Academic Commons


Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes

Chowdhury, Souma; Mehmani, Ali; Zhang, Jie; Messac, Achille

The suitability of turbine configurations to different wind resources has been traditionally restricted to considering turbines operating as standalone entities. In this paper, a framework is thus developed to investigate turbine suitability in terms of the minimum cost of energy offered when operating as a group of optimally-micro-sited turbines. The four major steps include: (i) characterizing the geographical variation of wind regimes in the onshore U.S. market; (ii) determining the best performing turbines for different wind regimes through wind farm layout optimization; (iii) developing a metric to quantify the expected market suitability of available turbine configurations; and (iv) exploring the best tradeoffs between the cost and capacity factor yielded by these turbines. One hundred thirty one types of commercial turbines offered by major global manufacturers in 2012 are considered for selection. It is found that, in general, higher rated power turbines with medium tower heights are the most favored. Interestingly, further analysis showed that “rotor diameter/hub height” ratios greater than 1.1 are the least attractive for any of the wind classes. It is also observed that although the “cost-capacity factor” tradeoff curve expectedly shifted towards higher capacity factors with increasing wind class, the trend of the tradeoff curve remained practically similar.


Also Published In

More About This Work

Academic Units
Lenfest Center for Sustainable Energy
Published Here
April 7, 2017


This paper is an extended version of our paper published in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 23–26 April 2012, in Honolulu, Hawaii, and the 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 17–19 September 2012, in Indianapolis, Indiana.