Pluvials, droughts, the Mongol Empire, and modern Mongolia

Hessl, Amy E.; Pederson, Neil; Baatarbileg, Nachin; Anchukaitis, Kevin; Di Cosmo, Nicola

Although many studies have associated the demise of complex societies with deteriorating climate, few have investigated the connection between an ameliorating environment, surplus resources, energy, and the rise of empires. The 13th-century Mongol Empire was the largest contiguous land empire in world history. Although drought has been proposed as one factor that spurred these conquests, no high-resolution moisture data are available during the rapid development of the Mongol Empire. Here we present a 1,112-y tree-ring reconstruction of warm-season water balance derived from Siberian pine (Pinus sibirica) trees in central Mongolia. Our reconstruction accounts for 56% of the variability in the regional water balance and is significantly correlated with steppe productivity across central Mongolia. In combination with a gridded temperature reconstruction, our results indicate that the regional climate during the conquests of Chinggis Khan’s (Genghis Khan’s) 13th-century Mongol Empire was warm and persistently wet. This period, characterized by 15 consecutive years of above-average moisture in central Mongolia and coinciding with the rise of Chinggis Khan, is unprecedented over the last 1,112 y. We propose that these climate conditions promoted high grassland productivity and favored the formation of Mongol political and military power. Tree-ring and meteorological data also suggest that the early 21st-century drought in central Mongolia was the hottest drought in the last 1,112 y, consistent with projections of warming over Inner Asia. Future warming may overwhelm increases in precipitation leading to similar heat droughts, with potentially severe consequences for modern Mongolia.


  • thumnail for PedersonHesslMongolPluvialPNASlastProof.pdf PedersonHesslMongolPluvialPNASlastProof.pdf application/pdf 1.91 MB Download File

Also Published In

Proceedings of the National Academy of Sciences

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Biology and Paleo Environment
HighWire Press
Published Here
October 8, 2015