-molecule junctions.  
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3.1 Structure and Energy Level Alignment of Tetramethyl 
Benzenediamine on Au(111)1 

Abstract:   

We investigate the binding and energy level alignment of 2,3,5,6 Tetramethyl-1,4-

benzenediamine (TMBDA) on Au(111) through a combination of helium atom scattering (HAS), 

x-ray photoemission (XPS), and scanning tunneling microscopy (STM).   We show that TMBDA 

binds to step edges and to flat Au (111) terraces in a nearly flat-lying configuration.  Combining 

HAS and STM data, we determine that the molecules are bound on step edges with an adsorption 

energy of about 1.2eV, which is about 0.2 eV stronger than the adsorption energy we measure on 

flat surface.  Preferential bonding to the under-coordinated Au atoms on step edges suggests that 

the molecules bind to Au through the nitrogen lone pair.  Finally, scanning tunneling 

spectroscopy measurements on TMBDA in these two different adsorption configurations show 

that the HOMO is deeper relative to Fermi for the more strongly bound molecules on step edges, 

confirming that the nitrogen bonds through charge donation to the Au. 

Introduction:  

 Understanding the nature of amine-Au binding is crucial for the advancement of 

molecular electronics[1] because amine and other nitrogen-based chemical groups have become 

widely-used for binding organic molecules to Au electrodes in single molecule conductance 

experiments[2-6].  These linkers are attractive for such measurements because they bind to Au 

reproducibly, allowing many repeated single-molecule measurements to be performed with 

                                                 
1 M.Kamenetska, M. Dell‘Angela, J.R. Widawsky, G. Kladnik, A.Verdini, A. Cossaro, D. Cvetko, A. 

Morgante, L. Venkataraman, J. Phys. Chem. C, 111, 12625-12630, (2011) 
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consistent outcomes[4].  Theoretical calculations suggest that amine-terminated molecules bind 

to under-coordinated Au with a binding energy of about 0.5 eV[7-9] through the nitrogen lone 

pair.   Thus, they form a relatively weak, but selective donor-acceptor bond to an under-

coodinated Au atom on the electrode which allows for reproducible conductance measurements 

even as the exact geometry of the contact is varied[10, 11].  Other linkers have been found to 

bind through a similar mechanism, increasing the importance of studying donor-acceptor 

binding[12, 13].  However, few direct surface studies of amine-terminated molecules on noble 

metals have been performed to identify their binding structures and electronic properties[14-16].  

Such information could elucidate the mechanism behind the reproducible amine-Au bond and 

offer clues about other chemical moieties that could be used for single-molecule conductance 

experiments.   

Here we present first direct observation of the two different binding configurations of 

TMBDA on Au, probe their range of binding strengths and resulting energy-level alignment.  We 

focus on TMBDA as a model system as it has been well characterized in the solid state[17]; 

electron transport measurements of TMBDA has been carried out by the STM-based break-

junction technique[18]; and TMBDA molecular layers have been studied by XPS and NEXAFS 

on Au surfaces[15].  In particular, TMBDA has previously been shown to bind to both Au(111) 

and to under-coordinated Au and to have slightly higher binding energy than the unsubstituted 

1,4- Benzenediamine on both surfaces[15, 18].  Using a combination of helium atom scattering 

(HAS), x-ray photoemission spectroscopy (XPS), low temperature scanning tunneling 

microscopy (STM) imaging as well as spectroscopy (STS), we examine the monolayer 

morphology and electronic properties of TMBDA on Au(111).  We show that on flat terraces of 
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the Au(111) surface, the molecules form a packed, ordered monolayer, with the benzene ring 

lying nearly parallel to the surface. The molecules prefer to adsorb on the hcp and fcc 

domains[19], where both nitrogens can coordinate to the Au.   We also see that TMBDA exhibits 

the strongest affinity to under-coordinated atoms at the step edges, consistent with donor-

acceptor bonding through the nitrogen. Finally, STS measurements show that this stronger bond 

on step edges results in the deepening of the molecular HOMO relative to Fermi because of 

charge donation from the molecule to the Au[15]. 

Experimental Methods:  

HAS and XPS measurements were performed at the ALOISA/HASPES beamline (Elettra 

Synchrotron, Trieste) and STM measurements were carried out at the Center for Functional 

Nanomaterials at Brookhaven National Laboratory. TMBDA was purchased from Fluka (>99% 

purity) and used without further purification.  Prior to forming molecular monolayers, the 

molecule is cleaned by several cycles of pumping at room temperature down to ~3e-6 torr. 

Details of monolayer and sub-monolayer preparation in ALOISA/HASPES have been reported 

elsewhere[15].  For measurements with the STM (Createc LT-STM), a single-crystal Au(111) 

was first cleaned by two cycles of sputtering with Ar
+
 (10

-5 
Torr, 1.5 keV, 10 min) at 25C and 

then annealed to temperatures above 400C for 10 minutes in ultra-high vacuum (UHV).  We 

used a solid Au tip (Alfa Aesar, 99.999% purity), hand cut and then annealed in UHV.  After 

cleaning, we imaged the sample to confirm that atomically flat surface has been achieved with 

the characteristic herringbone reconstruction.  Subsequently, the sample was brought to room 

temperature and transferred to the load-lock of the STM which was pumped to a base pressure of 

5×10
-8

 Torr.  The sample was then exposed to a TMBDA pressure of 5×10
-6

 Torr for 15 minutes 
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by heating solid molecules to about 40C.  The sample was then transferred back into the STM 

chamber and cooled to cryogenic temperatures at pressures below 10
-10

 Torr.  

Results and Discussion  

 

Figure 3.1-1: A) Helium diffraction pattern along <1 1 0> substrate directions for the (23x√3)-Au(111) 

chevron reconstruction of the clean surface (red trace) and for the TMBDA monolayer on Au(111) (blue 

trace).  Chemical structure of TMBDA is also shown.  Inset: intensity of the HAS specular peak during 

deposition as a function of time. B and C) RHEED along <112> and <110> respectively. 

A HAS measurement of the surface reflectivity taken during deposition is shown in inset 

of Figure 1A.  HAS specular peak intensity first drops then saturates, consistent with a formation 



44 

 

 

of a saturation phase at room temperature.  This phase has previously been attributed to a single 

monolayer of TMBDA on Au(111)[15].  Figure 1A compares HAS diffraction spectra of the 

clean Au(111) surface with 23 ×  3 herringbone reconstruction[20] and the TMBDA-covered 

surface which shows additional fractional order peaks along the <110> direction corresponding 

to a 3-fold periodicity.  Reflection high energy electron diffraction (RHEED) spectra, shown in 

Figure 1B and C along the <110> and <112> directions respectively confirm these findings and 

indicate no additional periodicity along the latter direction.  The narrow shape of specular and 

fractional HAS diffraction peaks evidence a very high degree of long range order in the TMBDA 

covered phase. These measurements indicate that TMBDA monolayers maintain the overall 

surface structure of the underlying Au(111) and are ordered in the <110> direction over length 

scales of hundreds of Angstroms with a 3-fold periodicity. 

To investigate the structure of TMBDA films on Au(111) in more detail, we turn to STM 

which can serve as a local probe of structural and electronic properties of the molecule on Au. 

Figures 2A and B show STM images of a monolayer of TMBDA on Au(111) taken at 70K.  The 

molecules are roughly hexagonally-shaped and about 1 nm in length (Figure 2C), and thus 

appear to adsorb in a nearly flat-lying configuration on the Au with the plane of the benzene ring 

parallel to the surface.  Despite full coverage, the underlying herringbone reconstruction of Au 

(111) is clearly visible in Figure 2A[21], indicating a relatively weak interaction of amine-

terminated molecules with the Au(111) surface[22].  In agreement with HAS, all STM images 

taken reveal the molecules to be well ordered in the <110> direction with a 3-fold periodicity 

(Figure 2A).  However, there is no additional periodicity along the <112> direction that is 

maintained over large areas. 
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Figure 3.1-2: A) STM images taken at 70 K of the saturated TMBDA monolayer with +165 mV bias 

applied to the substrate and 130 pA set-point current.   B) Smaller scale image of the same area as shown 

in A taken in the same tunnelling conditions.  Inset shows chemical structure superimposed on the high 

resolution STM image of TMBDA.  C) The profile along the <110> line indicated in B. 

To further investigate the strength of adsorption of our amine-terminated molecules to 

Au, we image regions of our sample at different coverages by performing temperature dependent 

desorption studies. We remove our sample from the experimental chamber of the STM and heat 

it in the preparation chamber where pressure does not exceed about 5×10
-8

 Torr during heating.  

Previous work has shown that TMBDA on Au(111) starts to desorb at about 70C and comes off 

fully at about 170C[15], but no local-probe investigation into relative binding strengths of 

adsorption geometries have been performed.  Figures 3A and B show STM images of sub-

monolayers created by flashing the saturated monolayer to 100C and 120C respectively.  About a 

third of the monolayer is lost by heating the sample to 100C as estimated from STM images 
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(Figure 3A), but even on the Au(111) terraces, molecules do not come off evenly from all parts 

of the surface; flashing leaves clear empty Au(111) regions. These empty regions coincide with 

the discommensuration (bright) lines of the herringbone reconstruction, where the hcp and fcc 

regions of Au(111) surface merge[19].  Further flashing to higher temperatures brings the 

coverage on flat terraces even lower, with few remaining molecules clustering in groups of three 

or four on the hcp and fcc regions as shown in Figure 3B.  These groupings could be a result of 

weak hydrogen bonding previously reported for this molecule[17].  Strikingly, after a flash to 

120C, the step edges remain fully decorated with molecules even while the flat terraces are 

nearly empty (Figure 3B).  We can combine our new findings with previous results[15] to 

estimate the adsorption energy of molecules on flat surface and on step edges.  Knowing that 

molecules on flat Au desorb at about 100C, and molecules on step edges desorb at about 170C, 

we can determine approximate adsorption energies. We use the desorption measurements from 

our previous work[15], where we monitored the HAS specular peak while heating the substrate 

at a 5K/s rate. Applying the Redhead formula[23] and using standard parameters for first-order 

desorption kinetics for conjugated molecules[24] we find adsorption energies of 1 eV on the flat 

surface and around 1.2 eV on the step edges. We note here that these adsorption energies are 

higher than those computed with density functional theory (DFT) due to a lack of van der Waals 

interactions in standard DFT[7, 8, 25, 26]. 

We now investigate the origin of uneven desorption off Au(111) terraces upon flashing.  

As already discussed, desorption studies show that molecules attached along the bright lines of 

the herringbone are bound more weakly than molecules on the darker regions of the 

reconstruction.  Indeed, closer inspection of Figure 2B reveals that the more strongly bound 
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molecules found predominantly on the hcp and fcc regions of the surface appear more symmetric 

(blue circles) than the more weakly bound counterparts along the herringbone (green circles) in 

the full monolayer.  A zoomed-in image in Figure 3C shows the difference between two species 

with higher resolution where molecules on the herringbone appear tilted (circled in green), 

whereas molecules between herringbone lines are more symmetrically bound (circled in blue).  

This suggests that the flat molecules are bound with both nitrogens equally coordinated to the 

surface.  In contrast, the weaker bound molecules on the flat Au surface which appear tilted, are 

probably bound through only one nitrogen and desorb from the surface first. 

 

Figure 3.1-3: A) A flat terrace at 5K after flashing to 100C, imaged at +100mV bias applied to the 

sample, with set-point current of 150 pA.  B) Terrace and step edge at 5K after flashing to 120C, imaged 

at +100mV bias applied to the substrate, with set-point current of 75 pA. C) A smaller-scale image of the 

area between two herringbone lines (top left corner and bottom right corner) taken on a full monolayer at 

-295 mV sample bias at set-point current of 200 pA. 

To investigate the nature of the distinct binding configurations of TMBDA on flat 

Au(111) we perform carbon and nitrogen x-ray photoemission spectroscopy (XPS), which is 

known to be sensitive to the chemical environment of atomic species in the molecule and their 

distance from the metal surface[27, 28].  XPS can thus distinguish different binding chemistries 

of the two distinct molecular species identified in the STM images.  For reference, we first 
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performed XPS of a multilayer of our molecules on Au(111).  Our multilayers are estimated to 

be over 2 nm thick, so the influence of the substrate on electron energy is negligible.  Figure 4A 

shows two distinct C1s core-electron binding energies of the multilayer at 284.4 and 285.1 eV 

which can be assigned from the literature to the distinct chemical environments for carbon 

TMBDA—the substituent methyl groups and the benzene ring respectively[29].  The carbons 

closest to the amines should display a slight shift in the core-electron binding energy with respect 

to the other carbons in the benzene ring, but this shift too small to resolve.  The ratio of the area 

under the two carbon XPS peaks is 0.6 and agrees well with the 4:6 ratio of methyl groups to 

aromatic carbons.  Only one species of nitrogen is present in the multilayer (Figure 4B), 

identified by a core-electron binding energy of 399.2 eV.  This indicates that in the multilayer, 

the two ends of the molecule are identical and any hydrogen bonding differences between the 

two ends in the solid state induce shifts that are not resolved here[17].  

In Figure 4, we show also XPS spectra measured on a saturated monolayer of TMBDA 

on Au(111), prepared as described above.  We see that the C1s peaks are shifted to lower binding 

energy by about 0.7 eV, due to the electrostatic screening effects when TMBDA is in close 

proximity to the Au surface[28, 30].  However, a small fraction of the signal (about 1/10
th

) 

remains at 285.2 eV, at the same binding energy as the benzene ring C in the multilayer. 

Similarly, most of the N1s XPS signal shifts down in energy by about 0.7 eV, though a small 

signal (about 1/3
rd

) is visible at the same energy as the N1s peak seen for the multilayer film. 

Since molecules are weakly bound on Au(111), the shifts seen here are most likely due to 

electrostatic effects rather than chemical interaction.  We thus conclude that about 1 in 11 carbon 

atoms and 1 in 4 nitrogen atoms are far from the surface, indicating that about half the molecules 
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are in a slightly tilted geometry with only one N coordinating the gold. This is consistent with the 

STM image in Figure 3A, which shows a similar prevalence of both flat and tilted species.  

 

Figure 3.1-4: A and B) XPS on Carbon and Nitrogen respectively performed using a photon energy of 

500eV.  For both species, spectra for the monolayer and multilayer coverage are shown.  The multilayer 

signal was scaled by 0.15 for comparison with the monolayer.  Traces are offset vertically for clarity. 
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Figure 3.1-5: A and B) A 3D rendering and 2D image of a full monolayer of molecules on flat terraces 

and on the edge taken with +65 mV tunneling bias and 90 pA set point current. Inset to B shows a smaller 

scale image of the molecules bound on the edge, circled in red.   C) STS spectra (I-V shown on the top 

panel, and dI/dV shown on the bottom panel) taken on B with the same tunneling parameters on step edge 

and on terrace (green and blue spots) and on clean gold (grey).   Each trace is an average of at least 40 

individual spectra, each taken over 2 seconds using lock-in techniques.  dI/dV spectra are fit with 

Lorentzian peaks, where the green displays a single peak within the range probed at -1.7 V (dashed green 

line).  The blue is best fit with a two Lorentzians, centered at -1.5 V and at -2.0 V (dashed blue lines). 

To further examine the nature of this nitrogen bond to Au and to investigate the effect of 

a reduced Au coordination played in molecular adsorption on step edges, we perform scanning 

tunneling spectroscopy (STS) measurements on TMBDA on Au(111) at 5K.  Figures 5A and B 

show the area used for STS measurements where molecules bound on the terrace and along a 

step edge are present.  Furthermore, the zoomed in image of the step edge shown in the inset of 

Figure 5B emphasizes the changed electronic structure of molecules bound there with respect to 

those bound on flat terraces, pointing to the effect of stronger binding to undercoordinated atoms 

on the electronic structure of TMBDA.  Figure 5C shows an average of at least 40 current-

voltage (IV) and differential conductance (dI/dV) curves taken on edge (green traces) and 

terrace-bound (blue traces) TMBDA at the locations indicated in Figure 5B.  Due to the weak 

Au-N bond, we were not able to use integration times higher than 2 seconds per voltage ramp 
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without desorbing molecules during the measurement.  To compensate for the short integration 

time and ensure that surface was not altered by the measurement, we took many fast IV ramps 

and averaged at least 40 consecutive spectra, imaging the surface after a series of IV 

measurements to ensure that the coverage had not changed.  To obtain dI/dV representing the 

local electronic density of states (LDOS) on the substrate[31] we used a 40 mV oscillation at a 

frequency of 2kHz and lock-in detection of the first harmonic.  We see, in Figure 5B, steeper 

increase in current in the I(V) spectra and a greater LDOS in the filled part of the spectrum for 

terrace-bound TMBDA when compared with the edge-bound molecules. A clear peak, indicating 

the position of the HOMO for edge-bound TMBDA, is seen at -1.7eV.  In contrast, we do not see 

a clear single Lorentzian peak for the terrace-bound TMBDA. It is likely that for these terrace-

bound molecules, both HOMO and HOMO-1 are close to Fermi, resulting in a wide feature in 

the dI/dV spectrum. We fit this wide peak with a double Lorentzians and find two peaks at -1.5 

eV and -2.0 eV which we attribute to the HOMO and HOMO-1 respectively. Using these results, 

we see that the HOMO shifts away from Fermi in TMBDA bound on under-coordinated Au is in 

excellent agreement with previous photoemission studies[15]. Clearly, the stronger binding of 

the molecules on step-edges results in a lowering of the occupied molecular orbitals relative to 

Fermi, indicating that the N-lone pair donates charge to under-coordinated Au. The tops of 

under-coordinated step-edges are known to be electron poor and therefore can act as good 

acceptors for the N-lone pair on the TMBDA[32].  Finally, the un-occupied side of the STS 

spectra do not show any features or resonances within 2eV of Fermi, confirming that the HOMO 

constitutes the dominant conductance channel in single molecule transport measurements. 
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Conclusions: 

 We determine, using HAS, STM and XPS measurements the structure of TMBDA 

monolayers on Au(111).  XPS and STM reveal that about half of the molecules on Au(111) 

terraces are lying flat with both nitrogens coordinating to Au atoms on the surface, while the 

remaining are slightly tilted, with one unbound nitrogen. HAS temperature desorption studies 

combined with STM images show that molecules adsorb on step edges with an adsorption energy 

that is higher than on Au(111) terraces.  Finally, STS shows that this stronger Au-N bond results 

in greater charge transfer to the Au, as evidenced by the deepening of the molecular HOMO on 

molecules bound to under-coordinated Au atoms on step edges. 
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Chapter 4: Geometry-Invariant Transport 
through Single Molecule Junctions  

 The realization of functional molecular electronic components relies on methods to 

reproducibly bind organic molecules to metal electrodes. Here, I present two distinct binding 

motifs both of which results in reproducible conductance signatures in break-junction 

experiments.  First, we show that the chemical specificity of the donor-acceptor bonds formed 

between under-coordinated gold and lone-pairs on the amine, methyl sulfide and dimethyl 

phosphine linkers results in well-defined transport properties that are invariant with geometry; 

conductance is recorded as a function of junction elongation, yet it remains largely unchanged 

even as junction structure evolves. We find that well-defined, invariant conductance signatures 

can also be obtained using direct bonding between the gold electrode and the π-system in a 

family of paracyclophane molecules.  This binding motif is promising for creating well-coupled 

metal-molecule-metal junctions with reproducible conductance signatures.     
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4.1  Formation and Evolution of Single-Molecule Junctions2 

Abstract:  We analyze the formation and evolution statistics of single-molecule junctions 

bonded to gold electrodes using amine, methyl sulfide, and dimethyl phosphine link groups by 

measuring conductance as a function of junction elongation. For each link, the maximum 

elongation and formation probability increase with molecular length, strongly suggesting that 

processes other than just metal-molecule bond breakage play a key role in junction evolution 

under stress. Density functional theory calculations of adiabatic trajectories show sequences of 

atomic-scale changes in junction structure, including shifts in the attachment point, that account 

for the long conductance plateau lengths observed. 

Over the past decade, the field of molecular scale electronics has come a long way 

towards elucidating and characterizing intrinsic molecular properties that affect transport. The 

electronic properties of single molecules attached to metal electrodes have been measured 

successfully by elongating and breaking nanometer scale wires in an environment of molecules 

using mechanically controlled break junctions and scanning tunneling microscopes (STMs) [1-

4]. Typically, the focus of these measurements has been on conductance and current-voltage 

characteristics. The physical structure of a single, nanoscale junction, such as an Au point 

contact, however, has only rarely been directly observed [5]. As a result, the role of junction size, 

molecular conformation, and thermal fluctuations have been inferred from parametric 

measurements [6-9], but fundamental questions regarding link bond formation and junction 

evolution under stress remain to be answered. 

                                                 
2 M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. 

Hybertsen, and L. Venkataraman, Physical Review Letters, 102, 126803 (2009). 
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Here we analyze a statistically significant sample of single-molecule junctions made by 

breaking Au point contacts in solution of the molecules using a simplified STM, recording 

junction conductance as a function of the relative tip-sample displacement [4].  These 

conductance versus displacement traces, measured with amine (NH2), dimethyl phosphine 

(PMe2), and methyl sulfide (SMe) links that bind selectively to gold [10], show plateaus during 

elongation, providing a signature of junction formation.  The lengths of these plateaus for 

different molecules probe the amount of elongation a junction can sustain without breaking. We 

find that, across all end groups, longer molecules form longer conductance plateaus and have a 

higher probability of forming a junction. Changes in applied bias voltage or elongation speed 

have no discernible effect [11].  Density functional theory (DFT) based ab initio calculations 

simulating the junction elongation process for the NH2 and PMe2 links show clearly that the long 

steps result from multiple processes including changes in the molecular binding site, changes in 

the gold electrode structure, and molecular rearrangements, as well as bond breakage. Bond 

breakage contributes only a small fraction of the total junction elongation distance. Furthermore, 

the zero-bias transmission does not change significantly upon changes in the molecular binding 

site or gold electrode structure, consistent with the narrow peaks seen in the measured 

conductance histograms. 
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Figure 4.1-1: (a) Normalized linear conductance histograms of 1,4-butanediamine (1, bin size 10-5 G0), 

1,6-hexanediamine (2, bin size 10-6G0), and 1,4-bis (dimethylphosphino) butane (3, bin size 10-5G0). Inset: 

Sample conductance traces (offset horizontally for clarity) that show a molecular step for each molecule. 

(b)–(d) Normalized 2D histograms for molecules 1, 2, and 3, respectively (100 bin/decade against 0.007 

nm=bin). (e) Normalized log-bin conductance histograms for 1, 2, and 3. 

Individual conductance traces for 1,4-butanediamine (1), 1,6-hexanediamine (2), and 1,4-

bis (dimethylphosphino) butane (3), measured under a bias of 25 mV with a pulling speed of 15 

nm/s from a 1mM solution in 1,2,4-trichlorobenzene, are compared in the inset in Fig. 1(a). 

These traces show plateaus with molecule-dependent conductances and lengths; junctions of 

butane with the PMe2 links (3) have the longest plateaus, sustaining the largest elongation, while 

those of butane with NH2 links (1) have the smallest.  Figure 1(a) shows the corresponding 

normalized conductance histograms generated from around 40 000 measured traces, without any 

data selection. The clear peak seen in these histograms reflects well the fact that molecular 

plateaus occur repeatedly within ~50% (peak width) of a well-defined conductance value (peak 

position). 

To distinguish differences in molecular plateau lengths, a two-dimensional (2D) 

histogram, retaining displacement information, is required [12, 13].  Since conductance plateaus 

occur in random locations along the displacement axis, we first set the origin of the displacement 
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axis at the point in the trace where the conductance drops below G0.  The 2D histograms, shown 

in Figs. 1(b)–1(d), are then created with linear bins along the positive displacement (x) axis and 

log bins along the conductance (y) axis for image clarity. [Note: Using log bins shifts the 

conductance peaks up by 15% as shown in Fig. 1(e) [14]]. The normalized 2D histograms show 

that the molecular conductance peak extends to approximately 2.5Å along the x axis for 1, 4.5Å 

for 2, and 5.5Å for 3.  Comparing the two diamines (1 and 2), we find more counts and longer 

plateaus for the longer molecule.  We also see that PMe2 links (3) sustain longer plateaus than 

NH2 (1). 

 

Figure 4.1-2: (a) Conductance step length distribution for diamino alkanes with 4, 6, 8, and 11 CH2 

groups in the chain. Crosses indicate the 95th percentile for each distribution. (b) Conductance step 

length (95th percentile) as a function of the number of CH2 groups for alkanes with the three links 

studied. 

To quantify these trends, we determining the length of the molecular conductance plateau 

for each measured trace with an automated algorithm [15] for a series of alkanes with NH2, SMe, 

and PMe2 links.  From a histogram of plateau lengths [Fig. 2(a)], we determine the ‗‗longest‘‘ 
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plateau for each molecule measured, defined as the 95
th

 percentile of the distribution [16].  In 

Fig. 2(b), we plot the longest step length as a function of the number of methylene (CH2) groups 

on the alkane backbone. Comparing molecules with the same link group, we see a striking 

increase in junction elongation distance with molecule length.  Linear fits to these data show a 

similar slope, but they are offset vertically, with the PMe2 link having the largest intercept. This 

is consistent with our previous assertion that the elongation distance between the energy 

minimum configuration and the force maximum of a molecular junction increases from NH2 to 

SMe to PMe2 [10].  We also analyzed measurements of a series of oligophenyls (one, two, and 

three rings) with NH2 links and find a similar linear increase in junction elongation with 

molecule length. 

Our analysis shows that, in individual conductance traces, an Au point contact is thinned 

out to a single atom chain and breaks; then a molecular plateau is seen, with a length and 

frequency that depend on the molecule length. When the Au contact breaks, the Au atoms snap 

back [17] leaving two electrodes that are separated by about ~6.5Å [12, 17].  This suggests that, 

for junction formation, short molecules insert with the link groups bonded to the apex atom of 

the tip and substrate, while long molecules can bind away from one (or both) apex atoms.  Once 

a junction is formed, upon elongation, the binding site could move from one atom to the next, or 

the gold electrodes could deform under the pulling force. This implies that longer molecules 

have access to a larger number of binding sites on the Au tip and substrate.  Indeed, we find that 

the fraction of traces with steps increases systematically with molecule length from about 

25%for ethanediamine to 65%for butanediamine, 85%for hexanediamine, and about 95% for 

octanediamine. 
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Figure 4.1-3: Calculated adiabatic 1,4-butanediamine junction elongation trace. (a) Relaxed junction 

geometries at four different positions. (b) Binding energy relative to relaxed, isolated Au pyramids and 

molecule. (c) External applied force calculated from the derivative of junction energy with respect to 

elongation. (d) N-Au bond lengths: upper N to the Au atom on the second layer (+), to the Au atom on the 

bottom layer (□), and the lower N-Au bond (Δ). (e) Conductance. 

There are certainly alternative scenarios for junction formation.  First, gauche defects in 

alkanes are relatively low energy, so a bent or folded conformation could bind at the apex [6] and 

unwind under tension resulting in longer conductance plateaus. However, in such cases, the 

junction conductance would initially be significantly lower, contrary to what we observe in the 

2D histograms [8]. Also, such folding will not occur for oligophenyls. Second, molecules could 
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already be bridging the tip and substrate in parallel to the Au point contact prior to gap formation 

[9]. While this would be very unlikely for the short molecules in our study, we cannot 

conclusively rule it out for longer molecules. 

To probe molecular junction evolution, ab initio calculations of adiabatic pulling traces 

were conducted for 1 and 3 with different initial geometries. The contacts are modeled with Au 

pyramids (20 atoms each) with (111) surfaces. The tip atom on the top pyramid was moved to an 

adatom site on one facet. We considered starting geometries in which one link group was bound 

to an atom on the edge of the top pyramid (Fig. 3) or to the adatom on one of the faces (Fig. 4). 

We studied eight distinct junction structures, four with each link. These are illustrative scenarios 

that probe two types of Au link site (edge and adatom) and the influence of bond strength (amine 

versus phosphine).  They include selected variations in molecular backbone angle and other 

constraints to probe the robustness of the main conclusions. The back layer of Au atoms for the 

top and the back two layers of the bottom pyramid were held fixed with a bulk lattice parameter 

4.08Å (except where noted below).  All other degrees of freedom were relaxed until all forces 

were less than 0.005 eV/Å.  The junction was then elongated in 0.05Å steps by shifting the 

bottom pyramid along the z direction and then fully optimizing the geometry. 

Total energy calculations and geometry optimization were performed with the quantum 

chemistry package TURBOMOLE v5.10 [18].  A DFT approach was used with a generalized 

gradient approximation functional (Perdew-Burke-Ernzerhof form) [19] and an optimized split 

valence basis set with polarization functions (designated def2-SVP) [20, 21]. The ballistic 

electron transmission through the junction was calculated with a Green‘s function approach 

applied to the composite electrode-molecule system and a simplified embedding self-energy[22, 
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23][24].  The zero-bias conductance is given by transmission at the Fermi energy. The Green‘s 

function was based on the eigenstates from the DFT calculation. Test conductance calculations 

for 1,4-benzenediamine agreed with earlier results [15].  While the DFT-derived frontier energy 

alignment results in systematic errors in the calculated conductance [15, 25, 26], errors are 

modest for alkanes as the Fermi energy is roughly in the middle of the gap between the highest 

occupied and lowest unoccupied molecular orbital energies [27]. 

Fig. 3 shows an illustrative scenario where the NH2 initially binds to the edge atom of the 

second layer of the upper pyramid [28].  The NH2 remains coordinated to this Au atom for about 

1.5Å with an increasing N-Au bond length. When it approaches a bridging geometry, the NH2 

abruptly jumps (at z = 1.8Å) to bind to the lower, corner Au atom on the tip. Following the jump, 

the N-Au bond lengths remain relatively constant up to about z = 3.5Å, with the geometry 

adjusting through bond angle changes.  Then the bottom N-Au starts to elongate, and the 

maximum sustained force of 0.8 nN is observed near z = 3.8Å.  Up to z = 3.8Å, the calculated 

conductance is consistent with a single step as it would be observed in the experiments.  After z 

= 3.8Å, the conductance decreases exponentially with N-Au bond elongation. The abrupt 

termination of experimental traces is consistent with energy cost to break the lower N-Au bond 

(<0.4eV) at z = 3.8Å and thermal fluctuations on the millisecond time scale. Calculations starting 

from a similar junction with PMe2 links showed more extensive Au electrode deformations, 

including plastic deformation of the tip region and extraction of short Au chains. The P-Au bond 

to the lower pyramid broke after a 5–7Å elongation with a maximum sustained force around 

1.4nN.   
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Figure 4.1-4: Calculated adiabatic 1,4-bis(dimethylphosphino)-butane junction elongation trace. (a) 

Relaxed junction geometries at four different positions. (b) Binding energy. (c) External applied force. (d) 

P-Au bond length: upper (+) and lower (Δ) pyramids. (e) Conductance. 

Figure 4 shows a different scenario with a PMe2 link initially bound to the Au adatom tip 

face [27].  There is an initial twist in the molecule (0.2eV energy cost) which could be realized in 

experiment due to constraints in available binding sites. The conductance thus starts low (2–3× 

10
-4

G0) as the electronic gateway state of the P-Au link is not aligned with the sigma states of the 

alkane backbone.  Under stress, the molecule untwists, initially slowly and then with a rapid 
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readjustment at around z = 3.3Å, and conductance rises to 4×10
-3

 G0. At the same time, the Au 

adatom is dragged towards the edge of the pyramid, adopting a twofold coordination against the 

pyramid edge.  At z = 3.7Å, the nearest Au corner atom in the back layer is freed. This stabilizes 

the upper Au pyramid against significant plastic distortion. From z = 3.9 to 5.1 Å, the Au atoms 

around the adatom distort, and at z = 5.1 Å, the adatom abruptly jumps to the apex position with 

the conductance increasing to about 7×10
-3

 G0. The P-Au bonds and Au apex structures stretch 

modestly with the lower P-Au bond taking up most of the elongation until it breaks at z = 6.9 Å. 

The conductance then decreases exponentially. The maximum sustained force is again about 1.4 

nN, similar to the measured Au-Au breaking force [29].  Experimentally, such a trace would 

have an initial gap (low conductance value).  Calculations done for similar junction structures 

with NH2 links showed that the N-Au bond was strong enough only to pull the Au adatom up to 

a bridging position on the pyramid edge before the lower N-Au bond broke at a maximum 

sustained force of 0.8 nN. 

An overview of all eight calculated trajectories shows that the junction formation energy 

at local minima spans the range 1.1–1.6eV per PMe2-Au bond (15 minima) and 0.7–1.0eV per 

NH2-Au bond (8 minima). With the exception of regions with a twist in the molecule, the 

calculated conductance values undergo modest changes when the link attachment point shifts or 

the Au atoms near the link rearrange. The calculated conductance values for 1 range from 1–

3×10
-3

 G0, while those for 3 span a broader range (1–12×10
-3

 G). These are slightly larger than 

the experimental peak positions in Fig. 1(a) at approximately 1×10
-3

 G0 (1) and 2×10
-3

 G0 (3), 

though the ranges are consistent with the measured histogram widths. Finally, the twist in the 

molecule (gauche defect) results in a conductance smaller by 1 order of magnitude, in agreement 
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with a very recent study of alkanedithiol junction evolution and conductance [30].  From the 

measured histograms, we conclude that such low conductance data are not statistically 

significant and could occur in less than 5% of the traces. 

Several fundamental points emerge from our work.  First, junctions can form with the 

link group bonded to an undercoordinated Au atom higher up on the electrode with similar 

binding energy and conductance. This naturally explains the higher probability of junction 

formation observed for longer molecules. Second, under stress, such junctions can evolve 

through different types of physical motion of the link, either by hopping of the link group from 

one available undercoordinated Au site to another (but never a bridge or hollow site) or by 

dragging an undercoordinated Au atom, thereby distorting the Au structure.  During this motion, 

the conductance can be relatively stable, consistent with a single step in the measured traces.  

Third, the stronger Au-PMe2 bond, compared with the Au-NH2, can extend the physical junction 

over a larger distance, consistent with measurements.  Finally, our results highlight the diversity 

of physical configurations that are probed when single-molecule junctions are formed.  The 

consistent measured conductance signatures that form the well-defined steps derive from the 

chemical specificity of the donor-acceptor link motifs. The lone pair on the link atom (N 

fromNH2, S from SMe, and P from PMe2) coordinates a single Au atom on the electrode. Thus 

local variations in electrode atomic structure and link geometry have only a modest influence on 

the electronic coupling. 
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4.2 Single molecule conductance through multiple π-π stacked 
benzene rings determined with direct electrode to benzene 
ring connections3  

Abstract:  Understanding electron transport across π-π stacked systems will help to answer 

fundamental questions about biochemical redox processes and benefit the design of new 

materials and molecular devices. Herein we employed the STM break junction technique to 

measure the single molecule conductance of multiple π-π stacked aromatic rings. We study 

electron transport through up to four stacked benzene rings held together in an eclipsed fashion 

via a paracyclophane scaffold. We find that the strained hydrocarbons studied herein couple 

directly to gold electrodes during the measurements, hence we do not require any heteroatom 

binding groups as electrical contacts. Density functional theory (DFT) based calculations suggest 

that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost 

cyclophane benzene rings in 
2
 fashion. Our measurements show an exponential decay of the 

conductance with increasing number of stacked benzene rings, indicating a non-resonant 

tunneling mechanism. Furthermore, STM-tip substrate displacement data provide additional 

evidence that the electrodes bind to the outermost benzene rings of the π-π stacked molecular 

wires. 

Understanding electron transport at the molecular level is crucial for the design and 

construction of functional nanoscale devices[31, 32] and will also help to elucidate the 

mechanisms of biological redox processes[33].  One area of particular interest is how - 

                                                 
3 S. Schneebeli, M. Kamenetska, Z. Cheng, R. Skouta, R.A. Friesner, L. Venkataraman, R. Breslow, 

(COVER) J. Am. Chem. Soc., 133, 2136–2139 (2011) 
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stacked aromatic rings conduct electricity, since electron transport through stacked DNA base 

pairs[34] and amino acid residues[35] plays a key role in xenobiotic metabolism,[36] 

photosynthesis[37] and DNA repair.[38] Inspired by how - stacking is efficiently used by 

nature to achieve directed long range electron transport, it is believed that synthetic molecular 

wires incorporating - stacking will be useful as new electronic materials[39] or as components 

in molecular devices.[40, 41] Furthermore, rigid synthetic molecular wires represent model 

systems for their biological counterparts, for which it is often difficult to obtain reproducible 

conductance data due to the large size and the increased flexibility.[42]  

Measurements of molecular layers incorporating a paracyclophane scaffold[43, 44] and 

conductance between molecules held together by spontaneous - stacking[45, 46] have 

provided evidence for transport across two π-systems.   However the important question of how 

the electron transport properties of multiple π-stacked systems differ from saturated or 

conjugated chains has not been addressed experimentally at the single molecule level. Herein we 

are for the first time able to experimentally determine the single molecule conductance of 

synthetic molecular wires with multiple, tightly π-π-stacked aromatic rings. The benzene rings in 

our synthetic molecular wires (compounds 1 – 3) are held together in eclipsed fashion via 

ethylene bridges as in [2.2]-paracylophane (1). 

Electron transport measurements of single molecules are carried out using the STM based 

break-junction technique.[3, 4] While in our previous work heteroatom attached groups such as 

amines,[4] phosphines[47] or alkylsulfides[48] were needed to connect organic molecules to 

metal electrodes, we herein find that simple hydrocarbons with strained aromatic rings can 

directly contact two gold electrodes, as has been shown for C60.[49] Since heteroatom linker 
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groups can destabilize molecular wires,[50] employing simple hydrocarbons as linkers could 

allow access to conductance studies of less stable structures. 

 

Chart 4.2-1: Molecular wires with up to four - stacked benzene rings used in the gold STM break-

junction conductance measurements. Compound 3 was isolated and measured as a mixture (1.35:1.00) of 

the isomers 3a (with solid black bonds) and 3b (with dashed black bonds). 

Figure 4.2-1: (A) Conductance Histograms of compounds 1 – 3 generated using a linear bin size of 

105 G0 for compounds 1 and 2 and 10-6 G0 for compound 3. Inset: Conductance histogram peak versus 

number of paracyclophane units shown on a semi-log scale. The dotted line represents an exponential fit 

to the data with a decay constant  of  (1.94 ± 0.25)/(stacked benzene unit). Error bars capture the 

variability in peak position. (B) 2D-histograms showing molecular conductance as a function of STM tip-

sample displacement for compounds 1 – 3 generated using a logarithmic binning with 10 bins/decade. 

The displacement dimension was binned linearly with a bin size of 0.072 Å. The color scale indicates the 

average number of counts per trace in a given conductance-displacement bin. The tip-sample 

displacement is proportional to the length of the molecule in the break-junction.[47, 51] The horizontal 

blue lines in the 2D histogram for compound 1 mark the section of the plot used to determine the step 

length.[47] Inset: Measured step length plotted against the distance between the outermost benzene rings. 

The dashed line represents a linear least squares fit with slope ~0.5 

4

32

1

1 2 3a
3b
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Single-molecule junctions were created by repeatedly forming and breaking gold point 

contacts in a solution of the molecules in 1,2,4-trichlorobenzene, in a home-built setup .[4] While 

compounds 2 and 3 were measured under Argon atmosphere, all other compounds were 

measured in air. For each molecule studied, the measured conductance traces reveal steps at 

molecule-dependent conductance values less than the quantum of conductance, G0 = 2e
2
/h; these 

are due to conduction through a molecule bonded in the gap between the two Au point contacts. 

Figure 1a shows conductance histograms generated (without any data selection) from over 5000 

measured traces for compounds 1 – 3. 

Compound 1 was obtained from Acros Organics, while compounds 2 and 3 were 

prepared, according to known procedures, by reductive desulfuration reactions with P(OEt)3 

under UV light from the corresponding dithia[3.3]-paracyclophane derivatives.[52-54]   

Compound 3 was isolated as a 1.35:1.00 mixture of the two isomers 3a and 3b shown in chart 1. 

The isomers were not separated for this experiment, which might explain the broader peak 

observed for 3. 

The inset in figure 1a shows the position of the histogram peaks determined from 

Lorentzian fits to the data. We see that the molecular conductance decreases exponentially with 

increasing number of stacked aromatic rings. This finding is consistent with a non-resonant 

tunneling mechanism of the electron transport through these π-stacked molecules, and strongly 

suggests that each gold electrode contacts the outermost benzene rings in compounds 1 – 3, 

rather than the bridging ethylene groups. Further evidence for this conclusion is obtained by 

analyzing two-dimensional histograms[51] showing molecular conductance as a function of 

STM tip-sample displacement (figure 1B). Briefly, 2D histograms are generated using an 
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automated algorithm by setting the rupture of the G0 contact as the origin of the displacement 

axis on each trace; conductance and displacement relative to zero are then binned to generate 2D 

maps out of thousands of traces shown in figure 1B.[51] The inset of figure 1B shows that the 

most probable step length increases linearly with the number of stacked benzene rings. The fact 

that the slope is ~0.5 could indicate that the molecules on average bind at an angle or that they 

often desorb from the junction while the tip-substrate separation is still small enough to allow the 

molecule to remain bound.  While more investigation is needed, the linear dependence of step 

length on molecule length indicates that the metal electrodes bind to the outermost benzene rings 

of the paracyclophanes and transport has a component along the molecular axis which lengthens 

as the number of stacked benzene units is increased.  From an exponential fit to the conductance 

data shown in Figure 1a we were able to determine the decay constant  with G ~ e
-βN

, as 

(1.94 ± 0.25)/(stacked benzene unit). Using a ring spacing of (3.07 ± 0.02) Å between layers of 

stacked benzene rings this converts to a  of (0.63 ± 0.09)/Å. This is smaller than the value 

observed for alkanes, which show a beta of about 0.8/Å.[3, 55] In fact, if we consider the σ 

through-bond channel for this series of molecules, we see that it would increase by at least four 

C-C bonds with the addition of each benzene layer (including one bond between carbons 3 and 4 

in the benzene ring in chart 1). The resulting   would be ~0.5/(C-C bond), which is significantly 

lower than previously measured values of ~1/(C-C bond) [4],[47, 51] and cannot be accounted 

for purely by conductance through the σ channel. Therefore, the significant difference between 

the decay constant of the - stacked paracyclophanes 1 – 3 and the one of alkyl chains indicates 

that the conductance channel in which electrons tunnel between the contacting - stacked layers 
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has indeed a major contribution to the overall conductance in [2.2]-paracyclophane type 

structures, as has been predicted in a computational study as well.[43]   

It is well known that the strained benzene rings in [2.2]-paracyclophanes can form 

complexes with transition metals that are in general significantly more stable than the 

corresponding complexes involving normal, unstrained benzene rings.[56] To better understand 

the role of strain in facilitating the binding of hydrocarbons to gold electrodes, we measured the 

unstrained [4.4]-paracyclophane (4, obtained from Sigma-Aldrich‘s rare chemical library). We 

found that 4 did not show any molecular conductance plateaus in traces, or conductance peak in 

the histogram to within the measurement limit of our experiment (Figure 2), indicating that it 

probably did not bind to gold electrodes. If compound 4 had bound to the gold electrodes one 

would expect to see molecular conductance traces with low, but still detectable, conductance as 

commonly observed for alkanes of similar length.[55]  

 

Chart 4.2-2: - stacked molecular wires without strain (4), with an electron donating substituent (5), 

and with electron withdrawing substituents (6). 

Further insight into the nature of the direct gold-electrode carbon contacts observed 

herein was obtained by studying substituted versions of [2.2]-paracyclophane (1). In general, 

electron withdrawing substituents such as fluorines lower the Lewis-basicity of the 

paracyclophane benzene rings and therefore reduce the binding affinity for gold electrodes. On 

the other hand, electron-donating substituents such as methoxy should lead to stronger binding to 

4 5 6

OMe FF

F F
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the electrodes. In order to test this hypothesis we synthesized fluorine and methoxy substituted 

versions of [2.2]-paracyclophane (compounds 5 and 6) following known procedures.[57-59] 

Analogous to the synthesis of compounds 2 and 3,[52] we obtained the substituted [2.2]-

paracyclophanes 5 and 6  in good yield via a reductive desulfuration reaction of the  

corresponding dithia-[3.3]-paracyclophane derivatives under UV-light. While we found that 

compound 6 with four fluorine substituents did not bind to gold electrodes and conduct 

electricity, results with the methoxy substituted compound 5 were very similar to those of the 

unsubstituted [2.2]-paracyclophane (1, figure 2). 

 

Figure 4.2-2: Conductance Histograms of compounds 1, 4, 5, and 6 generated using a linear bin size of 

10-4 G0. 

To understand the relative gold binding affinities of compounds 1 – 6 in a more 

quantitative fashion, we carried out DFT based calculations of the molecular binding energy to 

gold dimers, making the assumption that a linear chain of gold atoms links the molecule to the 

electrode. All binding energy calculations were performed at the spin unrestricted 

B3LYP/LACV3P**++//B3LYP/LACVP** level[60-64] with the Jaguar[65] software package. 

The pseudospectral method[66] was employed to speed up the SCF cycles. Default grids and 

convergence criteria were employed. We note here that binding energies calculated with gold 
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dimers cannot be compared directly with those of single gold atoms due to an odd/even effect on 

the binding energy.[67] However, our focus here is on the trends in calculated binding energies, 

which are robust. Calculations with larger gold clusters, which will be necessary to get more 

accurate gold binding energies of the compounds studied herein but are beyond the scope of this 

work, are in progress and will be reported elsewhere.  

We find two stable binding geometries for the gold dimers bound to compound 1. The 

first has the gold coordinating the C1-C2 ―double‖ bond in an 
2
-fashion, and the second with the 

gold attached in 
1
-fashion to C1 of [2.2]-paracyclophane (with C1 and C2 defined in chart 1). 

These calculated gold binding affinities of 0.74 eV (17 kcal/mole) are very similar to the one 

reported for C-60 (0.67 eV) with a gold dimer electrode model.[67]  To compare these gold 

dimer binding energies of the cyclophane compounds 1 – 6 to the ones of traditional Lewis-basic 

heteroatom link groups, we also calculated the gold dimer binding affinity of methylamine (7) 

and dimethylsulfide (8), which are known to bind to undercoordinated Au in the experiments. 

and dimethylether (9) that does not bind to Au in the experiments. For the amine terminated 

molecule (7), the calculated gold dimer binding energy is significantly larger than the ones 

reported with either a single gold atom or larger gold clusters.[48]
, 
[51] Nonetheless, these gold 

dimer binding affinities serve as a guide for the relative gold binding strengths of the various 

compounds studied here.  

 



77 

 

 

 

Figure 4.2-3 Optimized structures (B3LYP/LACVP** level) of compounds 1 – 9 bound to a single gold 

dimer (bond distances in Å). The most stable binding configurations are shown for all compounds. The 

green gold dimer binding energy range represents compounds that successfully bind to gold electrodes in 

STM break-junction conductance measurements. 

Figure 4 shows the calculated gold dimer binding energies for compounds 1-9. We see 

that all molecules with gold dimer binding energies above 0.7 eV actually bind to gold electrodes 

in STM break-junction measurements, allowing conductance measurements. Compounds with 

lower gold dimer binding energies do not show any peaks in conductance histograms, consistent 

with the understanding that these do not bind to undercoordinated Au on the electrodes.  Finally, 

these calculations show that paracyclophanes bind through their outer π system to the C1 carbon 

or to the C1-C2 bond.  
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Figure 4.2-4:  Isosurface plots (contour value = 0.01) of the frontier molecular orbitals of [2.2]-

paracyclophane (1) bound to two gold dimers. The two LUMOs shown are degenerate. Orbitals with 

bonding character between the gold dimers and the benzene rings are lower in energy and are not shown 

in this plot. 

Frontier molecular orbitals determined by analyzing the molecular Hartree-Fock orbitals 

(at the RHF/LACVP** //UB3LYP/LACVP** level, computed with Gamess[68]) are shown in 

Figure 4 for molecule 1 bound to two gold dimers. We see that the frontier molecular orbitals are 

mainly localized on the benzene rings and on the gold atoms, indicating that the Au is indeed 

coupled to the molecular π system. This provides further evidence that during electron transport 

through the - stacked systems studied herein transport is through the π system, rather than the 

-type molecular orbitals of the ethylene link groups. 

In summary, we were able to study the single molecule conductance of strained 

paracyclophanes with up to four π-π-stacked benzene rings. We find that the hydrocarbons 
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studied form direct electrical contacts with gold electrodes in STM break junction conductance 

measurements.  The observed exponential decay of molecular conductance with increasing 

number of stacked benzene rings confirms that the gold electrodes bind to the outermost benzene 

rings of the paracyclophane derivatives. DFT calculations suggest that stable electrical contacts 

are formed via coordination of the gold electrodes to C-C ―double‖-bonds of the outermost 

benzene rings in 
2
 fashion. It is likely that many other unsaturated strained hydrocarbons can be 

employed to form direct Au-C bonds with gold electrodes as well. This possibility is currently 

being explored in our laboratories and will be reported in due time.  
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Chapter 5: Geometry-Modulated Conductance 
in Single Molecule Junctions. 

 Well defined conductance signatures are necessary to study transport properties of single 

molecule junctions.  However, to create functional electronic components out of single 

molecules, several accessible conductance states are desirable.  Here we study the behavior of 

single molecule junctions which display several well-defined conductance states.  We report our 

results with pyridine-linked molecular wires and methyl sulfide-linked oligoenes.  We are able to 

access and reversibly switch between different conductance configurations of metal-molecule-

metal junctions formed with these molecules by systematically varying junction geometry.   
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5.1  Conductance and Geometry of Pyridine-Linked Single 
Molecule Junctions.4  

Abstract:  We measure conductance and characterize molecule-electrode binding geometries 

for four pyridine-terminated molecules by elongating and then compressing gold point 

contacts in a solution of molecules.  We find that all pyridine-terminated molecules exhibit 

bi-stable conductance signatures, signifying that the nature of the pyridine-gold bond allows 

two distinct conductance states which are accessed as the gold-molecule-gold junction is 

elongated.  We identify the low conductance state as corresponding to a molecule fully 

stretched out between the gold electrodes where the distance between contacts correlates with 

the length of the molecule; the high conductance state is due to a molecule bound at an angle.  

First principles conductance calculations for the four molecules in the low-conductance 

geometry agree well with experimental results, and show that the dominant conducting 

channel in the conjugated pyridine-linked molecules is through the π*-orbital.  

Understanding the effect of metal-molecule contact geometry on transport characteristics 

of molecular-scale devices is of critical importance for nanoelectronics[1-3].  In recent years, 

systematic studies of conductance in single molecule junctions have been made possible by 

techniques relying on statistical distributions of large numbers of junction measurements[2, 4-7].  

This method is effective because the affinity of certain chemical link groups to gold allows the 

metal-molecule-metal junctions to self-assemble in situ, enabling a large number of repeated 

measurements.  Nevertheless, it has been shown that variations in binding geometry from 

                                                 
4 Kamenetska, M.; Quek, S. Y.; Whalley, A. C.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Nuckolls, 

C.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Journal of the American Chemical Society 2010, 

132, (19), 6817-6821. 



87 

 

 

junction to junction are responsible for most of the width of conductance distributions and for the 

inconsistency in experimental results[8-11].  Studies comparing the variability of conductance 

measurements with the nature of the linker-gold bond have shown that some end groups form 

donor-acceptor bonds with undercoordinated gold atoms and bind selectively, yielding 

reproducible conductance measurements[2, 12, 13].  In the case of the amine (NH2) linker for 

example, the nitrogen can change attachment point while maintaining a constant conductance as 

the junction is elongated because it remains bound to an undercoordinated gold atom[14].  

However, with pyridines and many other linkers, where multiple conductance signatures are 

present, questions regarding the exact configuration of a metal-molecule-metal junction and its 

effect on transport remain[9, 10, 15-19]. 

 Here, we measure the conductance and determine junction geometry for a family of four 

pyridine-terminated molecules: 4,4‘-Bipyridine (1), 1,2-Bis(4-pyridyl) ethylene (2), 4,4‘‘-Bis(4-

terpyridine) (3), and 1,2-Bis(4-pyridyl)ethane (4) using the scanning tunneling microscope based 

break-junction technique[2, 4]. We demonstrate that all four molecules exhibit two conducting 

configurations: molecular junctions start in a high conductance configuration which can be 

elongated over a distance that depends on the molecular length[14] and generally terminate with 

a low conductance plateau whose length distribution is molecule independent. We find further 

that the electrode separation in the low-conducting state is consistent with a vertical geometry 

where the molecule is probably bound to apex atoms on each electrode, while the high-

conducting state corresponds to junctions with an electrode separation that is smaller than the 

length of the molecule. These findings are corroborated by scattering-state density functional 

theory (DFT)-based conductance calculations, which show that the low-conducting state is 
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associated with a vertical geometry where the N-Au bonds are aligned with the molecular 

backbone (and therefore perpendicular to the π-system), while the high-conducting state is 

associated with a geometry where the molecule is tilted, resulting in an increased coupling from 

the electrode to the molecular π-system.[15]  For the three conjugated molecules in our study the 

measured conductance decreases with increasing length with a decay constant beta of about 

0.5/Å, suggestive of off-resonant tunneling transport dominated by a π-channel. This is despite 

the σ nature of the N-Au link bonds in the low conductance geometry and in agreement with our 

calculations which indicate that the dominant conducting channel in the low conductance 

geometry has π character for the conjugated molecules.  The measured conductance for the 

molecule with broken conjugation (molecule 4) is much smaller than one would generally expect 

for a molecule of its length. Here, our calculations show that the dominant conducting channel 

has σ character throughout the molecule. We attribute this to an interference effect that 

suppresses the channel with π character in the pyridine rings.  

Molecules 1, 2, and 4 were obtained from Sigma Aldrich and used without further 

purification and molecule 3 was synthesized following the methods described in the 

literature[20]. Our measurements are carried out in a home-built STM which has been described 

in detail previously[2, 21]. We repeatedly pull the STM tip and substrate apart while recording 

conductance as a function of junction elongation under constant bias in a 1,2,4-Trichlorobenzene 

(Sigma-Aldrich) solution of these molecules. Sample traces demonstrating the evolution of 

conductance as the junction is stretched in the presence of molecules 1-4, are shown in Figure 

1b. Plateaus in these traces below the quantum of conductance (G0) occur when a molecule is 

held between the tip and substrate.  Conductance histograms generated from over 20,000 
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conductance traces for all molecules are shown in Figure 1c, where we can see that the double-

peak feature is universal to the pyridine linker[15].  Interestingly, the high conductance peak is 

less distinct in molecule 4 compared to molecules 1-3, a feature that we discuss further below. 

 

Figure 5.1-1: (a) Structure of compounds studied in this work. (b) Sample conductance traces acquired 

while the junction was pulled apart at a rate of ~15 nm/s in the presence of each target molecule (1-4) 

under 350 mV applied bias.  (c) Conductance histograms for molecules 1-4, each constructed from over 

20000 measured traces.  Two peaks are clearly visible in each curve and are fit to a Lorentzian to 

determine the peak center position. 

In Figure 2a and 2b, we show two-dimensional (2D) histograms, which preserve 

displacement information, for molecules 2 and 4, generated from more than 10,000 traces[14, 15, 

22]. We generate such 2D-histograms with an automated algorithm which identifies the rupture 

of the quantum point contact in each trace as the origin of the elongation axis.  Each data point in 

a trace is then associated both with a conductance value and a displacement value relative to the 

G0 break, and the histogram is generated using logarithm bins along the conductance axis (y) and 

linear bins along the elongation (x) axis for image clarity.  When thousands of traces are used, a 
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statistically significant plot of conductance as a function of elongation emerges. We can see that 

both molecules have plateaus that extend out to about 0.6 nm; in the initial stages the 

conductance is high and the low conductance plateau occurs only after about 4 Å of additional 

junction stretching.  

 

Figure 5.1-2: (a and b) Two-dimensional conductance histograms for molecules 2 and 4 constructed from 

all measured traces that showed a clearly defined break after the 1G0 step; at least 10000 curves were 

included in each histogram.  The arrows point to the low conductance regime which extends to about 0.7 

nm past the G0 break.  (c) Length distributions of the high conductance (solid lines) and low conductance 

(dashed lines) plateaus.  Inset: Peak value of the high conductance plateau length distributions as a 

function of the molecule N-N length. 

To investigate these trends in more detail, we use an automated algorithm detailed 

previously[23], to measure the elongation lengths of conductance plateaus in each trace.  We 

perform this analysis on thousands of traces and generate length distributions of both high and 

low conductance plateaus for each molecule, by identifying plateaus as regions within 

conductance traces between two successive drops in conductances[23].  The results are shown in 

Figure 2c. The inset of Figure 2c shows the peak positions of the high conductance length 
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distribution plotted against the molecule length. We see that the most frequently observed high 

conductance step length increases linearly with molecule N-N distance for molecules 1-3. For 

molecule 4, our probably algorithm misses the initial part of each step, probably because direct 

tunneling through the broken Au-Au contact dominates at small Au-Au separations.  On the 

other hand, low conductance plateaus of all four molecules are shorter than high conductance 

plateau lengths and show no dependence on molecule length. These distributions do not have 

maxima; they fall off exponentially. The two distinct length scales, one dependent on molecule 

length and one independent, suggest that at least two separate elongation processes are 

responsible for the high and low conductance plateaus.  Atomic rearrangements, such as the 

changing of the nitrogen attachment point or moving of a gold atom on the electrode surface, can 

explain the high conductance step lengths and their dependence on molecule length[14].  We 

hypothesize, that all rearrangements in the attachment of the molecule to the gold take place 

before the low conductance configuration is established, leaving only bond rupture—which is 

independent of molecule length—as the main process responsible for low conductance plateaus.   

To test this hypothesis, we measure conductance as a function of both junction elongation 

and compression (see SI for details).  We repeatedly open and then close a quantum point contact 

in a solution of molecules under a constant bias[15]. We determine the distance needed to push 

the electrodes back together to reestablish a conductance greater than G0 for a molecular junction 

in either the high or the low conductance regime.  This push-back distance gives the distance 

between the gold electrodes in a molecular junction (excluding the length of a gold-gold bond 

which is about 3Å). We can correlate the push-back distance to the average conductance of the 

gold-molecule-gold configuration.  The resulting plot of average conductance as a function of 
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electrode separation for molecule 4 is shown in Figure 3a, together with the original conductance 

histogram for reference.  We observe that junctions within the low conductance regime are only 

possible with the push-back distance is about 12 Å (arrow in Figure 3a).  Taking into account the 

length of molecule 4 (N-N length is 9.5A) and the length of the N-Au bond of ~2.5 Å, this 

separation is consistent with a junction geometry in which the molecule is stretched between the 

electrodes. In Figure 3b, we show histograms of push-back distances in the low conductance 

regime for pyridine-terminated molecules of different lengths.  The inset plots the peak of each 

histogram as a function of molecule N-N distance. A linear fit to this data gives a slope less than 

unity, indicating that on average, the molecular junction has a slight tilt relative to the orientation 

of the pushing direction. We stress here that this is not the same as a local tilt between the N-Au 

bond orientation and the plane of the pyridine ring, responsible for increased π coupling in the 

high conductance region.  We note further that the correlation between electrode distance in the 

low conductance regime and molecule length holds up for both conjugated (1-3) and non-

conjugated (4) molecules in our sample.  

These results agree well with our previous work on bipyridine-Au junctions, where we 

inferred that conductance is low in the vertical geometry where the N-Au bond is perpendicular 

to the π-system, and high when the molecule is tilted (e.g. when the Au point contact is first 

broken) so that the N-Au bond can couple to the π-system[15].  These conclusions are 

corroborated by the 2D histograms in Figure 2b, where we see that conductance after the G0 

rupture starts in the high configuration, and only after further elongation of the junction, by a 

molecule-dependent length, can the low conductance geometry be accommodated[15].    
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Figure 5.1-3: (a) Data points showing average junction conductance during the hold portion of each 

trace with molecule 4 (see SI Figure S1) plotted against average electrode separation as determined by 

measuring the distance required to close the contact.  For reference, the conductance histogram from 

Figure 1c is reproduced. The arrow shows the low conductance configuration where the push-back 

distance is ~1.2 nm. The high conductance geometry is realized at shorter gold-gold distances.  (b) 

Histograms of measured push-back distances for all four molecules in the low-conductance geometry. 

Inset: The peak position of each push-back distance histograms plotted against molecule length with a 

linear fit to the data. 

We now focus on the conductance values determined by our measurements, which are 

plotted in Figure 4 as a function of molecule length.  These conductance values are determined 

by fitting a Lorentzian to the high and low-conductance peaks in the data shown in Figure 1c. 

We see that the values of all the conjugated molecules in our sample (molecules 1-3) decay 

exponentially as a function of molecule length following the general relation G ~ e
-βL

 where L is 

the molecule N-N length, and β is the tunneling decay factor, while the conductance for molecule 

4, where the conjugation is broken by the intervening, saturated (CH2)2 unit, is orders of 

magnitude smaller. We find that β ~ 0.5/Å for both the high-conductance and low-conductance 

peaks in molecules 1-3, in agreement with previously measured values for polyphenyl 

molecules[24, 25].  While the β value is expected to be sensitive to the Fermi level alignment 
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within the HOMO-LUMO gap of the different systems[26, 27-29] the relatively small value of β 

found here strongly suggests that the dominant conductance channel in the conjugated 

bipyridines has π character, despite the facts that the bonding of the molecule to the gold occurs 

through the N σ-orbital, and that in the low conductance state, the N-Au bond is almost 

perpendicular to the π system.  

 

Figure 5.1-4: Conductance values determined by fitting Lorentzians to the peaks of the conductance 

histograms shown in Figure 1 for the low (circles) and high (squares) conductance peaks for molecules 

1-4.  A linear fit to data on a semi-log plot (dashed line) yields β ≈ 0.5/Å (G ~ e-L).  Calculated 

conductances for all molecules in a vertical geometry are shown with squares. 

To investigate in detail the conducting channels in the different molecules for the low 

conductance geometry[30-33], we compute conductance and zero-bias transmission with a DFT-

based scattering state approach[15, 27, 34] using the generalized gradient approximation[35] as 

implemented in the SIESTA code.[36]  A self-energy correction [16, 24], including electrode 
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polarization effects on the molecular orbital energy levels in the junction to the molecular energy 

levels[37], is then added to the Hamiltonian from which the scattering states are obtained in a 

one-shot calculation[27]. We model the low conductance state with a vertical geometry (Figure 

5a), using periodic boundary conditions parallel to the Au surface (16 Au atoms per layer). For 

all four molecules, a three Au atom motif represents the tip of each electrode, with the N bonded 

to one of the Au atoms of the motif on an atop site. These binding sites sit on top of 4 Au layers 

on either side of the molecule, which are then extended to infinity on either side of the junction 

to simulate open boundary conditions. The transmission is converged with a 4 × 4 k//-mesh. 

Conductance is computed as  
//

)(0

k

ttTrGG , where 
ijt  is the transmission amplitude from 

incoming channel i to outgoing channel j at a given k//-point at the Fermi energy, EF.  Our 

calculated conductance values agree well with the measured low conductance values for all 

molecules as plotted in Figure 4, falling within the low-conductance histogram peaks shown in 

Figure 1c.  The transmission plots in Figure 5b show that in all molecules, the LUMO, which, for 

all molecules considered, has π* character in the pyridine rings, is the frontier orbital closest to 

EF. The narrow transmission peak widths (0.1-0.3 eV) are consistent with a relatively weak 

coupling between the π system and the Au s-p band in the vertical geometry
.
[15]
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Figure 5.1-5: (a) Optimized structures of junctions for molecules 1-4. Gold, gray, blue and white circles 

represent Au, C, N and H respectively. The molecules are bound via N to an atop site of a Au trimer 

(three Au atoms) on Au(111). (b) Transmission plots. (c) Plot of the log of molecular π* and σ 
contributions to conductance as a function of the molecule length. 

To analyze the character of the wavefunctions dominating conductance at EF, we 

diagonalize the transmission matrix tt  to obtain the eigenchannels at each k//-point[38]. Each 

eigenchannel at each k//-point can in principle contribute to the total transmission at EF; the sum 

of these contributions gives the total conductance. In practice, we find that only about 2 

eigenchannels at each k//-point make non-negligible contributions for the junctions studied here. 

By visualizing the wavefunctions for all eigenchannels with non-zero transmission at EF 

(―conducting eigenchannels‖), we find that for molecules 1-3, the total conductance is dominated 

by eigenchannels consisting of the molecular π* LUMO  coupled to Au p-states at the binding 

site (see SI Figure S2a & S2d). A small residual contribution consists of σ orbitals coupled to Au 

s states, with the eigenchannel wavefunction resembling the frontier orbitals of the gas phase 
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molecule bonded to a single Au atom at each N in the same binding configuration (Au-N bond 

perpendicular to π system) (eg. SI Figure S2b & S2e). To quantify the π (or π*) contributions to 

the conductance, we sum up the transmission from each conducting eigenchannel possessing 

nodes in the planes of the pyridine rings. In this case, the lobes of the wavefunctions in the 

pyridine rings clearly indicate π* LUMO character. The remaining conducting eigenchannels 

have σ character, as described above.  From this analysis, we find that the LUMO (π*) 

contributes roughly 75% to the total conductance for bipyridine, with the remainder having σ 

character. For molecules 2 and 3, the π* contribution is greater than 90%. 

In contrast, however, for molecule 4, none of the conducting eigenchannels have nodes in 

the planes of the pyridine rings. About 80% of the conductance can be attributed to molecular π 

orbitals as described above for molecules 1-3 (SI Figure S2b & S2e). The remaining conductance 

comes from states that are a combination of σ and π, but bear no clear resemblance to the LUMO 

or LUMO+1 state (SI Figure S2c & S2f). The fact that the LUMO does not contribute 

significantly to conductance at EF is consistent with the sharp drop-off in transmission below the 

LUMO transmission peak for molecule 4 as shown in Figure 5b. The π-states on the two pyridine 

groups in molecule 4 are weakly coupled through the intervening (CH2)2 linkage, resulting in a 

closely spaced π* doublet (LUMO and LUMO+1).  The sharp drop-off in transmission is likely a 

result of destructive interference between the closely spaced LUMO and LUMO+1 resonances, 

for the transmission peaks do not fit well to a simple sum of two Lorentzians (SI Figure S3d). 

This is in contrast to the nearly-Lorentzian line-shapes observed for the isolated LUMO 

transmission peaks in molecules 1-3 (SI Figures S3a-c).   
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The fact that molecular σ orbitals can contribute to the conductance at EF may seem 

surprising, since the π* LUMO is the molecular orbital closest to EF. However, the Au states at 

EF are predominantly s-like. As discussed previously,[15] in the low conductance vertical 

geometry, s-states are orthogonal to the π system and cannot couple directly to the LUMO. 

Therefore, the LUMO contributes to conductance at EF only through coupling to local Au p-

states which make a small contribution to the Au density of states at EF. Molecular σ orbitals, in 

contrast, can couple strongly to the Au s states at EF. In Figure 5c, we show the π* and σ 

contributions to the conductance as a function of the length of the molecule. The decrease in π*-

derived conductance with increasing length correlates well with the experimental values, 

yielding a β value of about 0.4/Å. In contrast, the σ contribution decreases with a β of about 

0.7/Å. This indicates that the σ contribution to conductance in molecule 4 is in fact similar to that 

in other molecules of the same length (specifically molecule 2), while its π* contribution to 

conductance is suppressed by the destructive interference described above, resulting in a 

significantly smaller total conductance for 4. Finally, we noted in Figure 1c that the high 

conductance peak is less distinct for molecule 4 compared to 1-3.  Since the low and high 

conductance regimes result respectively from the smaller and larger coupling between the Au 

states and the π system in the vertical and tilted geometries, it is likely that the relatively smaller 

contribution of the LUMO in molecule 4 makes the two conductance regimes less distinct.   

In summary, we employ a novel pulling-pushing break junction procedure to investigate 

the relationship between metal-molecule-metal junction geometry and junction conductance for a 

series of pyridine-terminated molecules of various lengths and conjugation. We find that the 

double-peak conductance signature is universal to pyridine-linked molecules and is due to two 
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distinct binding geometries.  By pushing on molecular junctions we identify the electrode 

separation of each conductance state.   Lower conductance occurs when the N-Au donor-

acceptor bond is along the molecular backbone; in this configuration the distance between gold 

electrodes depends on the length of the molecule in the junction.  Finally, we employ first 

principles calculations to show that conductance is dominated by transport through the π system 

in the conjugated molecules, in agreement with the relatively small β value observed in 

experiment.  The predicted conductance values are in excellent agreement with experimental 

values.    

Supporting Information: Experimental Procedure and Data Analysis. 

The details of our experimental setup have been described previously[8].  Briefly, we 

prepare gold samples by evaporating 100 nm of gold onto freshly cleaved mica.  During 

measurement, the sample is mounted on top of a single-axis piezoelectric positioner below a 

hand-cut gold tip in a home-built STM setup.  The sample-tip junction is stretched and 

compressed with sub-nanometer precision by moving the substrate relative to the tip at a rate of 

15 nm/s with the piezoelectric (Mad City Labs) while applying constant bias to the sample 

through a series resistor.  The current in the tip is captured by a Keithly 428 current-voltage 

amplifier.  The sample position is manipulated and data acquired at 40 kHz using a data 

acquisition board (National Instruments, PXI-4461) and custom-built software written in Igor 

(Wavemetrics, Inc).  All position determinations were based on measurements with a built-in 

position sensor within our custom piezoelectric positioner. This position sensor was calibrated 

both by the manufacturer and by us using laser interference measurements. We found the 

absolute values of the measured displacements to be accurate to within 5%. 
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We form metal-molecule-metal junctions by smashing the tip and substrate together until 

conductance exceeds 5 G0 and then pulling them apart.  All conductance traces acquired that 

reach a conductance below 5e-6 G0 are then added to a linear binned histogram by an automated 

algorithm without any further data selection. Typically, 20000 traces are used to construct 

conductance histograms.  Two-dimensional histograms are automatically generated[14] with the 

added requirement that a G0 break is clearly identifiable in the trace (more than 90% of traces 

that start with a conductance greater than 1 G0 and break satisfy this requirement).  In two-

dimensional histograms conductance is binned logarithmically with 100 bins per decade, while 

displacement is binned linearly for image clarity.  

Push-Back Distance Measurements: To measure the push-back distance required for 

closing a metal-molecule-metal junction and to identify the distance between the gold electrodes 

when a molecule is bound, we measure conductance while the junctions are both opened and 

closed[15].  A typical manipulation ramp is shown in Figure S1, where the junction was first 

stretched by 1.5 nm, held at a fixed separation for 0.05 seconds, pushed back together and finally 

elongated by about 3 nm.  Between successive ramps, the substrate and tip are smashed together 

to a conductance greater than 5 G0 so that the previous junction geometry is fully disrupted.  The 

ramp is repeated at least 10000 times to allow statistical analysis. 
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Figure S5.1-1: Upper panel: The piezo manipulation ramp used for push-back distance measurements.  

The junctions are first stretched by 1.5 nm, then held at a constant separation for 0.05 seconds, pushed 

back by 1.5 nm and finally stretched out by about 3 nm.  Lower Panel: Typical conductance traces 

recorded with the push-back ramp in the presence of molecule 2. Some junctions are fully broken during 

the hold portion (green), while others exhibit conductance above the noise level (purple and blue).  All 

junctions that exibit a stable conductance signature during the hold (where the standard deviation of the 

conductance in that region does not exceed 150% of the average conductance) were included in the 

analysis; this includes junctions where the hold conductance did not correspond to either a high or a low 

conductance configuration.  In this figure, the blue trace exhibits a hold conductance consistent with the 

high conductance geometry, whereas the purple shows a conductance consistent with the low G peak.   

Push back analysis to correlate junction conductance to gold-gold separation was 

performed by an automatic algorithm which averages the conductance of the last quarter of the 

hold portion (0.013 sec) of each trace and finds the push-back distance necessary to reform a 

junction with a conductance of 0.5G0.  Sample traces obtained during the pull-hold-push 

procedure are shown in Figure S1, where the push-back distances are marked with arrows.  Only 

traces where the conductance during the last quarter of the hold portion did not vary by more 

than 150% of the average conductance in that portion of the trace were considered.  Overall, 

about 60% of all traces in a sample of at least 10000 were included in the analysis.  Hold 
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conductance values from all the included traces were binned logarithmically and plotted against 

an averaged push-back distance corresponding to the range of each conductance bin. Finally, all 

the push-back values in included traces where the hold conductance fell within the full width of 

the low conductance peak position were included in the histograms shown in Figure 3B. The 

peak position of each histogram corresponds to the most frequently observed electrode 

separation for the low conductance geometry for each molecule. 

Figure S5.1-2 (a-c) Eigenchannel wavefunctions at EF. Isocontours are taken at 2.5% of the maximum 

value for a-b, and 1.25% of the maximum value for c. The arrow in c denotes the direction of incident 

states on the junctions. (d-f) Gas phase molecular orbital wavefunctions. Isocontours are taken at 10% of 

the maximum value. (a) molecule 1 junction, eigenchannel wavefunction with LUMO character shown in 

(d); (b) junctions for molecule 1 (top) and 4 (bottom): eigenchannel wavefunctions with molecular σ 

character shown in (e): top: HOMO and bottom: LUMO of molecule 4 bonded to 2 Au atoms. (c) 

molecule 4 junction, eigenchannel wavefunction with no clear σ or π character; (f) LUMO (top) and 

LUMO+1 (bottom) of gas-phase molecule 4.  
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Figure S 5.1-3 (a-c) Lorentzian fits (red dashed) to transmission peaks in GGA+Σ transmission spectra 

for molecules 1-3 respectively. (d) Fit (red dashed) corresponding to the sum of two Lorentzians for 

GGA+Σ transmission for molecule 4.  
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5.2 Mechanically-Controlled Binary Conductance Switching of a 
Single-Molecule Junction5  

Abstract:  Molecular-scale components are expected to be central to nanoscale electronic 

devices[39-41]. While molecular-scale switching has been reported in atomic quantum point 

contacts[42-44], single-molecule junctions provide the additional flexibility of tuning the on/off 

conductance states through molecular design. Thus far, switching in single-molecule junctions 

has been attributed to changes in the conformation or charge state of the molecule[45-50]. Here, 

we demonstrate reversible binary switching in a single-molecule junction by mechanical control 

of the metal-molecule contact geometry. We show that 4,4'-bipyridine-gold single-molecule 

junctions can be reversibly switched between two conductance states through repeated junction 

elongation and compression. Using first-principles calculations, we attribute the different 

measured conductance states to distinct contact geometries at the flexible but stable N-Au bond: 

conductance is low when the N-Au bond is perpendicular to the conducting -system, and high 

otherwise. This switching mechanism, inherent to the pyridine-gold link, could form the basis of 

a new class of mechanically-activated single-molecule switches.  

In this work, we focus on 4,4‘-bipyridine-gold junctions, where we find two reproducible 

and distinct conductance states that can be controllably switched by mechanical manipulation of 

the electrode separation. The conductance is measured by repeatedly forming and breaking Au 

point contacts with a modified STM in a solution of the molecules at room temperature[2, 4]. 

The current is recorded at a fixed bias while the junction is elongated to generate conductance 

                                                 
5 Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; 

Neaton, J. B.; Venkataraman, L. Nature Nanotechnology 2009, 4, (4), 230-234. 
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traces (see Methods). Conductance histograms are constructed from thousands of traces where 

peaks correspond to the most frequently observed conductance values. With this method, single 

molecule junction conductances can be measured reliably and reproducibly for molecules with 

amine[2], methyl sulfide, and phosphine[51] link groups. 

Fig. 1a shows a normalized conductance histogram for bipyridine-Au junctions 

determined from over 10,000 consecutively measured conductance traces without any data 

selection or processing, along with a histogram measured in solvent alone. Our histogram shows 

two clear peaks, corresponding to the most frequently observed conductance values, centered 

around 1.6×10
-4

 G0 (Low G) and 6×10
-4

 G0 (High G), and a high conductance tail is seen 

extending to ~3 ×10
-3

 G0, where G0 = 2e
2
/h, is the quantum of conductance. These differ from 

previous reported measurements for bipyridine-Au junctions[4, 16] where histograms were 

constructed from a smaller number of selected traces and the measured conductances, 

encompassing the High G and High G tail region, did not overlap with the entire range studied 

here.  

Typical conductance traces, shown in Fig. 1B, exhibit a High G step that precedes a Low 

G step. To statistically analyze this step sequence in our entire data set, we compute a two 

dimensional (2D) conductance-displacement histogram of all measured traces (see Methods). 

The 2D histogram generated from the same 10000 traces (Fig. 1c) shows two clear regions with 

a large number of counts. The counts within the Low G range occur ~2 Å after the break of the 

gold point contact (x=0). This is in contrast to the counts in the High G range, which start right 

after the break of the gold point-contact. This indicates that the High G steps start as soon as the 

gold contact breaks, and Low G steps follow High G steps (see SI for more details).   
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As the Low G steps occur only upon elongation of the junction, a natural question is 

whether junction compression would restore the High G state. To investigate this possibility, we 

measure the conductance between the tip and substrate while applying two types of ramps 

(dashed trace in Fig. 2a and SI Fig. 2a) to the piezoelectric actuator that modulates the substrate 

position (while the tip is held fixed) (See Methods). When a molecule is present, switching 

events between the high and low conducting states are frequently seen. Sample switching 

conductance traces in Figs. 2a and SI Fig. 2a clearly show the junction is controllably modulated 

between the high and low conducting states as the tip-sample separation is modulated. Out of 

9000 total traces with each ramp, we find that a molecule is present in the Low G state about 

~10% of the time after the initial 15 Å displacement. Among these 1057 traces, ~90% had at 

least one switching event, and ~ 20% had switching events that lasted through the entire 

sequence, as shown. Fig. 2b (and SI Fig. 2b) show companion conductance histograms 

constructed from these selected traces. Like Fig. 1a, these histograms show two clear peaks 

indicating that the molecular junction predominantly samples High G and Low G conductances 

when successively compressed and elongated. These measurements thus illustrate that a 

bipyridine-Au junction can be switched between two well-defined conductance states by 

mechanical control of the tip-sample distance. Control experiments on the solvent alone, 

3,3’,5,5’-Tetramethyl 4,4’Diamino-Biphenyl, 2,4’-bipyridine and 4-phenyl-pyridine (see SI) 

show that this switching behavior is intrinsic to pyridine-Au bonds present at both ends of the 

molecule. Furthermore, we find that a 2-3Å piezo modulation is required to switch the molecule 

(see supplementary Fig.S5.3-1). 
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Figure 5.2-1: Statistical analysis of measured conductance traces. (a) Normalized conductance histogram 

for 4.4’ bipyridine (blue trace). The histogram is constructed without any data selection from 10000 

traces measured at a 25 mV bias voltage using a conductance bin ize of 10-6G0 along with a histogram 

collected in solvent alone (yellow). Black dashed lines show Lorentzian fits to the two peaks. Arrows 

indicate the High G and Low G peaks. Inset: Same histograms shown on a log-log scale using a bin size 

of 10-5G0  (b) Sample conductance traces measured at a 25 mV bias and 16 nm/s displacement speed 

showing two conductance steps in succession. (c) (c) 2D histogram constructed from all traces with a 

clear G0 break. Two regions with a large number of counts, encircled by the black dashed lines, are 

clearly visible. The High G region, around 10-3G0 extends from the origin to about 4Å along the x-axis 

and Low G region, around 3×10-4G0 start ~2Å displaced from the origin. Many High G steps exhibit 

some slope, as can be seen from the orientation of the High G region in the plot.  Inset: Sample 

conductance trace demonstrating how the displacement origin was selected for each trace to construct 

the two-dimensional (2D) histogram in (c). 
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From Fig. 1c we know that bipyridine junctions form immediately after breaking a Au-

Au point contact, where the tip-sample distance has been experimentally shown[52] to be around 

6.5 Å (± 2.5Å), shorter than the N to N distance along bipyridine of 7.2 Å (See SI Fig. 6). 

Further, allowing for the length of two N-Au bonds (~2.1 Å each), the as-formed electrode 

structures will frequently impose strong geometric constraints on the initial junction geometries. 

Using a modified piezo ramp as shown in Fig. 2c, we correlate junction conductance to the 

distance required to push back the electrodes together to form a Au-Au contact (see Methods). 

This “push-back” distance, a measure of the electrode separation for the junction, is shown in 

Fig. 2d as a function of conductance, for 777 traces. Junctions with a conductance in the Low G 

range have a push-back distance of greater than 10 Å, consistent with a geometry where the 

molecule is held vertically between the two electrodes, and corresponding to an Au-Au electrode 

separation of around 12-13 Å (estimating the Au-Au separation at contact using the (111) 

interplanar spacing). Junctions with a conductance in the High G range have a push-back 

distance which decreases from 10 Å to about 5 Å as the conductance increases from ~3×10
-4

G0 

to 4×10
-3

G0.  



109 

 

 

 

Figure 5.2-2: Controlled conductance switching by mechanical manipulation of Au-Au distances. (a) 

Sample bipyridine switching conductance traces (colored solid lines). These traces were collected while 

applying the non-linear ramps (dashed black line) shown measured at a 250 mV applied bias.  (b) 

Conductance histograms of 1057 switching traces that had a molecule in the Low G state after the initial 

15Å displacement. These histograms are constructed using conductance data from the ramp section of the 

trace only. Traces in (a) show reversible switching between conductance states that are around the two 

peaks clearly visible in the companion histogram. (Note: the peak positions are slightly shifted from those 

in Fig. 1 because of different experimental conditions and analysis method). (c) Sample conductance 

traces (blue and red) measured while applying the non-linear ramp shown (grey trace). The blue trace 

has a conductance in the Low G range during the "hold" section, while the red trace has a conductance 

in the High G range. Push-back distances are determined as shown by the blue and red arrows, using an 

automated procedure. (d) Average conductance as a function of average push-back distance for 777 of 

2000 traces measured (red ×). (See Methods) Data shows that for junctions with a conductance in the 

Low G range, the push back distance is around 10-11 Å, while for junctions with a conductance in the 

High G range, the push-back distance increases with decreasing conductances. Error bars are one 

standard deviations in both conductances and push-back distance. Also shown is the conductance 

histogram from Fig. 1a (solid red line) along the same conductance axis. 
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Figure 5.2-3: Calculated transmission characteristics as a function of the angle between the N-Au bond 

and the -system. (a) Schematic showing the coupling between the Au-s orbital (orange) with the 

bipyridine LUMO.  denotes the angle between the N-Au bond and the -system. (b) Junction 

geometries of bipyridine bonded on each side to Au adatoms on Au(111), with varying  (labeled in Fig.). 

(c) Self-energy corrected transmission functions plotted on a semi-log scale for junctions in (b). Black 

solid, red dashed, blue dashed-dotted, green dotted lines denote   = 90°, 70°, 50° and 30° respectively. 

The inset shows G, given by T(EF)*G0,  decreasing with increasing . 

 The properties of the pyridine-gold link naturally explain the observed switching 

behavior. The bonding mechanism, elucidated by our density functional theory (DFT) 

calculations detailed below, consists of donation from the N lone pair orbital into the partially 

empty s-orbital on a specific undercoordinated Au atom on the electrode.  Since the N lone pair 

in bipyridine is parallel to the bipyridine backbone, we expect the N-Au bond to be along the 

bipyridine backbone.  While such a structure is difficult to achieve initially given the geometric 
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constraints, it may be easily accommodated after elongation by several Å. Previous conductance 

calculations[30, 53, 54], in agreement with our own, have shown that the essential orbital 

channel supporting transmission is the lowest unoccupied -orbital (LUMO; Fig. 3a). Since the 

-orbital is orthogonal to the N lone pair in this case, it is plausible to expect that an elongated 

junction, with the N-Au bond aligned to the backbone, will have low electronic coupling and 

hence low conductance.  On the other hand, the constraints imposed by the compressed junctions 

will drive strong tilting of the N-Au bond, which can result in stronger coupling and higher 

conductance.  

 Our DFT calculations (see Methods) indicate that bipyridine molecules bind selectively 

to undercoordinated atop Au sites. To investigate the sensitivity of conductance to N-Au bond 

orientation, we compute the transmission for a series of model junctions (Fig. 3b) with identical 

geometric features except for the angle  between the N-Au bond and -system (Fig. 3a). 

Using a prototypical relaxed junction with a vertical molecule ( = 90°) (Fig. 3b, panel 1), we 

obtain a self-energy corrected[55] (see Methods, SI) transmission (Fig. 3c). As mentioned above, 

the LUMO *-state (Fig. 3a) provides the dominant contribution to the conductance.   

 The width of the LUMO-derived transmission peak increases almost linearly with cos() 

(Fig. 3c), reflecting an enhanced electronic coupling between the Au s-state and the LUMO -

orbital as the N-Au bond tilts out of the plane of the pyridine ring. This enhanced coupling also 

leads to an increased back-donation of electrons to the molecule, raising its local electrostatic 

potential and shifting the molecular levels to higher energies. Since the transmission at EF is 

related to the tail of a resonance, the conductance trend is dominated by its width, and the low 

bias conductance increases with N-Au bond tilt (Fig. 3c inset).  Tilting the N-Au bond out of the 
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pyridine plane does result in a decreased junction binding energy, from 1.36 eV for a vertical 

junction ( = 90°), to 1.03 eV for  = 50°, and to 0.70 eV for  = 30°. Thus, at modest cost in 

binding energy, the local metal-molecule contact geometry can vary substantially with 

corresponding large changes in junction conductance. 

 The versatile amine-Au link chemistry is also based on selective donor-acceptor bonding. 

In the amine case, the amine lone pair is naturally coupled into the main orbital responsible for 

conductance e.g. into the benzene -system or the alkane -system[21]. Changes in contact 

geometry do not, therefore, affect the measured and calculated conductance significantly[55], 

resulting in a single, well defined peak in the conductance histograms[2], and no mechanically-

induced switching behavior (SI Fig. 4). In contrast, for bipyridine-Au junctions, the N lone pair 

electrons that dominate bond formation are actually orthogonal to the -system resulting in 

bipyridine junction conductances that can be quite sensitive to the orientation of the N-Au bond 

relative to its principal conducting orbital, the molecular LUMO. 

 We consider a total of 55 relaxed junctions (see SI), small compared with the 

experimental sample size but sufficient to explore the impact of junction geometry on 

conductance. To model tractably the local roughness and large radius of curvature expected for 

initially broken soft Au contacts, we consider relaxed junctions in which bipyridine is bonded to 

one- and two-layer Au motifs (adatom, dimer, trimer, pentamer, pyramid) on Au(111). Junctions 

with tip-sample distances close to that of the initially-broken Au contact have more constrained 

geometries (smaller ) and higher conductances (Fig. 4a structures 1, 2), while larger electrode-

electrode separations accommodate geometries with a larger  and lower conductances (Fig. 4a 

structures 3, 4). The calculated conductance (with self-energy corrections) is plotted as a 
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function of the vertical distance between Au binding sites in Fig. 4b. Comparing this to the 

corresponding experimental plots (Figs. 1c and 2d) reveals good quantitative agreement between 

the predicted and measured conductance ranges as well as their relation to Au-Au separation.  

 In Fig. 4c, we plot the calculated conductance as a function of  which shows a 

conductance increase with decreasing , as discussed above. We see that conductance is also 

affected by the N-Au bond lengths, the degree of coordination at the binding sites,[30] and the 

torsional angle between the rings (which varies from ~21-42° in the relaxed geometries). For 

junctions with conductance in the high G tail of the experimental histogram (> ~1×10
-3

 G0 in Fig. 

1a), the LUMO was observed to have significant overlap with orbitals on adjacent Au contact 

atoms.  This extra coupling is due an additional broadening of the LUMO (not a new conducting 

channel) and is controlled by the separation between the nearby Au electrode atom and one of 

the C atoms in the pyridine ring.  In Fig. 4d, the conductance is plotted as a function of the 

minimum C-Au distance (d(C-Au)) between a C atom in the molecule and Au atoms on the 

electrode. The cluster of points with minimum d(C-Au) < ~2.8 Å have conductances > 1×10
-3

 

G0. In our calculations, we find that geometries with conductance in the experimental High G 

range have small (< ~70°) and/or small minimum d(C-Au).  
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Figure 5.2-4: Results from conductance calculations on 55 relaxed junctions.  (a) Examples of junction 

geometries relaxed at different tip-sample distances. (b-d) Self-energy corrected conductance G for 55 

relaxed junctions, plotted against (b) the vertical distance between Au contacts, (c) the angle  between 

the N-Au bond and -system (as illustrated in Figure 3), and (d) the minimum C-Au distance. The series 

of points for = 90° corresponds to different N-Au bond lengths and binding sites in a vertical junction. 

Despite the spread, they all fall within the experimental Low G range. (e, f) Schematic illustrating the 

High G and Low G configurations respectively that exhibit mechanically-induced switching for junctions 

highlighting the role of the geometric constraints and Au tip morphology. 
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 These results guide us in proposing a working hypothesis for the distinct High G and Low 

G steps observed in our experiments. An initially-broken Au contact has a Au-Au separation that 

is too small to accommodate a bipyridine molecule in a vertical geometry (Fig. 4e). Junctions 

formed at the beginning of a pull trace thus have geometries that result in a high conductance. As 

the junction is elongated, the High G geometry tends to snap to a Low G geometry, once binding 

sites spaced far enough apart become available (Fig. 4f). This is plausible given that the Au 

contacts in the experiment are likely to offer multiple binding sites, as illustrated in Figs. 4e and 

4f. On the other hand, as the junction is compressed from a vertical geometry, the energy cost 

associated with rotating the N-Au bond out of the plane of the pyridine backbone tends to hold  

~90°.  Only when the constraints of the shrinking junction demand too much bond compression 

will the Low G geometry snap to a high G geometry with smaller  or C-Au distance. In this 

picture, the N-Au bonds need not be broken, although an Au contact atom may shift from one 

electrode site to another.  It is also plausible that the bond may shift from one available 

undercoordinated Au site to another, as illustrated in Figs. 4e and 4f.  In either case, although not 

strictly reversible in all the atomic scale details, this picture provides the essential elements for a 

mechanically activated switch. 

Methods: 

 Experimental Methods: We measured the molecular conductance of 4,4’ Bipyridine 

(Sigma-Aldrich, 98% purity) by repeatedly forming and breaking Au point contacts in solution 

of the molecules with a home-built, simplified STM (see Supplementary document for details). 

Thousands of traces are collected and presented as conductance histograms, where peaks 

correspond to the most frequently observed conductance values. A freshly cut gold wire (0.25 
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mm diameter, 99.999% purity, Alfa Aesar) was used as the tip, and UV/ozone cleaned Au 

substrate (mica with 100 nm Au, 99.999% purity, Alfa Aesar) was used as the substrate. The 

STM operates in ambient conditions at room temperature and the junctions were broken in a 

dilute, 1mM, solution of 4,4' Bipyridine in 1,2,4-trichlorobenzene (Sigma-Aldrich, 99% purity). 

To ensure that each measurement started from a different initial atomic configuration of the 

electrodes, the electrodes were pulled apart only after being brought into contact with the Au 

surface, indicated by a conductance greater than a few G0. Prior to adding a molecular solution 

between the tip and substrate, 1000 conductance traces were first collected without molecules to 

ensure that there were no contaminations in the STM set-up. 

 For all non-linear ramps applied to the piezo, the junction was first closed to achieve a 

conductance larger than a few G0. For demonstrating switching between the high and low 

conducting states (Figure 2a), the junction was then pulled apart by 15 Å at 16 nm/s, and then 

sequentially pushed together and pulled apart by 2 Å four times, holding the junction for 15 ms 

at each step, before the junction was finally extended by an additional 25 Å and broken.  For the 

measurement of the "push-back" distance, the junction was first pulled apart by 15 Å at 16 nm/s, 

held at this separation for 50 ms, pushed together by 15 Å at 16 nm/s, and then pulled apart and 

broken. This cycle was repeated 2000 times and the measured conductance data was analyzed to 

determine the "push-back" distance as follows. For each measured trace, we determine the 

average conductance while the electrodes were held fixed (second segment of the ramp), and the 

distance the junction had to be pushed together before reaching a conductance within the range 

of that expected for a Au-Au contact (as illustrated with red and blue arrows in Fig 2c). Of the 

2000 traces measured, 777 had a conductance between 1×10
-4

 G0 and 1×10
-2

 G0. We divided the 
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entire conductance range into 20 bins in the logarithmic scale and averaged the conductance and 

push-back distance for all points within each conductance bin to obtain the data shown in Figure 

2d. 

 Construction of two-dimensional histogram: Each measured conductance trace consists 

of conductance data acquired every 25 s, measured as a function of tip-sample displacement at 

a constant 16 nm/s velocity. Since gold and molecular conductance plateaus occur in random 

locations along the entire displacement axis (x-axis) within the measured range, we first set the 

origin of our displacement axis at the point in the conductance traces where the gold-gold contact 

breaks and the conductance drops below G0. This well-defined position on the x-axis is 

determined individually for each trace as illustrated in the inset of Fig. 1c using an unbiased 

automated algorithm[55]. For about 1% of the measured traces, this position cannot be 

determined and these traces are not used for further analysis. Each data point on the digitized 

conductance trace now has a conductance coordinate (along the y-axis) and a position coordinate 

(along the x-axis). These data are binned using a linear scale along the displacement axis and a 

log-scale along the conductance to generate a 2D histogram. 

 Transport Calculations: First-principles transport calculations are based on density 

functional theory (DFT) within the generalized gradient approximation (GGA).[35] The 

SCARLET code[56] is used to calculate the electron transmission for many junction geometries. 

The linear response conductance is obtained from the Landauer formula (G = T(EF)*G0), where 

T(E) is the transmission function, and EF is the Fermi energy. The alignment of the frontier 

molecular energy levels in the junction relative to EF can show significant errors in DFT[37] with 

the result that the calculated conductance are too large[55, 57-59]. A self-energy correction, 
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successfully used in our previous work[55], is calculated and added to the molecular orbital 

energies in the junction to account for many-electron effects. Details of the application to the 

bipyridine case are described in the Supplementary materials. Because the DFT orbital energy is 

close to the electrode Fermi energy in this system, the self-energy correction is quantitatively 

quite important to the predicted conductance value. 
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Supplementary Information: Experimental Setup and Procedures: 

 The details of our experimental apparatus has been described previously[2, 8].  Briefly, 

the STM was constructed from a home-built tip holder mounted on top of a single-axis 

piezoelectric positioner with built-in position sensor (Mad City Labs). A bias was applied 

between a cut Au wire tip and a Au substrate placed on top of the piezoelectric positioner and the 

resulting current was converted to a voltage with a current amplifier (Keithley 428). Data 
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collection and control of the piezoelectric positioner were done by means of a data acquisition 

board (National Instruments, PXI-4461) driven by a customized program using Igor software 

(Wavemetrics Inc.) For the conductance trace measurements, the substrate approached the tip 

until a set conductance larger than G0 was measured to ensure that the Au/molecule/Au junction 

from the previous measurement was completely destroyed. For standard conductance 

measurements, the sample was then withdrawn at a rate of 16 nm/s and the current and position 

data was recorded at a 40 kHz sampling frequency. Histograms were constructed from the 

current versus position traces by dividing the current by measured voltage across the junction to 

obtain conductances and then binning the data as a function of conductance, without selecting 

any traces. SI Figure 1 shows conductance histograms for three molecules; 4-phenyl pyridine 

(Sigma-Aldrich), 4,4' bipyridine (Sigma-Aldrich) and 2,4' bipyridine (Alfa-Aesar) measured in 

solvent 1,2,4 trichlorobenzene (Sigma-Aldrich).  

All position determinations were based on measurements with a built-in position sensor 

within our custom piezoelectric positioner. This position sensor was calibrated both by the 

manufacturer and by us using laser interference measurements. We found the absolute values of 

the measured displacements to be accurate to within 5%. 

Step Detection Algorithm: The molecular junction step detection was carried out as follows. 

First, a Lorentzian was fit to the histograms computed from all measured traces to determine the 

Low G and High G ranges (conductance peak position (Gpeak) and the full width at half 

maximum for the peak (Gwidth)). For each measured trace, the derivative of the logarithm of the 

trace was computed. Traces with peaks in the derivative that crossed a threshold of 5000 were 

considered further. The average conductance from the raw data in the region between two 
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successive peaks was computed. Traces were considered to have molecular steps if this average 

conductance was within Gpeak ± Gwidth and if this region had more than 5 data points. Steps that  

had fewer than 5 data points, or equivalently those that were shorter than 0.007 nm were not 

included in the analysis.  

Figure S 5.2-1: Conductance histograms for 4-phenyl pyridine, 4,4' bipyridine, 2,4' bipyridine and in 

solvent alone (1,2,4 trichlorobenzene), and chemical structures for all molecules. All histograms 

computed from 10000 traces individual traces without any data selection or processing using a linear bin 

size of 10-6 G0. 

A detailed statistical analysis of individual traces using this automated step detection 

algorithm showed that 95 % of the measured traces had a High G step and that 75% had a Low G 

step. While a significant fraction (~ 20%) of the measured traces had only a High G step, there 

were virtually no traces (under 3%) that had only a Low G step, consistent with the lack of 

counts at the origin of Fig. 1c in the Low G range. 
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Analysis of Switching Traces:  Switching traces were selected from all measured traces 

using an automated algorithm. The number of data points in the initial "hold" region of each 

trace that had a conductance within the Low G range was determined. If more than 75% of the 

data was within this conductance range, the trace was selected. Typically, 10% of all measured 

switching traces in 4,4' bipyridine were selected. A histogram using 10
-6

 G0 bin size was 

constructed from these selected traces using data collected during the switching section of the 

ramp. 

 Figure S 5.2-2: (a) Sample switching traces measured with a zig-zag ramp (dashed line) with 4,4' 

bipyridine showing switching six times between the Low G and High G conductance. (b) Conductance 

histogram constructed from 860 selected traces out of 9000 measured traces. Measurements were carried 

out with a 250 mV applied bias. 

Switching Measurement Controls:  Control measurements are performed using the same ramps 

in solvent alone and a solution of 3,3’,5,5’ Tetramethyl 4,4’Diamino Biphenyl; neither showed a 

bimodal histogram indicative of switching (SI Figs. 3 and 4). Moreover, we find that switching 

in Au-bipyridine-Au junctions occurs reproducibly only if the ramp displacement amplitude is 
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between ~2 Å and ~3 Å. Displacements larger than 3.5 Å break the junction. Displacements 

smaller than 2 Å were insufficient to switch between the low and high conducting states (SI Fig. 

5).  Control experiments with 2,4’ bipyridine and 4-phenyl pyridine show no peak in the 

histogram (SI Fig. 1) indicating that strongly asymmetric junctions (bonded on one side only) or 

a configuration with pi-stacked molecular coordination[60, 61] cannot explain either the Low G 

or High G configuration or the switching seen in these measurements.  

For measurements in solvent alone (SI Fig. 3), we used the same selection criteria, while for 

measurements with 3,3',5,5' Tetramethyl 4,4' Diamino biphenyl purchased from Sigma-Aldrich 

(SI Fig. 4), we required the hold section to start within the conductance peak observed for this 

molecule using our standard methodology.  The histogram constructed from these selected traces 

measured in solvent alone (SI Fig. 3b) did not show any peak while that for 3,3’,5,5’ Tetramethyl 

4,4’Diamino Biphenyl (SI Fig. 4b) showed a single peak around 4×10
-3

G0. 

 

 

 

 

 

 

 

 

 

Figure S 5.2-3: (a) Sample switching traces measured with switching ramp (dashed line) in solvent alone 

(1,2,4 trichlorobenzene) showing conductance oscillations between varying conductances. (b) 

Conductance histogram constructed from ~500 selected traces out of 5000 measured traces. 

Measurements were carried at 250 mV. 
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Figure S 5.2-4: (a) Sample switching traces measured with zig-zag ramp (dashed line) in 3,3',5,5' 

tetramethyl 4,4' diaminobiphenyl (structure shown). (b) Conductance histogram constructed from ~500 

selected traces out of 5000 measured traces measured at 250 mV. 

Figure S 5.2-5: (a) Sample 4,4' bipyridine switching traces (dark blue, light blue and red and brown) 

measured with zig-zag ramps with 1 Å amplitude (blue dashed line) and 4 Å amplitude (red dashed line). 

Note: Red traces are laterally offset by 0.06 s. (b) Conductance histogram constructed from ~ 200 

selected traces out of 2000 measured traces measured at 250 mV. Blue histogram is for traces measured 

with 1 Å ramp, and shows a single peak at the Low G range. Red histogram is for traces measured with 4 

Å ramp.  
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Control measurements were also run in 4,4' bipyridine using a zig-zag switching ramp 

with a displacement amplitude of 0.75 Å , 1 Å, 3 Å, 4 Å, and 5 Å. With a 3 Å amplitude, the 

switching traces and accompanying histograms looked very similar to those with a 2 Å amplitude 

ramp. For the 0.75 Å and 1 Å ramp, ~ 80% of the selected traces did not switch from the Low G 

starting value to the High G value (as shown in SI Fig. 5, blue traces). A few trace switched to 

the High G value and then remained at the high conductance until the junction was broken.  For 

the 4 Å and 5 Å ramps, the junction was broke during the ramp and frequently reformed as 

shown in SI Fig. 5 (red traces).  

Measurement of Au Snap Back Distance: When the gold-gold contact breaks, and no 

molecules are present, the Au atoms snap back[52] leaving two electrodes that are not in contact. 

To determine the electrode separation soon after the Au contact is broken, we push the electrodes 

back together until a conductance above 1 G0 is obtained, using a Piezo ramp similar to the one 

shown in Fig. 2c of the main text, but without the 0.05 s hold section. The distance that the 

electrodes need to be moved to form a contact is a measure of how much the atoms snap back 

when the junction is broken. A histogram of snap back distances is shown in SI Fig. 6, with a 

Gaussian fit that gives a mean snap back distance of 0.65 nm, in good agreement with 

measurements done in ultra high vacuum[52]. 
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Figure S 5.2-6: Distance that two gold electrodes need to be moved back to make a contact with 

conductance greater than 0.5 G0 after being pulled apart from a point-contact.  
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5.3  A Single-Molecule Potentiometer6 

Abstract:  Controlling electron transport through a single-molecule device is key to the 

realization of nanoscale electronic components. A design requirement for single molecule 

electrical devices is that the molecule must be both structurally and electrically connected to the 

metallic electrodes. Typically, the mechanical and electrical contacts are achieved by the same 

chemical moiety. In this study we demonstrate that the structural role may be played by one 

group (for example, a sulfide) while the electrical role may be played by another (a conjugated 

chain of C=C π-bonds). We can specify the electrical conductance through the molecule by 

modulating to which particular site on the oligoene chain the electrode binds. The result is a 

device that functions as a potentiometer at the single-molecule level. 

Understanding and controlling charge transport through molecular devices is critical not 

only to the realization of molecular sized devices, but also in advancing the performance of 

organic based electronics[41, 62].  For such devices, it is insufficient simply to ascertain that 

certain molecular backbones can conduct; one must predict, and ultimately control, molecular 

conductance. Here we report a new type of single-molecule electronic device in which we are 

able to predictably adjust the conductance of the individual molecular circuit over a well-defined 

range[63].  Figure 1A shows our molecule design. The terminal contact, which serves as the 

physical contact to anchor the molecule, is a localized, two-electron donor in the form of an 

organic sulfide[13].  The electrical variable-contact is the set of alternating π-bonds that form the 

conjugated π-space of a linear oligoene. During the conductance measurement, electronic 

                                                 
6
 Meisner, J. S.; Kamenetska, M.; Krikorian, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. 

Nano Letters 2011, 11, (4), 1575-1579. 
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coupling of the electrodes to the terminal contacts results in a low fixed junction conductance, 

while additional direct coupling through the π-space leads to higher tunable junction 

conductance. Furthermore, as the contact moves relative to the molecular π-space over a distance 

of more than 1 nm, the device conductance changes continuously. Thus we can choose a 

conductance for the molecule a priori simply by selecting the appropriate inter-electrode 

spacing. These experiments form the basis for a new type of tunable molecular electronic device.    

 

Figure 5.3-1: (A) Chemical structure of oligoene families An and Bn. (B) and (C): Linear histograms 

generated without data selection from >5000 conductance traces collected in the presence of each of the 

An and Bn molecules, respectively.  Traces have been offset vertically for clarity. The Bn series show 

clear peaks at molecule-specific conductance values, indicated by the solid arrow for B4. In the longer 

molecules, a shoulder at higher conductance is visible, indicated by the dashed arrow for B4. (D): Peak 

positions of the single-molecule conductance peaks observed for the An and Bn series as a function of the 

total number of oligoene units. For the An series the peak position was taken from the logarithmic 

histograms (see SI Figure S3). A linear fit to the data on the semi-log plots reveals that in both cases, 

conductance decays exponentially with a decay factor β of 0.22/Å. 

For this study, we designed and synthesized two series of molecular wires that are 

atomically defined segments of polyacetylene[64, 65], each with different terminal anchor 
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groups (An and Bn in Figure 1A). A simple synthesis was developed that affords molecules 

longer than 4 nm. This synthesis also tolerates a diversity of endgroups while the cyano-groups 

on the molecular backbone enhance molecular stability due to lowered HOMO and LUMO 

energies relative to vacuum (see SI). The crystallographically determined molecular structures of 

the parent series (Dn) show an ideal path of conjugation with alternating single and double bonds 

exclusively in the trans configuration (see Figure S1). The color of these compounds is a strong 

function of the molecular length, indicating that the HOMO-LUMO gap in these molecules 

decreases with increasing molecular length (see SI Figure S2–S4). 

We first demonstrate that these oligoenes behave as molecular wires by measuring their 

electrical properties using a scanning tunneling microscope-based break-junction technique[4].  

Using a gold STM tip and substrate, Au-Au point-contacts are repeatedly formed and broken to 

expose under-coordinated Au atoms on the electrodes. This technique is performed in a dilute 

solution of the target oligoene (10 μM in 1,2,4-trichlorobenzene), trapping oligoenes between the 

gold electrodes[2].  We apply a constant bias voltage (ranging between 200 mV and 750 mV) 

[66] and measure the current that passes between the two gold electrodes. When oligoenes bridge 

the broken point-contacts we measure the conductance of these Au-oligoene-Au junctions as a 

function of the distance between the two electrodes. The data are recorded in the form of 

conductance traces (see SI Figure S5.3-1). Measurements are repeated thousands of times and 

conductance histograms are constructed without any data selection to reveal statistically 

significant conductance values (see Figure 1B and 1C). Oligoenes that bind to under-coordinated 

Au during these measurements though the methylsulfide-terminated series, An, show a broader 

distribution of conductances than the cyclic analogues, Bn. The main reason for a broad peak is a 
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result of the additional rotational freedom around the aryl-sulfur bond, which increases the 

junction-to-junction variation[67].  When measuring thousands of junctions, the electrode 

geometry constrains the Au-S-aryl bond angles differently for different junctions resulting in a 

larger distribution of conductances. However, the general trends within and between the two sets 

are similar – incorporation of the linking sulfur atom into the five-membered ring does not 

significantly alter the fundamental physics, though it simplifies the analysis. 

 

Figure 5.3-2:  2D conductance histograms preserve displacement information for (A) B2, (B) B3 and (C) 

A3 respectively. Comparing (A) and (B), within the same linker-family, longer molecules are able to 

sustain more junction elongation while remaining bound in the junction. All three molecules show a 

higher conductance shoulder in the region above the dashed line, corresponding to a junction geometry 

that forms immediately after rupture of the Au-Au contact. The average slope of this high conductance 

shoulder (solid line) reveals that conductance in this geometry decays with β ~ 0.2/Å as the junction is 

stretched, in agreement with the decay constant shown in Figure 1D. Arrows indicate peak positions in 

from conductance histograms in Figure 1C. 

Within each series, the peak in the conductance histograms (arrow positions in Figure 1) 

decays exponentially with increasing length, following the expected relation, G ~ e
-βn

 (Figure 

1D). The decay constant, β is 0.22/Å for the Bn series, in agreement with previously published 

values for conjugated molecules[68].  Typically, histograms show a single conductance peak; 

however, for n > 1 An and Bn, in addition to the conductance peaks indicated by arrows in 
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Figure 1C, we see a second broad increase in counts at significantly higher conductance values 

(dashed arrow in Figure 1C). To elucidate these two conductance regions, we examined two-

dimensional conductance histograms[15, 22], which preserve displacement information during 

junction elongation.  In Figure 2, we show 2D-histograms for B2, B3 and A3, where two regions 

with increased counts are clearly seen (separated by the dashed line for clarity). The higher 

conductance region forms immediately following the breaking of a Au-to-Au point-contact (at 

zero-displacement in this 2D histogram). The extent to which this high-conductance state persists 

as the junction extends depends on n, as well as the terminal group (see SI Figure S5.3-2 and 

S5.3-3). In Figure 2B, we see also that the value of the conductance in this high-conducting state 

decreases almost exponentially as the gap widens. Furthermore, this high-conductance region is 

absent in the shortest molecules.  

One possibility for the two different conductance regimes is that these all-trans oligoenes 

may access two different conformations: the s-cis and s-trans. As the junction is elongated, 

oligoenes undergo rotations around the C-C single bonds. However, the two conformers are 

expected to have similar conductance; thus, rotational isomerization cannot explain this 

finding[69].  

We postulate instead that there are two independent conductance pathways. In the higher 

conductance state the tunneling path originates at one electrode, passes directly to the olefin 

backbone, thence via the sulfide to the second electrode, as illustrated in Figure 3A. In the lower 

conductance state, which occurs only when interelectrode distances are sufficiently large, the 

tunneling path switches from electrode-olefin-sulfide-electrode to the more typical electrode-

sulfide-olefin-sulfide-electrode. Although both terminal alkylthio groups anchor the oligoene to 
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the electrodes, close proximity of the electrode to the olefin backbone results in a low-resistance 

pathway (high-conductance state) directly from the electrode to the olefin backbone. As the 

junction is extended further, it slides up the backbone until an abrupt change in conductance is 

observed. Once fully extended, the oligoene is bound at the apex of each electrode, where Au 

atoms are no longer in proximity to the polyolefin chain, and the high-conductance state turns 

off. The lower conductance at this stage corresponds to the conductance through the entire 

molecule, and follows an exponential decay with increasing molecule length ( = 0.2/Å; see 

Figure 1D). Extending the junction further breaks the molecular circuit, and conductance is lost.  

For the longer molecules (for example for B3 and B4), as we extend the electrodes we 

see the conductance decay by ~0.2/ Å in the high-conductance state (Figure 4). This high-

conductance state is observed directly after breaking the Au point-contact where electrode 

separation is about 6-7 Å[14, 52].  This distance is significantly smaller than the molecular 

lengths of B3 and B4, whose lengths are 30.8 and 35.6 Å, respectively.  Although the high-

conductance state could be explained by assuming that the molecules are bound to apex of the 

electrodes at an angle which increases with junction elongation[7], our experimental results do 

not support this model for the following reasons. First, for B3 and B4, the binding angle, θ, 

would range from about 10º to 50º, given the long molecular length and short electrode 

separation.  We do not see the conductance of these junctions decrease with increasing θ 

following a (sin
 
θ)

4
 dependence[7] using this range of angles.  Second, we do not see the high-

conductance state for the short molecules.  If the molecules were indeed binding between the 

apex of the electrodes at an angle, an angle dependent conductance should have been observed 

for all molecules studied.  Finally, the decay constant seen in the high-conductance state is very 



132 

 

 

close to that seen for the molecular series studied, consistent with a model where the high-

conductance state results from direct tunneling from the electrode to the olefin backbone. 

Figure 5.3-3 (A): Schematic depiction of an oligoene break junction. Both the polyolefin chain and the 

endgroups, X, may act as electrical contacts. Oligoenes behave as a resistive potentiometer as the tip 

displaces along the olefin backbone, while the alkylthio endgroups stabilize the junction. DFT 

calculations produce the HOMO of (B) Au2-A1 and (C) Au2-C4 complexes, respectively. The HOMO 

shows significant electron density both along the polyolefin chain and at the terminal methylsulfide 

functional group. 

For the shortest molecules in our study, the length of the olefin chain is comparable to the 

distance between electrodes upon Au-Au point-contact rupture (6-7 Å)[14, 52].  Thus direct 

contact between the electrode and the polyolefin backbone is rarely accommodated. As a result, 

no clear high-conductance peak is seen in Figures 1B and C (or in SI Figures S5.3-2 and S5.3-3).  

Other factors such as steric hindrance and the electron-withdrawing properties of the nitriles may 

result in only one conductance value. 
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In order to dismiss the possibility that the Au binds through the nitrile groups on the 

backbone, we synthesized an oligoene analogous to A1, but lacking nitriles. For this molecule 

we observe the two-conductance states as well, indicating that the nitriles are not responsible for 

this two-state behavior (see SI Figure S5.3-4). In fact, the enhanced high-conductance state in 

this molecule compared to A1 suggests that the absence of the nitriles facilitates greater coupling 

of the olefin to the electrode by removing some steric hindrance, as well as making the olefin 

more electron rich (see SI Figures S5.3-4).    

While both S-Au and olefin-Au bonds form, it is clear that the former is stronger than the 

latter. We demonstrate the importance of this with a series of asymmetric oligoenes, each having 

only one sulfide (Cn), and with another series that lacks sulfides entirely (Dn) (see SI Figure 

S5.3-4). None of the Dn examples tested showed a measureable conductance, while the Cn 

series showed conductances that are measurable, albeit quite low. Moreover, the absolute height 

of the peak in the conductance histogram for Cn is quite low, suggesting that the formation of an 

Au-Cn-Au junction is a lower probability event. Thus the π-complex is not strong enough to 

hold the mechanical circuit together alone, but if the molecule is held in the junction by at least 

one strong structural element, the π-complex link is strong enough to complete the electrical 

circuit. 

To further explore this unusual mode of electrode-molecule coupling, we turned to 

computation. Density functional theory (DFT) calculations (B3LYP/6-31G**) on A1 allowed us 

to clearly visualize the molecular orbitals (MO‘s) pertinent to molecular junction formation (see 

SI for details). We modeled this as a two-step process; the molecule first binds to one electrode, 

and then this electrode-molecule complex binds to the second electrode. This model elucidates 
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the different modes of binding to the second electrode that are available to the molecule as the 

gap between the two electrodes changes. For conceptual as well as computational simplicity, we 

chose to model the Au electrode with diatomic Au2[70].  In Figure 3B, we show the HOMO 

calculated for the optimized geometry of Au2-A1, in which the Au2 unit is bound to one of the 

terminal sulfides. Examination of these MO‘s suggests that oligoenes contain two potential 

electrode-binding locations; not only at the distal SMe, but also along to the π-system of the 

polyolefin backbone. Both binding locations have ample precedent in homogeneous 

organometallic chemistry[71] and would result in different electron tunneling pathways.  Thus 

these calculations are consistent with our observations that An and Bn show two conductance 

states. Previous reports reveal that it is common for transition metals to interact with oligoenes. 

In addition to the numerous weak and dynamic interactions between transition metals and 

alkenes, stable inorganic complexes have been isolated, in which Pd and Ru interact directly with 

oligoenes through the π-system[72-74].  For comparison, in Figure 3C we show the HOMO for 

C4.  This orbital is essentially entirely in the π-space of the oligoene. Thus the channel for 

electrical conduction is present in C4, and it is quite similar to the channel in the An and Bn 

series.  The difference in the conductances of A1 (and B1) versus C4 lies in the ability of the 

sulfide to hold the molecule physically close to the metal electrode, rather than in the electronic 

structure of the molecular conductor.  

If we indeed have a direct conduction path from the electrode through the olefin 

backbone, it should be possible to change the conductance by modulating the electrode position 

and generating a single-molecule circuit that functions as a potentiometer. This is shown in 

Figure 4. Here, conductance is measured in a solution of B4 while applying a modified ramp to 
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our piezoelectric actuator, which controls the substrate position relative to the fixed tip[75] (see 

Figure 4A-dashed trace).  Of the 3000 traces measured with this ramp, over 50% of the traces 

show a molecule in the high-conductance regime at the start of the zigzag ramp, as determined 

by an automated algorithm. A sample of selected traces is shown in Figure 4A, and all selected 

traces were used to construct the 2-D conductance-time histogram on a semi-log scale, shown in 

Figure 4B.  The conductance follows a zigzag pattern, as the tip-sample distance is modulated by 

7 Å, with an average change in conductance from ~4×10
-4

 G0 to ~2×10
-3

 G0. This range is within 

the high-conductance regime for this molecule, and has an exponential dependence on separation 

(e
-0.2/Ǻ

).  An exponential dependence of conductance on electrode distance suggests that, while 

the contact resistance does not change, the length of the backbone through which transport 

occurs varies as the junction is compressed or elongated. Control experiments with alkanes show 

no modulation of conductance (Figure 4A).  Traces collected in pure solvent show changes in 

conductance between 10
-6

 G0 to 10
-1

 G0 during the zigzag ramp, which would be expected for 

tunneling through a gap without molecules. The ability to change the conductance of the junction 

continuously in this high-conductance state with an exponential decay of 0.2/Å can only be 

explained if the contact to the molecule is through direct π-coupling to the electrodes.  
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Figure 5.3-4 (A): Sample traces collected in the presence of B4 (solid blue), 1,6-bis(methylsulfide)hexane 

(dashed red) and only clean solvent (dashed green). Traces with B4 show conductance changing 

continuously and reversibly as the piezo voltage is modulated along the dashed black line so that the 

junction is repeatedly stretched and compressed. (B): 2-D histogram constructed from selected traces, for 

which the average conductance during the initial hold section fell within the high-conductance range. 

More than 50% of the 3000 traces collected met the selection criteria. Fitting the average slope of the 

different sections of the piezo ramp shows that the conductance grows and decays exponentially with a 

factor of 0.2/Å throughout the measurement, emphasizing the reproducibility of the potentiometer 

behavior. 

In conclusion, we experimentally demonstrate transport through single-molecule 

junctions where direct electronic coupling between the molecular π-conjugated backbone and Au 

electrode is achieved. Furthermore, this coupling is enabled by an auxiliary terminal chemical 

linker that provides mechanical support for the junction. Conductance through the molecular 

backbone can be tuned continuously and reversibly by changing the electrode separation. Thus, 

this system provides a new class of molecular scale devices that perform as a resistive 

potentiometer. 
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Supporting Information: Experimental Procedure and Data Analysis. 

The details of our experimental setup have been described previously[2].  Briefly, we 

prepare gold samples by evaporating 100 nm of gold onto freshly cleaved mica.  During 

measurement, the sample is mounted on top of a single-axis piezoelectric positioner below a 

hand-cut gold tip in a home-built STM setup.  The sample-tip junction is stretched and 

compressed with sub-nanometer precision by moving the substrate relative to the tip at a rate of 

15 nm/s with the piezoelectric (Mad City Labs) while applying constant bias to the sample 

through a series resistor.  The current in the tip is captured by a Keithly 428 current-voltage 

amplifier.  The sample position is manipulated and data acquired at 40 kHz using a data 

acquisition board (National Instruments, PXI-4461) and custom-built software written in Igor 

(Wavemetrics, Inc).  All position determinations were based on measurements with a built-in 

position sensor within our custom piezoelectric positioner. This position sensor was calibrated 

both by the manufacturer and by us using laser interference measurements. We found the 

absolute values of the measured displacements to be accurate to within 5%. 

We form metal-molecule-metal junctions by smashing the tip and substrate together until 

conductance exceeds 5 G0 and then pulling them apart.  All conductance traces acquired that 

reach a conductance below 5e-6 G0 are then added to a linear binned histogram by an automated 

algorithm without any further data selection. Typically, 5000 traces are used to construct 

conductance histograms.  
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Figure S5.3-1: Sample conductance traces gained from STM-based break junction measurements on Bn 

series. Step lengths become longer as molecular length increases, showing that conductive junctions are 

sustained at larger electrode separations with longer molecules.  

 

Figure S5.3-2: Logarithm binned conductance histograms for An and Bn series. Bin size is 100 per 

decade.  
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Two-dimensional histograms are automatically generated[14, 15] with the added 

requirement that a G0 break is clearly identifiable in the trace (more than 90% of traces that start 

with a conductance greater than 1 G0 and break satisfy this requirement).  In two-dimensional 

histograms conductance is binned logarithmically with 100 bins per decade, while displacement 

is binned linearly for image clarity.  

We have not observed that cyano groups bind to gold. 1,4-dicyanobenzene, 1,4-dicyano-

2-butene and oligoenes Dn do not show conductance peaks and likely do not form molecular 

junctions. Like the cyano-functionalized oligoenes, oligoenes without cyano groups (Cont-1) 

contain 2 conductance peaks demonstrating that cyano groups do not play a direct role in 

junction formation.  

 

Figure S 5.3-3: Two-dimensional histograms for the An and Bn series. The displacement axis has linear 

bins while the conductance axis has logarithm bins (100 per decade). The higher conductance regime 

lengthens as the oligomer length increases. 
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Figure S5.3-4: Linear and log binned conductance histograms of control compounds investigated. 

Structures are shown on the right.  

Analysis of Traces with Zig-Zag Ramp: Traces were selected from all measured traces using 

an automated algorithm. The number of data points in the initial "hold" region of each trace 

(starting at time t=0s) that had a conductance within the required range was determined. 

Typically, 50% of all measured traces had a molecule during the initial ―hold‖ region. All 

selected traces were used to construct a two-dimensional conductance vs. time histograms. 

Control measurements were carried out with 1,6-bis(methylsulfide)hexane, a saturated molecule.  

The zig-zag ramp used was chosen so that the proportional change in the in electrode-electrode 

separation relative to the length of the molecule was the same as in the ramp used in Figure 4 of 

the manuscript. Figure S5.3-5:  The probability of having a junction start at the selected 

conductance with hexane is 15%, which is significantly lower than the 50% success rate with B4.   

In addition, no reproducible modulation in conductance during the ramp is observed.  Traces 

collected without the presence of any molecules showed conductance oscillating between a 

closed and an open junction during the zig-zag ramp. 
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Figure S 5.3-5: Upper panel: sample traces measured using the modified piezo ramp with a 2Å amplitude 

with 1,6-bis(methylsulfide)hexane. Lower panel: two –dimensional histograms of all selected traces (1477 

out of 10000) measured with the zig-zag ramp.  
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Chapter 6: Environmental Effects on 
Transport through Single Molecule Junctions 

Here we investigate how the environment around the junction can influence conductance.  

We find that temperature affects the evolution and structure of gold electrodes during pulling in 

break-junction experiments.  The changing shape and corrugation of the leads with temperature 

shifts the energy-level alignment between the electrodes and the molecule.  Interestingly, this 

affects HOMO and LUMO-conducting molecules differently and suggests that by tuning the 

chemistry of the linker-gold bond as well as the local junction structure one can achieve different 

functionality of metal-molecule junctions. 
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6.1 Temperature Dependent Conductance of Single Molecule 
Junctions  

Abstract: We perform statistically significant temperature dependent conductance 

measurements on sub-nanometer sized single molecules bound to gold electrodes using a 

Scanning Tunneling Microscope-based break junction technique in Ultra High Vacuum and 

under ambient conditions.  We find a three-fold increase in conductance of two amine-terminated 

conjugated molecules when temperature increases from 5K to 300K in UHV; ambient 

measurements at room temperature corroborate this trend and show that at 300K conductance is 

independent of pressure conditions around the junction.  In contrast to these results on HOMO-

conducting amines, we find that the conductance of LUMO-conducting 4,4‘-bipyridine decreases 

with increasing temperature.  We show that incoherent hopping, Fermi function changes or 

phonon-assisted processes cannot account for such trends.  Instead, our data suggests that 

changes in energy-level alignment at the metal-molecule interface can be brought about by 

temperature-dependent parameters such as the corrugation of the metal surface, the density of 

edges and adatoms and the concentration of other molecules bound in the vicinity of the junction. 

Since Aviram and Ratner[1] suggested that single molecules could serve as active 

components in electronic devices, many studies of the properties of single molecule-metal 

junctions have been performed[2-7].  With few exception, transport in such systems has been 

found to be off resonance and well described by the Simmons tunneling model[8-11].  In this 

framework, a molecule which bridges the gap between two metal electrodes acts as a tunnel 

barrier to electrons; the height of the barrier is related to the energy difference between the metal 

Fermi level and the closest molecular orbital.  Within this simplistic model, conductance decays 
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exponentially with molecular length as G~e
-βL

, where the decay parameter β depends on the 

energy difference between the relevant molecular orbital and EF.  As a result, tunneling transport 

is temperature-independent. This reasoning has led to the general assumption that temperature 

dependent conductance can result only from an incoherent hopping transport mechanism [12, 

13]. Until now, the interpretation has been appealing because most molecules exhibiting 

temperature-activated transport have been longer than several nm in length; since tunneling 

probability decreases exponentially with distance, one can expect that incoherent hopping may 

start to dominate on such length scales.  However, temperature-induced changes in energy-level 

alignment at the metal-molecule interface have not been considered before.  Here, we show that 

such a mechanism for temperature-dependent transport through single-molecule junctions cannot 

be ruled out. 

 We measure the tunneling conductance through molecules smaller than 1 nm in length 

and bound to metal electrodes with amine or pyridine linkers as a function of temperature in 

ultra-high vacuum (UHV) and under ambient conditions using the scanning tunneling 

microscope (STM)-based break junction technique.  Using a new approach for UHV 

measurements, we are able to collect thousands of conductance-extension curves at more than 

ten temperatures ranging from 5 to 300K and construct conductance histograms which show 

clear peaks at molecule and temperature-dependent values.  We extend the temperature range 

investigated with measurements on amine and pyridine-terminated molecules performed under 

ambient conditions at 300-350K. Both amine and pyridine linkers bind to gold by forming a 

donor-acceptor bond between the lone pair on the terminal nitrogen and an undercoordinated 

gold.  However, whereas the amines conduct through the highest occupied molecular orbital[14, 
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15] (HOMO), in 4,4‘-bipyridine, transport occurs through the lowest unoccupied molecular 

orbital[16, 17] (LUMO).  We find that conductance of the two diamine molecules in this study 

increases non-linearly with increasing temperature and more than doubles from 5K to 300K.  In 

contrast, the conductance of 4,4‘bipyridine decreases by nearly 50% with increasing temperature 

between 300K and 350K.  These results in ambient conditions indicate that temperature 

dependence of tunneling transport through single molecule-metal junctions does not depend on 

the environment (UHV or ambient).  However, we see that HOMO-conducting (LUMO-

conducting) molecules show an increase (decrease) in conductance with increasing temperature 

indicating that temperature affects energy level alignment between the conducting backbone and 

the metal Fermi level.  We rule out electron-phonon coupling and Fermi function smearing 

effects as explanation for the observed conductance changes.  Instead, our data indicates that the 

geometry and corrugation of electrodes, which varies with temperature, could shift the local Au 

work function[18, 19].  The higher corrugation observed at lower temperature corresponds to a 

greater density of step edges and adatoms which lowers the work function[18, 20] and introduces 

more binding sites for amine and pyridine-terminated molecules.  A higher concentration of 

these molecules bound in the vicinity of the junction would further lower the work function of 

the electrodes[21].  We postulate that both of these effects shift the energy level alignment 

between the molecular orbitals and EF as temperature is changed, altering single molecule 

junction conductance.  
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Figure 6.1-1: STM images of a monolayer of TMBDA at 260K (A) and 5K (B) on Au(111) surface.  The 

images were taken with 0.1nA tunneling curernt at 100mV. (C) Sample conductance vs. extension traces 

measured on a monolayer of TMBDA shown in (A) and (B) at four different temperatures in UHV.  (D) 

STM image of the Au(111) surface with a sub-monolayer of TMBDA taken immediately following two 

current-extension measurements in the same location.  

 We carry out conductance measurements of 2,3,5,6 tetramethyl 1,4 benzenediamine 

(TMBDA) in ultra-high vacuum (UHV) at the Center for Functional Nanomaterials at 

Brookhaven National Laboratory using a variable temperature STM (Createc) that is maintained 

at a pressure of 10
-10 

Torr. Molecules from commercial sources are evaporated onto a cleaned, 

atomically flat single crystal Au(111) sample in high vacuum using a procedure described in 

detail previously[22, 23].  Figure 6.1-1A and B show STM images of monolayers of TMBDA 

taken at 265K and 5K respectively.  At both temperatures, hexagonal structures ~1nm across are 

visible and correspond to TMBDA molecules packed to form a full monolayer on the 

surface[22].  No desorption of these molecules occurring until temperatures above 300K[23].  

Once the presence of molecules on the surface is verified by imaging, feedback is turned off and 
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break junction measurements are performed in I(z) mode so that the current is monitored under 

constant bias as a function of the tip-sample distance z[3, 6].  Specifically, the tip is smashed into 

the sample and then retracted at a rate of 15nm/s and under a 50mV bias.  Following this 

retraction, the electrodes are again pushed together until a conductance configuration exceeding 

1G0 is achieved.  This procedure allows us to measure how much the electrodes snap back to 

relieve strain following quantum point contact rupture.  Analysis of these snap-back distances is 

discussed later and we focus now on the pull-out portion of the measured traces.  

Sample current-extension traces collected in UHV during the pull portion of this 

procedure at a range of temperatures are shown in Figure 6.1-1C.  All traces show steps at 

integer values of G0 corresponding to the formation of quantum point contacts between tip and 

sample.  As the tip-sample junction is thinned out, conductance decreases in integer multiples of 

G0[24]. Once the point-contact ruptures, a molecule from the surrounding can bridge the inter-

electrode gap forming a metal-molecule-metal junction which results in an additional 

conductance step at a fraction of G0. 

We take advantage of the imaging capability of the low temperature STM to examine the 

local environment of the junctions.  Figure 6.1-1D shows an image of the sample area taken 

immediately after two current-extension curves were measured several nanometers apart at 

5K[25].  Clearly, when the break junctions are performed at cryogenic temperatures the 

atomically flat Au(111) surface is destroyed and large protruding gold features are created[25].  

We see also that the area around this region is depleted of molecules.  At cold temperature where 

no significant diffusion occurs and the tip does not drift appreciably, repeated break junction 

measurements at the same location result in few molecules surrounding the junction area and few 
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steps observed in conductance experiments[26]. We therefore modified the break-junction 

measurement procedure in UHV to laterally displace the tip relative to the sample by 1Å in the 

x-y plane under tunneling conditions after each I(z) measurement.  This allows us to collect 

thousands of traces at each temperature where about 10-20% display steps at a molecule-

dependent conductance.  Conductance histograms created with over 1000 measured traces 

without any selection at each temperature show a clear peak at a value below 1G0.  Histograms 

measured at different temperatures spanning almost 300K are shown in Figure 6.1-2A.  

Surprisingly, the position of the molecular conductance peak for TMBDA shifts to higher 

conductance with increasing temperature as shown in Figure 6.1-2B.  Cooling the sample after 

heating shows that this trend is reversible; the conductance peak shifts back to lower values.   

 

Figure 6.1-2: (A) Conductance histograms constructed out of at least 1000 traces collected in the 

presence of TMBDA on the surface at five temperatures in UHV(—) and at 300K in ambient 

conditions(+).  (B) Conductance histogram peak positions for each temperature for TMBDA (red) and for 

BDA (green).  TMBDA conductance data includes mesuremens in UHV (●) and in ambient conditions (x).  

(C) Conductance histograms constructed out of at least 4000 conductance traces measured in the 

presence of BP in ambient conditions at four different temperatures.  Inset: Peak positions of the low 

conductance peak of BP as a function of temperature [11,17]. 

To verify that these findings are not an anomalous result of the specific molecule 

investigated, we performed UHV based break junction measurements on 1,4-benzenediamine 
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(BDA), evaporating the molecule onto a cleaned single crystal Au using the same procedure.  

We collect more than 1000 traces at 4 different temperatures and plot the histogram peak 

positions as a function of temperature in Figure 6.1-2B.  Conductance of both of these amine-

linked molecules appears to remain unchanged from 5 to 100K, but then rises steeply and nearly 

triples in value over the studied range from 5 to 300 K.  For TMBDA, the conductance measured 

in UHV below 100K is 3.3x10
-3

G0 and rises to to 7.7x10
-3

G0 at ~300K.  Interestingly for 

TMBDA the conductance value measured at 300K in UHV agrees very well with the 

conductance measured in air at room temperature to be 8.1x10
-3

G0. 

To extend the temperature range investigated, we measure the conductance of TMBDA 

under ambient conditions in our home-built STM-BJ setup described in detail previously[6, 27]. 

We see a clear increase in conductance within the accessible temperature range of 300~330K 

indicating that this result is independent of the environment. We conclude that both BDA and 

TMBDA have a conductance that increases non-linearly with increasing temperature. Both these 

molecules have been shown to conduct through the HOMO.[14, 15] In order to check if this 

effect correlates with the molecular orbital responsible for transport, we carry out measurements 

under ambient conditions with 4,4‘-bipyridine (BP) which is known to conduct through the 

LUMO orbital.  The conductance of a single BP molecule bound to gold electrodes was 

previously shown to have two different values depending on the binding geometries that are 

probed during junction elongation[11, 17]; thus conductance histograms show two peaks.  

Calculations and experiments have shown that both conducting geometries are due to transport 

through the molecular LUMO[11, 17].  Here, we focus on the low-conducting geometry which 

has the BP molecule stretched between the apex of both electrodes[11].  We carry out 
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conductance measurement at different temperatures under ambient conditions.  We find that the 

conductance of BP decreases with increasing temperature, falling by about 50% from 300 to 

330K, as shown in Figure 6.1-2C. This is in contrast to what is seen for the HOMO-conducting 

amine-terminated molecules.  These results suggest strongly that this temperature dependent 

transport seen through metal-molecule-metal junctions depends on energy level alignment at the 

metal-molecule interface. 

 

Figure 6.1-3: 2D histograms constructed out of at least 2000 traces measured in the presence of TMBDA 

at 65K in UHV (A), 295K in UHV(B) and 300K in ambient conditions (C).  The solid grey lines in (A) and 

(C) mark the average conductance at each extension point. The  dashed lines in (A) indicate the range 

(0.5 decades) used to construct the extension profiles shown in (D).  (D) Step-length extension profiles 

constructed from the 2D histograms in A-C.  All the counts within the dashed lines shown in (A) are 

summed and ploted as a function of extension. 

We now consider several possible explanations for the observed trends in conductance 

with temperature. It has been found experimentally that molecular junction conductance 

decreases slightly with increasing junction elongation.  At low temperatures where molecules 

could remain bound in a junction for a significantly longer elongation, one could expect a 

decrease in conductance with increasing elongation. To see if this is indeed the case here, we 

construct two-dimensional conductance-displacement histograms that track junction conductance 

changes with elongation while also providing an average conductance plateau step length.[17, 
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28]  These histograms are constructed using the rupture of the single Au-atom contact (1G0) as 

the origin of the displacement axis. Figure 6.1-3A, B and C shows such 2D histogram 

constructed from over 2000 TMBDA traces measured at 65K, 300K in UHV and 300K in 

ambient conditions respectively.  Figure 6.1-3D shows step length profiles centered around the  

conductance peak.[29]  We see that the distributions of step lengths measured at 65K in UHV 

and at 300K in ambient are similar, suggesting that in both conditions, the molecule initially 

binds away from the apex of the electrodes and then slides down the electrode towards the tip as 

the junction is elongated.[28] The average conductance (peak of the Gaussian cross-section at 

each displacement) is indicated by the solid lines in Figures 3A-C and remains unchanged during 

the elongation process.  This indicates that on average, both in UHV and at room temperature, 

the conductance of amines does not vary significantly with elongation or binding site.[15] 

Furthermore, since the plateau lengths are similar at room temperature and at 65K in UHV, 

changes in junction elongation cannot explain the observed change in conductance between 65K 

and 300K. We note here that molecular plateau lengths are much shorter at 295K in UHV when 

compared with measurements under ambient conditions possibly due to solvent effects under 

ambient conditions.  

It has been suggested that molecular junction conductance can change with temperature 

as a results of opening (or closing) of additional conductance channels due to electron-phonon 

interactions[30]. Several recent studies have found conductance increases in inelastic electron 

tunneling spectroscopy (IETS) experiments performed at cryogenic temperatures when the bias 

voltage is swept across vibration resonances of the molecule.[7, 31, 32]  To see if our results can 

be explained by such an effect, we perform bias-dependent break-junction conductance 
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measurements on TMBDA at 65K and 150K in UHV and at 300K under ambient conditions.  If 

phonon-assisted processes play an important role in transport, we should see large changes in 

conductance with bias.  However measurements at 50 mV, 100mV and 350mV reveal no 

significant shift in conductance histogram peak. Thus the observe 300% increase in conductance 

over ~330K for TMBDA cannot be accounted for by phonon-assisted processes. We also note 

that such phonon-assisted processes should also lead to an increase in conductance for LUMO-

conducting molecules, contrary to what we measure. 

Changes in the Fermi distribution of electrons in the metal with temperature could also 

yield a temperature dependent conductance, as has been posited to explain recently observed 

temperature-dependent transport through single molecule junctions[33, 34].  These authors apply 

a one level model to fit their temperature-dependent conductance results and extract the position 

and width of the molecular resonance (MO) responsible for transport.  Their models indicate that 

the distance between the MO and the Fermi energy of the electrodes must be on the order of a 

few hundred meV to observe an appreciable change in conductance from cryogenic to room 

temperatures due to changes in the Fermi distribution. In a recent scanning tunneling 

spectroscopy study of TMBDA bound to a gold step edge we found the closest MO of TMBDA 

to be nearly 2eV below EF[22]. The MO of a junction where the molecule is bound to metal on 

two sides is expected to be even further away (about 3eV below EF) as has been determined from 

a self-energy corrected density functional theory (DFT) calculations[15, 35].   We conclude that 

Fermi function smearing cannot account for the large changes in conductance between 5 and 

330K. 
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The large changes in conductance measured here could be explained, however, by a 

shifting of the EF relative to the molecular resonance.  Furthermore, a change in the alignment of 

EF with respect to the molecular orbitals would also account for the observed opposite effect of 

temperature on HOMO-conductance amines and LUMO-conducting BP. We hypothesize that 

the alignment of the gold Fermi level and the MO changes with temperature and that these 

changes are brought about by temperature-induced structural changes of the electrodes that the 

molecules are bound to. 

 Figure 6.1-1D shows that at 5K the gold electrodes where the molecules bind protrude 

out of the flat surface by more than a nm.  In contrast, at high temperature, high mobility of gold 

will cause such nano-islands to relax into much smoother structures within the time frame of the 

measurement[36]. In what follows, we will show from measurements of 1G0 plateau lengths and 

distance between broken Au point-contacts that the Au electrode structures vary with 

temperature. In Figure 6.1-4A, we show the distribution of 1G0 plateau lengths as a function of 

temperature. We see, as in reference[37], that at cryogenic temperatures, single atom chains 

lengths are quantized in multiples of 0.25nm indicating that one or more gold atoms are pulled 

out prior to G0 rupture..  In contrast, at room temperature, 1G0 steps are shorter than 0.25nm, 

indicating that the electrodes are more blunt when the point-contact ruptures and molecules bind.  

We now turn to measurements of snap back distance achieved by comparing pull and push 

portions of the traces as discussed earlier.  We determine the additional distance that the 

electrodes need to be pushed to achieve an Au-Au contact following rupture. The distributions of 

these ―snap-back‖ distances measured at three different temperatures are shown in Figure 6.1-

4B[17]. We see that at 5K, the inter-electrode distance in most junctions is smaller than 0.6 nm, 
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while at 260K most junctions snap back to 0.8 nm following rupture.  This indicates that at 

cryogenic temperature the gold atoms do not relax into blunt structures following the 1G0 

junction rupture.  In contrast at high temperature, the gold is mobile and can rearrange into a 

more favorable, less stretched configuration suggesting that the electrode structure is different at 

cryogenic temperature when compared with room temperature. 

 

Figure 6.1-4: (A) Histograms of 1G0 step-lengths (A) and snap-back distances (B) measured on a trace-

by-trace basis on at least 1500 traces for each temperature.  

This change in electrode shape can have the following consequences all of which will 

result in a change in the energy level alignment between the molecular orbital and the Au EF.  

First, a corrugated electrode will have a higher density of undercoordinated Au atoms and  will 

thus have a lower work function than a flat electrode[18, 20].  This is because undercoordinaed 

atoms carry a dipole so that an increased density of step edges and adatoms can shift the Fermi 

energy up by several hundreds of milli eV[18].  Second, a higher concentration of such 

undercoordinated sites will provide additional binding sites for amine and pyridine terminated 
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molecules close to the junction.  This has also been shown to decrease the effective work 

function at the molecular junction and increase conductance because of the presence of dipoles 

associated with the Au-N donor acceptor bond[21].  Both effects contribute to raising EF of the 

electrodes relative to the molecular spectrum with increasing temperature which will result in an 

increase (decrease) in conductance with temperature for the HOMO (LUMO) conducting 

molecules. We can expect therefore, a significant change in energy level alignment with 

electrode shape.   

To estimate the effect of shifting EF on conductance, we use a DFT-calculated 

transmission of BDA as a function of energy as a guide[15].   Since LUMO does not 

significantly contribute to transport at low biases, we approximate the transmission function to a 

single Lorentzian centered at the HOMO position from reference.  We find that a ~1.0 eV rigid 

shift down of the HOMO relative to EF can decrease conductance by a factor of ~3.  Although 

we cannot, based on conductance alone, determine the position of the conducting orbital relative 

to EF, our measurements do indicate that the EF-HOMO gap can change with temperature.  

In conclusion, we have shown that the tunneling conductance of single molecule 

junctions depend on temperature and change by nearly 300% from 5K to 350K. We show that 

HOMO-conducting molecules show a decrease in conductance with decreasing temperature, 

while LUMO-conducting molecules show the opposite trend. These measurements cannot be 

explained by activated transport, changes in the Fermi distribution or electron-phonon coupling.  

However we show that they could arise due to shift in the local effective work-function of the 

metal electrodes induced by changes in the electrode geometry with temperature. At low 

temperatures, we show that the electrodes remain highly corrugated and sharp, while at high 



162 

 

 

temperature the gold relaxes into a smoother geometry.  As the work function of the electrodes 

shifts because of this changed local structure, the energy level alignment between the metal 

Fermi level and the conducting molecular orbital result in a temperature dependent transport. 

 

REFERENCES: 

1. Aviram, A. and M.A. Ratner, Molecular Rectifiers. Chemical Physics Letters, 1974. 

29(2): p. 277-283. 

2. Smit, R.H.M., et al., Measurement of the conductance of a hydrogen molecule. Nature, 

2002. 419(6910): p. 906-909. 

3. Xu, B.Q. and N.J. Tao, Measurement of single-molecule resistance by repeated formation 

of molecular junctions. Science, 2003. 301(5637): p. 1221-1223. 

4. Wold, D.J. and C.D. Frisbie, Fabrication and characterization of metal-molecule-metal 

junctions by conducting probe atomic force microscopy. Journal of the American 

Chemical Society, 2001. 123(23): p. 5549-5556. 

5. Reichert, J., et al., Driving current through single organic molecules. Physical Review 

Letters, 2002. 88(17). 

6. Venkataraman, L., et al., Single-Molecule Circuits with Well-Defined Molecular 

Conductance. Nano Letters, 2006. 6(3): p. 458 - 462. 

7. Kiguchi, M., et al., Conductance of Single 1,4-Benzenediamine Molecule Bridging 

between Au and Pt Electrodes. Journal of Physical Chemistry C, 2008. 112(35): p. 

13349-13352. 

8. Simmons, J.G., Generalized Formula for Electric Tunnel Effect between Similar 

Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics, 1963. 34(6): 

p. 1793-1803. 

9. Wold, D.J., et al., Distance dependence of electron tunneling through self-assembled 

monolayers measured by conducting probe atomic force microscopy: Unsaturated versus 

saturated molecular junctions. Journal of Physical Chemistry B, 2002. 106(11): p. 2813-

2816. 

10. Beebe, J.M., et al., Transition from direct tunneling to field emission in metal-molecule-

metal junctions. Physical Review Letters, 2006. 97(2): p. 026801. 



163 

 

 

11. Kamenetska, M., et al., Conductance and Geometry of Pyridine-Linked Single-Molecule 

Junctions. Journal of the American Chemical Society, 2010. 132(19): p. 6817-6821. 

12. Hines, T., et al., Transition from Tunneling to Hopping in Single Molecular Junctions by 

Measuring Length and Temperature Dependence. Journal of the American Chemical 

Society, 2010. 132(33): p. 11658-11664. 

13. Choi, S.H., B. Kim, and C.D. Frisbie, Electrical resistance of long conjugated molecular 

wires. Science, 2008. 320(5882): p. 1482-1486. 

14. Li, Z. and D.S. Kosov, Nature of well-defined conductance of amine anchored molecular 

junctions. Physical Review B, 2007. 76(3): p. 035415. 

15. Quek, S.Y., et al., Amine-gold linked single-molecule circuits: Experiment and theory. 

Nano Letters, 2007. 7(11): p. 3477-3482. 

16. Stadler, R., K.S. Thygesen, and K.W. Jacobsen, Forces and conductances in a single-

molecule bipyridine junction. Physical Review B, 2005. 72(24): p. 241401. 

17. Quek, S.Y., et al., Mechanically controlled binary conductance switching of a single-

molecule junction. Nature Nanotechnology, 2009. 4(4): p. 230-234. 

18. Besocke, K., B. Krahlurban, and H. Wagner, Dipole-Moments Associated with Edge 

Atoms - Comparative-Study on Stepped Pt, Au and W Surfaces. Surface Science, 1977. 

68(1): p. 39-46. 

19. Keijsers, R.J.P., et al., Influence of the shape of the electrodes on the tunnel current. Low 

Temperature Physics, 1998. 24(10): p. 730-736. 

20. Smoluchowski, R., Anisotropy of the Electronic Work Function of Metals. Physical 

Review, 1941. 60(9): p. 661. 

21. Fatemi, V., et al., Environmental Control of Single-Molecule Junction Transport. Nano 

Letters, 2011. 11: p. 1988-1992. 

22. Kamenetska, M., et al., Structure and Energy Level Alignment of Tetramethyl 

Benzenediamine on Au(111). Journal of Physical Chemistry C, 2011. 115(25): p. 12625-

12630. 

23. Dell'Angela, M., et al., Relating Energy Level Alignment and Amine-Linked Single 

Molecule Junction Conductance. Nano Letters, 2010. 10(7): p. 2470-2474. 

24. Yanson, A.I., et al., Formation and manipulation of a metallic wire of single gold atoms. 

Nature, 1998. 395(6704): p. 783-785. 



164 

 

 

25. He, J., et al., Measuring single molecule conductance with break junctions. Faraday 

Discussions, 2006. 131: p. 145-154. 

26. Martin, C.A., et al., Lithographic mechanical break junctions for single-molecule 

measurements in vacuum: possibilities and limitations. New Journal of Physics, 2008. 10: 

p. 065008. 

27. Widawsky, J.R., et al., Simultaneous Determination of Conductance and Thermopower of 

Single Molecule Junctions. Submitted, 2011. 

28. Kamenetska, M., et al., Formation and Evolution of Single-Molecule Junctions. Physical 

Review Letters, 2009. 102(12): p. 126803. 

29. Parameswaran, R., et al., Reliable Formation of Single Molecule Junctions with Air-

Stable Diphenylphosphine Linkers. Journal of Physical Chemistry Letters, 2010. 1: p. 

2114-2119. 

30. Tal, O., et al., Electron-vibration interaction in single-molecule junctions: From contact 

to tunneling regimes. Physical Review Letters, 2008. 100(19). 

31. Park, H., et al., Nanomechanical oscillations in a single-C-60 transistor. Nature, 2000. 

407(6800): p. 57-60. 

32. Arroyo, C.R., et al., Characterization of single-molecule pentanedithiol junctions by 

inelastic electron tunneling spectroscopy and first-principles calculations. Physical 

Review B, 2010. 81(7). 

33. Poot, M., et al., Temperature dependence of three-terminal molecular junctions with 

sulfur end-functionalized tercyclohexylidenes. Nano Letters, 2006. 6(5): p. 1031-1035. 

34. Sedghi, G., et al., Long-range electron tunnelling in oligo-porphyrin molecular wires. 

Nature Nanotechnology, 2011. 6(8): p. 517-523. 

35. Quek, S.Y., et al., Length Dependence of Conductance in Aromatic Single-Molecule 

Junctions. Nano Letters, 2009. 9(11): p. 3949-3953. 

36. Luedtke, W.D. and U. Landman, STABILITY AND COLLAPSE OF METALLIC 

STRUCTURES ON SURFACES. Physical Review Letters, 1994. 73(4): p. 569-572. 

37. Untiedt, C., et al., Calibration of the length of a chain of single gold atoms. Physical 

Review B, 2002. 66(8). 

 


