Academic Commons

Articles

Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

Schubert, Siegfried D.; Stewart, Ronald E.; Wang, Hailan; Barlow, Mathew; Berbery, Ernesto H.; Cai, Wenju; Hoerling, Martin P.; Kanikicharla, Krishna K.; Koster, Randal D.; Lyon, Bradfield; Mariotti, Annarita; Mechoso, Carlos R.; Müller, Omar V.; Rodriguez-Fonseca, Belen; Seager, Richard; Seneviratne, Sonia I.; Zhang, Lixia; Zhou, Tianjun

Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a
major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the
large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and
radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought
Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model
experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales,
the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia,
Australia, and theMaritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India),
the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern
Canada stand out as regions with few SST-forcedimpacts on precipitation oninterannual time scales.Decadal changesin
SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation
of the late 1990s ‘‘climate shifts’’ in the Pacific and Atlantic SST. Key remaining research challenges include (i)
better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better
understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

Files

Also Published In

Title
Journal of Climate
DOI
https://doi.org/10.1175/JCLI-D-15-0452.1

More About This Work