Theses Doctoral

Which Approaches Do Students Prefer? Analyzing the Mathematical Problem Solving Behavior of Mathematically Gifted Students

Tjoe, Hartono Hardi

This study analyzed the mathematical problem solving behavior of mathematically gifted students. It focused on a specific fourth step of Polya's (1945) problem solving process, namely, looking back to find alternative approaches to solve the same problem. Specifically, this study explored problem solving using many different approaches. It examined the relationships between students' past mathematical experiences and the number of approaches and the kind of mathematics topics they used to solve three non-standard mathematics problems. It also analyzed the aesthetic of students' approaches from the perspective of expert mathematicians and the aesthetic of these experts' preferred approaches from the perspective of the students. Fifty-four students from a specialized high school were selected to participate in this study that began with the analysis of their past mathematical experiences by means of a preliminary survey. Nine of the 54 students took a test requiring them to solve three non-standard mathematics problems using many different approaches. A panel of three research mathematicians was consulted to evaluate the mathematical aesthetic of those approaches. Then, these nine students were interviewed. Also, all 54 students took a second survey to support inferences made while observing the problem solving behavior of the nine students. This study showed that students generally were not familiar with the practice of looking back. Indeed, students generally chose to supply only one workable, yet mechanistic approach as long as they obtained a correct answer to the problem. The findings of this study suggested that, to some extent, students' past mathematical experiences were connected with the number of approaches they used when solving non-standard mathematics problems. In particular, the findings revealed that students' most recent exposure of their then-AP Calculus course played an important role in their decisions on selecting approaches for solution. In addition, the findings showed that students' problem solving approaches were considered to be the least "beautiful" by the panel of experts and were often associated with standard approaches taught by secondary school mathematics teachers. The findings confirmed the results of previous studies that there is no direct connection between the experts' and students' views of "beauty" in mathematics.


  • thumnail for Tjoe_columbia_0054D_10192.pdf Tjoe_columbia_0054D_10192.pdf application/pdf 3.31 MB Download File

More About This Work

Academic Units
Mathematics Education
Thesis Advisors
Karp, Alexander P.
Ph.D., Columbia University
Published Here
June 6, 2013