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ABSTRACT 

 

Genetic contribution to type 1 diabetes microvascular complications 

 

Ettie M. Lipner 

 

 

Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of beta cells in the 

pancreas resulting in insulin deficiency, which leads to hyperglycemia and organ damage. T1D 

patients experience an increased risk of morbidity and mortality due to long-term complications, 

specifically retinopathy, nephropathy, and neuropathy. Studies demonstrating familial 

aggregation support the claim that a genetic contribution may influence the development of 

complications. This dissertation aims to identify genes/chromosomal regions that predispose 

T1D patients to, or protect them from, the expression of the chronic microvascular 

complications: retinopathy, neuropathy and nephropathy. 

In my first chapter, I introduce the history of type 1 diabetes and microvascular complications 

and their importance as a public health concern. Data show that the prevalence for T1D is 

increasing, and thus it is likely that the prevalence for the associated complications will also 

increase. Further, a large proportion of T1D patients develop at least one microvascular 

complication within 15 years of T1D diagnosis. By identifying risk alleles for the microvascular 

complications of T1D, the findings of this study could allow physicians to determine which 

patients are at greater/lesser risk for developing complications, help to develop interventions to 

delay or protect against the development of complications and thus reduce medical expenditure 

and suffering due to diabetes.  



In the second chapter, I provide the background for, and review the literature on, the genetics of 

T1D and microvascular complications. The genetic risk factors for T1D are well-established, but 

there is conflicting research on the question of whether T1D-predisposing HLA alleles may also 

be in part responsible for the occurrence of microvascular complications seen in T1D patients. 

We also investigate whether T1D HLA risk alleles are associated with all forms of microvascular 

complications or whether there are HLA alleles specifically associated with a given 

complication.  In the work described, I address these questions by examining the relationship of 

HLA alleles to the risk for any complication and to the risk for some specific complication.  

In the third chapter, I perform case-control analysis and evaluate known type 1 diabetes HLA 

susceptibility alleles and their association with microvascular complications. I used data from the 

Human Biological Data Interchange (HBDI), which includes 425 Caucasian families (2,506 

family members) with cases diagnosed with type 1 diabetes. Using a case-control study design 

nested on the cohort of the HBDI type 1 diabetes patients and their families, probands with at 

least one microvascular complication were considered cases, and the probands with T1D without 

microvascular complications (T1D only) were considered controls. Our findings suggest that the 

HLA class II DRB1*03:01 allele is a protective factor for complications, specifically for 

retinopathy, as is the DQA1*05:01-DQB1*02:01 haplotype. The DRB1*04:01 allele showed no 

evidence of association, except when the carriers of the protective DRB1*03:01 were removed 

from the analysis. Findings also showed a strong positive association between the HLA class I 

allele B*39:06 and complications. 

 In the fourth chapter, using the same sample of HBDI type 1 diabetes families that I used in 

Chapter 3, I perform linkage analysis and test markers along chromosome 6 for co-segregation 

with microvascular complications.  Using SNP data that were genotyped by the Center for 



Inherited Disease Research (CIDR), I performed linkage analysis examining 1) the phenotype of 

T1D itself, 2) the presence of any microvascular complication, 3) retinopathy alone, 4) 

nephropathy alone, and 5) neuropathy alone. Initially, we confirmed the linkage of the HLA 

locus to T1D. In subsequent analyses, using all complications as well as retinopathy alone as the 

phenotypes, we identified two linkage peaks; a linkage peak located at the HLA locus and 

another novel locus was telomeric to HLA. We did not find evidence for linkage for nephropathy 

alone or neuropathy alone.  

Findings from this dissertation show that both HLA and non-HLA regions are involved in the 

expression of complications with strong evidence of genetic influences specifically for 

retinopathy.  
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CHAPTER 1: 

1.1 Introduction 

Retinopathy, nephropathy, and neuropathy are chronic microvascular complications of type 1 

diabetes (T1D) and are responsible for much of the morbidity and mortality in T1D patients. 

Familial aggregation studies suggest that genetic susceptibility is a major risk factor for T1D. 

Familial aggregation studies, linkage studies and association studies all also support the claim 

that a genetic contribution may influence the development of microvascular complications as 

well (1-6). Although genetic association studies of microvascular complications have been 

conducted to identify specific alleles implicated in the development of complications, few 

studies have used linkage analysis to examine the genetics and inheritance of microvascular 

complications among T1D patients. 

In this chapter, I provide background and review the literature on the genetics of T1D and 

microvascular complications. The overall aim of this work is to identify genes that predispose 

T1D patients to, or protect them from, the development of microvascular complications.  One 

aim is to identify specific HLA DR/DQ alleles that influence the development to microvascular 

complications among T1D patients. There is conflicting research on the question of whether 

T1D-predisposing HLA alleles may be in part responsible for the differential occurrence of 

microvascular complications among T1D patients. Another aim is to identify genetic loci/genes 

implicated in microvascular complications using linkage analysis. 



!
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1.2 Type 1 Diabetes - A brief history  

Diabetes has been described as far back as the first century. An ancient Greek physician, 

Aretaeus the Cappadocian, described people as emaciated with an Òunquenchable thirst and 

trapped in an endless cycle of Ôexcessive drinkingÕ and Ômaking waterÕÓ (7). By the 19th century, 

as mortality rates due to infectious disease began to decline because of improvements in public 

health, diseases such as cancer, cardiovascular disease and diabetes began to receive more 

attention. In 1889, Mering and Minkowsi at the University of Strasbourg showed that diabetes 

was related to the malfunctioning of the pancreas, but they could not explain why some 

individuals did or did not develop the disease. Beginning in the early 20th century, physicians 

attempted to control the disease through dietary management, especially by calorie restriction, 

often to the point of starvation. 

In 1921-22, Frederick Banting and Charles Best discovered insulin. They gave pancreatic extract 

to a boy dying of type 1 diabetes. The boyÕs extremely high blood sugar declined close to normal 

levels and in a matter of 24 hours, his life was saved. The discovery of insulin spread like 

wildfire across the world and changed a diagnosis of diabetes from being a virtual death sentence 

to what was considered a new lease on life. 

However, a decade after insulinÕs discovery, mortality rates had not declined. Diabetes was 

ranked as the ninth leading cause of death in the US during the 1930s. In 1938, a Lancet editorial 

questioned, ÒIs diabetes a public health problem?Ó Physicians in both Europe and the US agreed 

that diabetes should no longer be considered just an individual disease, but had become a disease 

afflicting a population as well (7). While many diabetics found insulin to be a miracle, they also 

dealt with endless struggles to ward off cardiac damage, renal failure, blindness, gangrene and 



!

!

$!

amputation. Many down-played the excitement, claiming that insulin was not a cure, but rather a 

tool to manage the disease. 

Since the description of diabetes two thousand years ago, generations of scientists have 

contributed volumes of research to understanding the etiology and pathogenesis of diabetes and 

its complications. Now that we have entered the 21st century, perhaps the next great step of 

discovery lies in studying diabetes-related complications on a genetic level. 

 

1.3 Microvascular complications as a Significant Public Health Concern 

Preventing the development of complications is one of the main goals of diabetes research. 

Retinopathy, nephropathy, and neuropathy are the chronic microvascular complications 

associated with T1D and are responsible for much of the T1D-associated morbidity and mortality. 

The pathophysiologic mechanisms for the development of microvascular complications involve 

hyperglycemia and oxidative stress, which result in tissue and organ damage in patients. The 

most frequent of the microvascular complications, retinopathy, is a leading cause of blindness 

and occurs in 50-90% of T1D patients (8). Diabetic nephropathy (DN) occurs in about 40% of 

T1D patients and leads to end-stage renal failure; DN is the leading cause of mortality among 

T1D patients (3). Diabetic neuropathy affects on average 30-50% of T1D patients (8). 

Neuropathy causes nervous system damage and presents with diverse clinical manifestations; 

lower leg amputation is among the most devastating medical interventions associated with 

neuropathy. 

While this dissertation focuses on T1D, research on complications may be relevant to all 

individuals with diabetes, regardless of its etiology. Type 2 diabetes is increasing alarmingly in 

prevalence and is predicted to continue to increase in the coming decades, in conjunction with 
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the increasing prevalence of obesity. Diabetes and diabetic complications take an even heavier 

toll on the economically disadvantaged with limited health care. A better understanding of the 

genetic risk factors associated with the risk of developing complications is essential to aid in the 

identification of those most vulnerable to the complications of diabetes. 

1.3.1 Financial burden due to diabetes and microvascular complications 

The risk of death among diabetics (type 1 and type 2) is almost twice that for non-diabetics of the 

same age (http://diabetes.niddk.nih.gov/DM/PUBS/statistics/). Medical costs due to diabetes, 

disability and work loss result in enormous expenditure. The findings of our study can lead to 

genetic tests that would allow physicians to determine which patients are at greater/lesser risk for 

developing complications.  
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CHAPTER 2:  

Literature review of type 1 diabetes and the associated microvascular complications 

Ettie M. Lipner
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2.1 Type 1 Diabetes  

2.1.1 Epidemiology of Type 1 Diabetes 

Epidemiologic studies have demonstrated geographic differences in the incidence of T1D. Rates 

are generally highest in European Caucasian populations. Finland and Sardinia experience the 

highest incidence, >40/100,000/year and 37.8/100,000/year, respectively. Rates in the Baltic 

countries are lower than Scandinavian countries. Middle Eastern and as well as North African 

countries experience intermediate rates. T1D incidence is very low in Asia and in some Latin 

American countries. The lowest incidence rates have been reported in Venezuela and China, 

0.1/100,000/year and 0.1-4.5/100,000/year, respectively (1). These data demonstrate a 400-fold 

geographic variation in T1D incidence across populations worldwide. This variation is one of the 

largest observed for any noncommunicable disease. (2). One explanation for this dramatic 

variation may be related to the population frequency distribution of susceptibility alleles for T1D, 

particularly in the HLA genes. In section 1.3.6 (Genetic risk factors for T1D), I will discuss this 

concept in greater detail. 
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(3) Figure 1. Geographical distribution of type 1 diabetes 

In the US, T1D incidence is considered high (although rates are lower than rates in Scandinavian 

countries) (4).  The incidence of T1D in the US was 18.3/100,000/year among children less than 

10 years of age and 19.7/100,000/year among individuals 10-19 years of age during 2002-2003 

(http://diabetes.niddk.nih.gov/dm/pubs/statistics/). There is also considerable ethnic variation in 

T1D incidence in the US. The estimated incidence for African-Americans is approximately 

3.3/100,000/year, while for Caucasians, it is approximately 20.6/100,000/year. In San Diego, CA, 

age-adjusted incidence rates for whites were 13.8/100,000/year, while the incidence rates for 

African-Americans, Asians, and Hispanics were 3.3/100,000/year, 6.4/100,000/year and 

4.1/100,000/year, respectively (2). 

Data on T1D incidence by gender appears inconclusive. According to Laporte and colleagues 

(1995), there is a slight male excess of T1D among Caucasians in the US. Between 1965-1989 in 

Allegheny County, PA, the incidence rates for males and females were 18.5/100,000/year and 

17.6/100,000/year, respectively. Among non-Caucasians, there was a slight female excess of 

T1D; male and female incidence rates were 8.6/100,000/year and 11.9/100,000/year, respectively. 

However, these gender differences have not been reported in other areas. Jefferson County, AL 

showed a female excess of T1D among both Caucasians and African-Americans (2). Kitagawa 

and colleagues showed a slight excess of females developing T1D in Japan, while in the US, 

Norway and Israel, there were no significant differences (5). Kitagawa and colleagues also 

compared the age of onset of T1D between males and females. They found that T1D occurs 

about a year earlier in females compared with males among US and Japanese children, but this 

difference was not seen among Israeli male and female children. These authors also claim that 

low-risk populations, such as non-white Americans and Japanese, have lower T1D incidence in 
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children less than 10 years of age compared with Caucasian Americans and Israelis. While 

gender data on T1D appears unresolved, differences seen between Asian, African-American, and 

Caucasian populations likely to relate to the frequency and distribution of high-risk susceptibility 

genes that vary between ethnic groups. Differences in genetic risk factors across populations will 

be discussed in greater detail below. 

2.1.2 Pathogenesis of Type 1 Diabetes 

T1D is a complex, autoimmune disease in which dendritic cells, macrophages and CD4+ and 

CD8+ T lymphocytes infiltrate the pancreas and destroy the insulin-producing !  cells in the islets 

of Langerhans (6). This destruction results in loss of !  cell function and insulin deficiency. The !  

cells sense the amount of glucose in the blood and release insulin to drive glucose into the cells 

and produce energy to carry out cellular functions. When !  cell function is destroyed, patients 

lose the ability to maintain blood glucose concentrations in a physiologic range and this increases 

the risk for the development of diabetes-associated microvascular complications (eg. retinopathy, 

nephropathy, neuropathy).  

T1D has been shown to aggregate in families but does not follow a Mendelian pattern of 

inheritance. Rather, it is considered familial and with a complex genetic component. Disease 

initiation and progression are determined by multiple genetic and environmental factors. The 

development of T1D is believed to begin with a genetic susceptibility, which progresses to 

autoimmunity and ultimately to a total loss of insulin secretion. In genetically susceptible people, 

the initiating factor(s) promoting !  cell destruction are unknown. Some theories include exposure 

to environmental toxins, early childhood viral exposure (eg. congenital rubella), or food allergies 

(eg. gluten). However, no definitive evidence to support these theories has been obtained.  
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2.1.3 Clinical diagnosis of Type 1 Diabetes 

Early diagnosis and treatment of T1D is crucial so that the development of complications can be 

controlled. Classification and diagnostic criteria for diabetes have gone through several iterations 

over the previous decades. In 1979 and 1980, the National Diabetes Data Group (NDDG) in the 

US and the WHO Expert Committee classified diabetes into insulin-dependent diabetes (IDDM), 

non-insulin-dependent diabetes (NIDDM) and other types (7). In 1997, the American Diabetes 

Association (ADA) and the 1990 WHO report proposed a new classification based on etiology 

(7,8). Since IDDM and NIDDM patients are classified on the basis of treatment rather than 

etiology, these terms were eliminated and were replaced by Ôtype 1Õ and Ôtype 2Õ diabetes. Type 

1 includes cases characterized by an autoimmune process; it does not include cases with non-

autoimmune causes. Type 1 diabetes cases are detected by the presence of autoimmune 

antibodies, whereas type 2 is defined as a resistance to insulin action (7).  

The presence of autoantibodies is the first sign of beta cell autoimmunity. Four autoantibodies 

have been shown to predict T1D: classical islet cell antibodies (ICA), insulin autoantibodies 

(IAA), auto-antibodies to the 65 kD isoform of glutamic acid decarboxylase (GADA) and protein 

tyrosine phosphatase-related IA-2 molecule (IA-2A). Among children, diabetic symptoms 

(discussed in section 1.3.4) and the presence of autoantibodies are associated with an increased 

risk of developing overt T1D. While a positive test for a single autoantibody represents 

nonprogressive beta cell autoimmunity, detection of " 2 autoantibodies indicates a progressive 

disease process and detection of 3-4 autoantibodies is associated with a 60-100% risk of 

developing T1D in the next 5-10 years (9).  
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Table 1. Diagnostic criteria for Type 1 Diabetes  

1. Symptoms of diabetes plus ÒcasualÓ plasma glucose concentration ! 200 mg/dl. 

ÒCasualÓ is defined as any time of day without regard to time since last meal. The 

classic symptoms of diabetes include polyuria, polydipsia, and unexplained weight 

loss. 

2. Fasting plasma glucose (FPG) ! 126 mg/dl (7.0 mmol/l). Fasting is defined as no 

caloric intake for at least 8 h. 

3. 2-h postload glucose (PG) ! 200 mg/dl during an oral glucose tolerance test 

(OGTT). Epidemiologic studies use diabetes diagnosis based on FPG ! 126 mg/dl in 

the interest of standardization, when OGTT cannot be performed in the field 

(8) 

When a diabetes diagnosis is made, the detection of islet autoantibodies indicates that the 

diabetes is of an autoimmune origin. Islet autoantibody positivity is required to establish a T1D 

diagnosis (10). 

 

2.1.4 Symptoms of Type 1 Diabetes 

The pathology of T1D results in high levels of blood glucose (11). Some patients with mild 

metabolic abnormality may be asymptomatic. Other patients with hyperglycemia exhibit 

symptoms such as excessive thirst (polydipsia), frequent urination (polyuria) and unexplained 

weight loss and in severe cases, ketoacidosis may occur which can lead to unconsciousness and 

death. If beta cell destruction occurs rapidly, disease onset may occur within a few months in 
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infants and in children younger than 5 years of age. In other patients, the process of beta cell 

destruction can continue for years before overt disease occurs (9). Long term complications 

include retinopathy (which can lead to blindness), nephropathy (which can lead to renal failure), 

and neuropathy (with risk of foot ulcers and amputation) (8). 

 

2.1.5 Risk factors for Type 1 Diabetes 

Prenatal and early life risk factors have been associated with the development of T1D. Many 

studies, including systematic reviews and meta-analyses, have been conducted to explore these 

factors, but the findings have been conflicting.  

One meta-analysis found that increasing maternal age increased the risk for T1D. The authors 

demonstrated that for each 5-year increase in maternal age, the odds of the child developing T1D 

increased 5% (OR=1.05) (12). In these cohort and case-control studies, response rates were 

lower among younger mothers, which could partially explain significant findings for advanced 

maternal age. Other studies have not found an association between maternal age and risk of T1D 

in the child. However, confounders such as socioeconomic status and maternal smoking status 

were not measured and adjusted for (13). Another meta-analysis identified higher birth weight as 

a small but significant risk factor for the development of T1D. The odds ratio for babies with 

birth weight between 3.5-4 kg and over 4 kg were 1.06 and 1.10, respectively, compared with 

babies weighing 3-3.5 kg (14). Other studies have failed to detect such an association (15,16). 

Not being breast-fed and exposure to cowÕs milk early in life have been implicated as risk factors 

(17); however, a meta-analysis suggests that the weak association between infant diet and T1D 

may be due to bias (18). Maternal recall of infant diet is one of the largest sources of bias in T1D 

studies. Mothers of diabetic children may more critically reconstruct the childÕs diet and the 
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pediatricianÕs recommendations compared with mothers of children without diabetes. This could 

result in an overestimate of the prevalence of certain risk factors. There is also accumulating, 

though not fully substantiated, evidence examining the role of viral infection in the development 

of T1D (19,20). Studies examining the association between viral infection and T1D suffer from 

study invalidity due to problems with study design such as small sample size or inappropriate 

control groups. As a result, the majority of studies do not provide convincing evidence for or 

against this relationship. 

 

2.1.6 Genetic risk factors for Type 1 Diabetes 

Particular HLA-DR and -DQ alleles/genotypes confer high risk for disease across ethnic groups. 

Linkage studies have demonstrated that the HLA region on chromosome 6p21 is the major 

known genetic determinant of T1D.  In Caucasian populations, HLA accounts for up to 50% of 

the genetic risk of T1D (21,22). The HLA region has shown linkage to T1D, with LOD scores 

exceeding 100 (23,24). Both the DRB1*03:01 and DRB1*04:01 alleles at the HLA-DR locus are 

strongly associated with T1D; over 90% of cases have at least 1 of those alleles compared with 

approximately 40% of controls (25). These findings have been repeatedly cited in the T1D 

literature (26-30). The DQ locus has an equally strong association with T1D (31). About 50% of 

children with T1D diagnosed before the age of 5 express the highest risk haplotype, 

DRB1*03:01 /04:01, DQA1*03:01-DQB1*03:02, and DRB1*03:01 /04:01, DQA1*05:01-

DQB1*02:01. The DR6 allele is the most protective HLA allele; approximately 20% of 

Americans and Europeans and fewer than 1% of T1D patients carry this allele (32).  

Studies have identified non-HLA T1D risk loci, which contribute smaller effects to susceptibility 

than the HLA region. The insulin gene is another well-defined susceptibility locus and affects 
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selection of autoreactive T cells, which mediate insulin tolerance. The region surrounding the 

insulin gene (INS) on chromosome 11p15 has been linked to T1D for over two decades 

(23,33,34). The main association was found around the INS-VNTR with a relative risk of 

approximately 3 (35). Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is expressed on CD4+ and 

CD8+ T cells and is critical for regulating self-tolerance and prevention of autoimmunity (36). 

CTLA-4 has been linked to T1D (23) and a specific allelic polymorphism has been consistently 

transmitted from heterozygous parents to affected offspring by TDT in multiple ethnic groups 

(37). A meta-analysis demonstrated a moderate effect of CTLA-4 on T1D, with a summary odds 

ratio of approximately 1.40 (38). A single base pair polymorphism in the coding region of 

protein tyrosine phosphatase non-receptor type 22 (PTPN22) has been shown to be associated 

with increased risk for T1D (39). It encodes the lymphoid-specific phosphatase (Lyp) and 

belongs to a family of proteins that are immune response regulators involved in downregulating 

T-cell activation. Several polymorphisms in the vitamin D receptor (VDR) have been associated 

with the risk for developing T1D, although there have been conflicting results (40,41). Smyth 

and colleagues conducted a GWAS and identified a T1D locus in the IFIH1 gene on 

chromosome 2q24.3, which is involved in the innate immunity against viral RNA (42).  

 

2.1.7 Geographic distribution of HLA and Genetic Susceptibility to Type 1 Diabetes 

The worldwide variation of T1D incidence is dramatic (43,44). As noted above, there is a 400-

fold worldwide variation in T1D incidence. Scandinavian countries have the highest incidence 

(approximately 40/100,000/year); Asian countries have the lowest (reported as low as 

0.1/100,000/year). This geographical variation reflects differences in the distribution of major 

ethnic populations but, more importantly, it may also reflect a difference in the degree of genetic 
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susceptibility due to ethnicity or genetic background. One question is do the same HLA 

alleles/haplotypes show the same predisposing effects across populations? 

As noted above, linkage and association data have established the HLA region as the major 

susceptibility locus for T1D (21,45,46) with the HLA class II DRB1, DQA1 and DQB1 loci 

identified as the major HLA contributors to T1D expression (21,47,48). Subsequently, a 

hierarchy of predisposing, neutral and protective DR and DQ alleles and haplotypes that varied 

by ethnicity came to light. These differences reflected allelic heterogeneity within the HLA 

region (25,49,50).  

 With the dramatic variation of both T1D risk and allele/haplotype frequency across ethnic 

groups, many studies have investigated whether HLA alleles/haplotypes show the same 

predisposing effects across different ethnic populations (51,52).  

Determining the contribution of individual alleles at the HLA -DR and -DQ loci to T1D 

susceptibility can be unclear because of the strong linkage disequilibrium (LD) between 

alleles/loci. The strong LD between alleles at the HLA locus means it has proven difficult to 

determine which allele on a disease-associated haplotype is responsible for a genetic 

predisposition. One approach is to examine haplotypes in different ethnic groups with different 

allele frequencies and LD patterns. The following studies examined haplotypes in an attempt to 

identify predisposing genetic factors for T1D within the HLA region. 

Asian populations have lower disease prevalence and lower frequencies of the high-risk T1D 

haplotypes that are common in Caucasian populations. Nonetheless, even in Asian populations, 

the DR and DQ loci have the highest association with T1D (53). 

Thomson and colleagues examined whether the high-risk T1D DR-DQ haplotypes demonstrate 

the same predispositional effects across ethnic populations (52). The authors conducted a meta-
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analysis to examine the DRB1-DQB1 haplotype frequencies and T1D across African, Middle 

Eastern, Caucasian, Latin American, and East Asian populations. The authors found that the 

highly predisposing DRB1*03:01/DRB1*04:01 heterozygous genotype seen in Caucasians was 

was associated with increased risk in their overall meta-analysis as well as in the individual 

populations. They also demonstrated that DR3 (DRB1*03:01-DQB1*02:01) was a T1D 

predisposing haplotype worldwide, while the DR9 (DRB1*09:01-DQB1*03:03) haplotype is 

neutral worldwide. This meta-analysis concluded that the DR3 haplotype is rare in Asian 

populations compared with Caucasian populations, but that, when present, it maintains its 

predispositional effects. The DR9 haplotype, however, is more common in Asian populations 

compared with Caucasian populations, and, unlike its T1D-related neutrality in much of the 

world, is predisposing in Asian populations.  

Kawabata and colleagues examined the effect of ÐDR and ÐDQ haplotypes among Japanese and 

Korean populations (54). In a case-control study, the authors identified DR4 (DRB1*04:05-

DQB1*04:01) and DR9 (DRB1*09:01-DQB1*03:03) as high-risk susceptibility haplotypes in 

these Asian populations. In both populations, they found that the DR9 haplotype does not confer 

susceptibility to T1D in a heterozygous state, but rather a homozygous state is necessary to 

confer susceptibility to T1D. The converse was true for DR4. The association with T1D was 

stronger in a heterozygous state than in a homozygous state for DR4. The authors explained this 

differential effect of DR4 and DR9 on T1D susceptibility by postulating that if the DR4-encoded 

molecules have a higher binding affinity to a diabetogenic peptide compared with other 

haplotypes, they may induce autoimmunity even in a heterozygous state, in the presence of other 

class II molecules. In contrast, if DR9-encoded molecules have lower binding affinity to peptides, 

they may confer strong susceptibility only when they are in a homozygous state.  
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Ikegami and colleagues (55) examined the contribution of the HLA locus to T1D risk in a 

Japanese population. These authors presented similar findings to the report of Kawabata and 

colleagues. They showed a difference in the prevalence of disease-associated haplotypes between 

Japanese and Caucasian populations. They demonstrated that, although the DR3 (DRB1*03:01-

DQB1*02:01) and the DR4 (DRB1*04:01-DQB1*03:02) haplotypes are positively associated 

with T1D in Caucasian populations, in the Japanese, it is the DR4 (DRB1*04:05-DQB1*03:03) 

and DR9 (DRB1*09:01-DQB1*03:03) haplotypes that confer the strongest susceptibility. In the 

Japanese, DR9 in a heterozygous state (DR9/X, X" 9) has a neutral effect.  

In Caucasian populations, DQB1*03:02 is a strong susceptibility allele, but it is not associated 

with disease in Japanese. Kawabata et al. showed that the DQB1*03:02 allele is a susceptibility 

allele in Japanese populations, when in combination with susceptibility DRB1 alleles (e.g., 

DRB1*04:05, DRB1*04:07). The lack of association of this allele with T1D in Japanese 

populations is explained by its presence in combination with protective DRB1*04 alleles (e.g., 

DRB1*04:03, DRB1*04:06). In Asian populations, it is common for the protective DR4 

haplotype to co-occur with susceptible DQ haplotypes, while neutral/protective DQ haplotypes 

co-occur with the susceptible DR4 haplotypes. This counterbalancing of susceptible and 

protective/neutral haplotypes might be an important contributor to the low incidence of T1D in 

Asian populations (51). 

Park and colleagues (2001) compared susceptibility and transmission patterns of ÐDR and ÐDQ 

haplotypes among Korean and Caucasian T1D patients. These authors showed that DR3 and 

DR9 haplotypes had increased prevalence in Korean T1D subjects compared with controls. 

While haplotype frequencies are quite different in Korean and Caucasian populations, when 

comparing the same haplotypes, the odds ratios were nearly identical. These authors concluded 
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that the susceptibility effects of the DRB1-DQB1 haplotypes are consistent in Korean and 

Caucasian populations (51). 

Population frequencies of DR/DQ alleles and haplotypes vary between ethnic groups, as do the 

associations between DR/DQ alleles and T1D risk. It is the presence/absence of haplotypes in 

populations that may explain why different haplotypes are associated with disease among 

different ethnic groups. As noted, the disease-associated DR3 and DR4 haplotypes in Caucasians 

are rare in Asian populations and therefore cannot contribute to the majority of T1D 

susceptibility (but when present, they would be expected to be associated). However, the Asian-

specific DR4 (DRB1*04:05-DQB1*04:01) and DR9 haplotypes common in Asian populations 

are almost absent in Caucasian populations, and do not contribute to T1D susceptibility in 

Caucasian populations.  

In a transracial study, Park and colleagues (51) identified that DR and DQ haplotypes transmitted 

from nondiabetic parents to diabetic offspring were similar for Korean and Caucasian families. 

These authors make the claim that while the frequency and association of DR/DQ 

alleles/haplotypes and T1D may differ across ethnic groups, the effect of an individual 

allele/haplotype on T1D susceptibility is consistent across populations.  

These studies, which have investigated HLA frequency distribution and susceptibility among 

different ethnic groups, have identified some possible explanations for the differences in 

worldwide T1D incidence rates. Aside from factors that may be responsible for producing real 

differences in the worldwide incidence of T1D, there may be some methodologic factors that 

influence the measurement of these differences. We cannot ignore such factors that may 

contribute to these differences such as, small sample sizes, the difficulty of finding multiplex 

families in low incidence Asian populations, the polygenic nature of T1D which also involves 
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non-HLA genes, as well as unknown environmental factors that likely vary between 

geographical regions.  

 

2.2 Microvascular complications 

2.2.1 Origin and clinical diagnoses of microvascular complications 

A. Retinopathy 

Retinopathy, the most frequent of microvascular complications, is a leading cause of blindness 

and occurs in 50-90% of T1D patients (56). The majority of individuals with T1D develop some 

degree of retinal damage. A smaller proportion of individuals develop severe retinopathy. Retinal 

microvascular signs in diabetic patients include microaneurysms, lipid deposits, intraretinal 

microvascular abnormalities, haemorrages. Vision loss results from macular edema and 

neovascularization of the retina includes haemorrhage and retinal detachment.  Retinal arteriolar 

dilation increases retinal capillary pressure, which leads to capillary wall dilatation 

(microaneurysms), leakage and rupture (haemorrhages) (57). Chronic exposure to hyperglycemia 

is thought to lead to microvascular changes and retinal damage (56). 

 

B. Nephropathy 

Clinically, diabetic nephropathy (DN) is characterized by persistent proteinuria, decreased 

glomerular filtration, and increased blood pressure. The pathophysiology involves renal 

extracellular matrix accumulation and thickening of the glomerular basement membrane. Kidney 

complications begin with microalbuminuria (small amounts of albumin leaking into the urine) 

and progresses to overt, persistent proteinuria. Both are predictors of renal failure for T1D 

patients (58). Treatment of microalbuminuria reduces progression to nephropathy. 
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Approximately 30-40% of T1D patients are at risk to develop DN (59,60). End-stage renal 

failure develops in approximately 20% of T1D patients (61). The literature points to familial 

clustering of DN, suggesting a genetic effect in the development of kidney complications (62).  

 

C. Neuropathy  

Diabetic neuropathies are heterogeneous in symptoms, neurologic involvement, and underlying 

mechanisms (63).  Different parts of the nervous system can be affected and may present with 

diverse clinical manifestations. On average, diabetic neuropathy affects 30-50% of type 1 

diabetes patients. The most common are chronic sensorimotor distal symmetric polyneuropathy 

(DPN) and diabetic autonomic neuropathies (DAN). DPN frequently involves burning pain, 

electrical sensations, deep aching pain, as well as decreased sensation (loss of vibration, 

temperature, or pain perception). Symptoms are most commonly experienced in the feet and 

lower limbs. DAN is a disorder of the autonomic nervous system. It can involve cardiovascular, 

gastrointestinal, and urogenital systems (63,64). 

 

2.2.2 Factors implicated in the development of microvascular complications 

A. Risk factors for microvascular complications 

i. HbA1c as a risk factor for microvascular complications 

The relationship between hyperglycemia and complications has been well-established in T1D 

and T2D, where uncontrolled plasma-glucose concentrations can lead to serious sequelae. The 

Diabetes Control and Complications Trial (DCCT) and the UK Prospective Diabetes Study 

(UKPDS) demonstrated a relationship between the rise of blood glucose levels and the increased 

risk of retinal, renal and neurological complications for type 1 and type 2 diabetes (65,66). They 
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demonstrated that when people with type 1 or type 2 diabetics reduce blood glucose 

concentrations close to normal glycemic ranges, measured as glycosylated hemoglobin A1c 

(HbA1c), the incidence of diabetes-associated complications was also significantly reduced. 

Since publication of the DCCT study, HbA1c has become the gold standard for evaluation for 

diabetes treatment. The American Diabetes Association (ADA) recommends measuring HbA1c 

twice per year for those whose HbA1c level is lower than 7% and more frequently for those 

whose levels are higher (http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-

glucose-control/a1c/). Glycosylated hemoglobin is a pairing of hemoglobin with glucose inside 

the red blood cell. The HbA1c test measures the percentage of glycosylated hemoglobin 

(HbA1c) in the blood and provides an overview of the average blood glucose over the past 2-3 

months. In a nondiabetic person, about 5% of all hemoglobin is glycosylated. In the case of 

diabetes, increased concentrations of glucose enter the blood stream, more hemoglobin is 

glycosylated, and the resulting HbA1c levels are higher. High HbA1c level is a well-established 

risk factor in the development of long-term diabetic complications.  

While HbA1c measures glycemic control for the previous 2 to 3 months, it does not provide 

information regarding glycemic variability in a given day.  In the DCCT study, conventionally 

treated patients were more likely to be exposed to glycemic instability since they had fewer 

insulin injections per day compared to the intensively treated patients. Authors of the DCCT 

study suggested that complications may be dependent on the degree of glycemic variability. 

Kilpatrick (2009) claimed that HbA1c and duration of diabetes explained only 11% of the 

variation in the risk of retinopathy in the DCCT study, suggesting that factors independent of 

HbA1c must explain 89% of the variation (67). Other studies have shown that normalizing 

HbA1c levels does not eliminate the risk of diabetes-associated complications (68).  
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Overall, why some patients with poor metabolic control do not develop complications, while 

other patients with good metabolic control develop complications, remains unresolved and a 

source of scientific debate that requires further inquiry (69,70). Zhang and colleagues attempted 

to delve deeper into this issue. These authors concluded that retinopathy develops in 

approximately 10% of patients with good metabolic control and over 40% of patients with poor 

metabolic control and they isolated baseline glycemic exposure as a predictor (ÒbaselineÓ defined 

as a patientÕs glycemic exposure at the start of the study). High baseline glycemic values increase 

the risk of developing complications despite good metabolic control. 

The reduction of blood glucose levels may be causally related to the reduced risk of 

complications. However some patients with poor glycemic control do not develop complications, 

and some with good glycemic control do develop complications (62,69,71). Hence HbA1c may 

not adequately explain risk of complications (72). Studies suggest that HbA1c may be under 

genetic control and may influence the development of diabetes-related complications (73,74). In 

a twin study, Sneider and colleagues (2001) found that MZ twins concordant and discordant for 

T1D showed significant correlations of HbA1c (75). Paterson and colleagues (2010) identified a 

major locus for HbA1c levels in type 1 diabetics by GWAS, indicating that HbA1c may be under 

genetic control (76).  

HbA1c values are not available in my dissertation dataset. While it would be beneficial to 

include these values, it appears from the literature that HbA1c may not be a necessary predictor 

of complications. Consequently, the absence of this variable is not an impediment to detecting a 

genetic signal for complications, which is of paramount interest. 
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ii. Other risk factors for microvascular complications 

In addition to HbA1c, other risk factors have been implicated in the development of 

microvascular complications.  

Risk factors for retinopathy include duration of diabetes, hyperglycemia, increased blood 

pressure, ethnic origin, dyslipidaemia, puberty, pregnancy, duration of diabetes, diet and 

smoking (77,78).  

The risk factors for nephropathy include hyperglycemia, hypertension, duration of diabetes, 

protein overload and smoking (79). 

Risk factors for neuropathy include level of hyperglycemia and duration of diabetes. Other risk 

factors are unknown (79). 

Ethnicity appears to be an independent predictor for microvascular complications, after 

controlling for metabolic control and other retinopathy risk factors, such as age, sex, diabetes 

duration and blood pressure. The prevalence and severity of retinopathy is higher in African 

Americans, Hispanic and south Asians than in Caucasians (56,80). Prevalence of end-stage renal 

failure appears to be higher among blacks and Latinos compared with whites. Possible 

explanations for these differences may include certain behavioral characteristics, for example, 

disparities in diabetes knowledge and treatment adherence, access to care, physician perceptions 

or racial discrimination. Alternatively, unmeasured environmental factors or differences in 

genetic susceptibility may contribute to prevalence differences among ethnic groups (81).  

While ethnicity, age of onset of diabetes, duration of diabetes, blood pressure and lipid control 

are some of the known risk factors for the development of complications in general (66,82,83), 

studies have also suggested that genetic predisposition is a risk factor for the development of 

complications (56,84,85).  
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B. Genetic risk factors 

i. Familiality of microvascular complications 

Hyperglycemia and diabetes duration are important risk factors in the development of 

microvascular complications. However even after years of poor glycemic control, some patients 

remain free of complications; and conversely, patients with good glycemic control may still 

develop complications (62,69). Many investigators have hypothesized that genetic susceptibility 

is a contributing risk factor that leads to the development of microvascular complications. 

Results from family studies of both T1D and T2D support this claim. Studies have demonstrated 

familial clustering of DN (84,86).  In T1D families, diabetic siblings of patients with diabetic 

nephropathy are significantly more likely to develop this disease compared with diabetic siblings 

of probands without diabetic nephropathy (86). A South Indian sib pair analysis demonstrated 

strong familial clustering of diabetic kidney disease among type 2 diabetics. In a twin study, 

Leslie and colleagues (1982) demonstrated concordance of retinopathy in 35 of 37 identical type 

2 diabetic twins and in 21 of 31 identical type 1 diabetic twins (87). Since this study does not 

include dizygotic twins, it is difficult to interpret these findings as simply genetic, since 

monzygotic twins share the same environment as well.  

 

C. Evidence for microvascular complications with specific genes. 

In this review, the vast majority of early studies used cases and controls to examine the 

frequency difference of class I/II HLA alleles among retinopathy or nephropathy cases with T1D 

compared with controls (T1D only). The vast majority of later studies used the candidate gene 

approach, while only a few used genome-wide association or linkage analysis. While the 

methods of analysis in these studies were somewhat limited, their methods for sampling controls 
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and selecting their study populations were valid. The control subjects used in these studies were 

free of complications for at least 15-20 years after the onset of T1D, though in one study, 

controls were free of complications for at least 10 years. Sampling controls in this manner 

ensures that those selected are truly unaffected and one can be reasonably sure that control 

patients are unlikely to ever develop complications. The study populations were ethnically 

homogeneous in the vast majority of these studies, for example, Caucasian Finnish type 1 

diabetics, or Caucasian Danish type 1 diabetics, or in some cases, just Caucasian type 1 diabetics 

were sampled. Using homogeneous study populations increase the likelihood of sampling 

individuals from homogeneous genetic backgrounds and thus minimize the chances of 

introducing population stratification, which can lead to increased false positives and false 

negatives.  

i. Retinopathy (Table 2) 

Several early studies and some later studies have reported associations with HLA DR alleles, 

particularly the role of HLA DRB1*04:01 and the development of retinopathy (88-91); however 

other studies have failed to confirm these associations (92-97). Dornan et al (1982) reported that 

the presence of retinopathy was significantly associated with DRB1*04:01 (OR=3.7) (88). 

Malone et al. (1984) confirmed the association with DRB1*04:01, but only if it was in 

combination with the DRB1*03:01 allele. Authors reported that these alleles in combination 

occurred more frequently among patients with proliferative retinopathy compared with those free 

of retinopathy (89). Cruickshanks et al (1992) demonstrated that the DRB1*04:01 allele was a 

significant risk factor for retinopathy, but only among individuals who were negative for 

DRB1*03:01 compared with individuals who were negative for both alleles (OR=5.43) (119). 
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Other investigations, however, have not reported associations between DR alleles, specifically 

DRB1*04:01 and retinopathy (94-99).  

Aldose reductase (ALR2) is the gene that encodes the first, and rate-limiting enzyme in the 

polyol pathway of glucose metabolism. Studies have suggested that polymorphisms in and 

around this gene are associated with diabetic retinopathy. Demaine and colleagues (2000) found 

an association of the Z-2 allele in the aldose reductase gene with diabetic retinopathy (OR=2.33) 

(100,101). In two separate case-control studies using French Caucasian individuals, Taverna and 

colleagues demonstrated significant associations between vitamin D receptor (VDR) SNPs and 

severe retinopathy (102,103). Al-Kateb and colleagues (2007) found associations of eight 

VEGFA SNPs with severe retinopathy in a prospective cohort survival analysis over 15 years 

using 1,369 Caucasian individuals with T1D (104). According to Rudofsky and colleagues 

(2008), heterozygous or homozygous carriers of the M55V polymorphism in the SUMO4 gene 

show a reduced risk of diabetic retinopathy (OR=0.37, p-value=0.004) (105). In a case-control 

study using 124 Caucasian individuals with T1D, Hovnik and colleagues (2009) found a 

significant association between MnSOD Val/Val genotype and T1D patients with retinopathy 

(106). Grassi and colleagues (2011) conducted a genome-wide meta-analysis and identified a 

signal (rs227455) associated with severe diabetic retinopathy in the intergenic region between 

two unnamed genes, LOC728275 and LOC728316 (107). Charles and colleagues (2011) 

identified a SNP (rs2236624) in the adenosine A2A receptor that was associated with a decreased 

risk of developing proliferative diabetic retinopathy (108). Adenosine is a physiologic mediator 

for modulating cellular damage from biologic stressors.  
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ii.  Nephropathy (Table 3) 

While some reports have indicated that DRB1*04:01 is a risk allele for retinopathy, other studies 

have indicated contrary findings for the relationship between DRB1*04:01 and the development 

of nephropathy. An early study (1986) reported that the DRB1*04:01 allele was protective for 

nephropathy in a Danish population (91). In a more recent study using subjects of European 

ancestry (GoKinD study), researchers examined the relationship between carriers of HLA 

DRB1*04:01 and the development of nephropathy. The authors reported that proband carriers of 

DRB1*04:01 were 50% less likely to have nephropathy compared with probands who do not 

carry any DRB1*04:01 alleles (90). However in two separate studies using Caucasian European 

subjects, authors failed to report any association between DRB1*04:01 and nephropathy (92,93). 

These investigators claim that HLA is unlikely to have a major influence in the susceptibility to 

nephropathy in Caucasian European cohorts. Two linkage scans for type 1 diabetics were 

performed in Caucasian populations (120, 121). Both studies reported evidence for linkage of 

diabetic nephropathy on chromosome 3q.  

In a study using 275 British Caucasian individuals, Heesom and colleagues showed a decrease in 

the frequency of the Z+2 allele and an increase in the Z-2 allele in the aldose reductase gene 

among patients with nephropathy (109). Vionnet and colleagues (2006) found an increased risk 

for nephropathy with a polymorphism in the adiponectin gene by both association and TDT 

analyses. (110). Al-Kateb and colleagues (2007) found an association between a SNP in the 3Õ 

region of the superoxide dismutase 1 (SOD1) gene and severe nephropathy (111). Osterholm and 

colleagues (2006) conducted a genome wide linkage scan for type 1 diabetic nephropathy using 

460 families using 83 discordant sib-pairs from Finland (112). They reported suggestive linkage 

on locus 3q and followed up the signal with an association study, finding a significant 
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association with a SNP rs1866813 at the 3q22 locus (113). Mšllsten and colleagues performed a 

case-control study using 755 T1D patients from Denmark. In this study, being a carrier of the V 

allele at the V16A polymorphism in the SOD2 gene is significantly associated with increased 

risk of diabetic nephropathy (114).  In 2009, Pezzolesi and colleagues conducted a genome-wide 

association scan and identified two associations for SNPs near the FRMD3 and CARS genes (61). 

In 2011, Kure and colleagues identified a nonsynonymous SNP located in exon 8 of the MMP-12 

gene that significantly reduced the risk of diabetic nephropathy (115).  

 

iii.  Neuropathy (Table 4) 

The development of diabetic neuropathy may also involve genetic susceptibility. Vague and 

colleagues (1997) conducted a candidate gene case-control study examining the association of 

Na/K ATPase gene with neuropathy in 81 Caucausian individuals with T1D. They found a 

significant association between a SNP in the ATP1 A1 gene (a Na/K ATPase gene) and 

peripheral neuropathy (116). Decreased Na/K ATPase activity in the nervous tissue has been 

implicated in the development of neuropathy. In a candidate gene case-control study using 

Caucasian individuals, Donaghue and colleagues (2005) and Heesom and colleagues (1998) 

demonstrated that the aldose reductase Z-2 allele confers risk for the development of neuropathy 

(117,118). Oxidative stress results in high levels of reactive oxygen species (ROS), which in 

excess, causes damage to tissues, such as oxidation of lipids, proteins, depletion of antioxidants, 

enzyme inactivation, DNA breakage (119). PARP-1 is a nuclear enzyme that is activated in 

response to DNA damage. Nikitin and colleagues (2008) performed a candidate gene case-

control study using 212 unrelated Russian individuals with T1D. They identified two 
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polymorphisms in the coding region of PARP-1 which are strongly associated with diabetic 

polyneuropathy in Russian T1D patients (120).  

With the exception of the aldose reductase gene, which has been implicated in all three 

microvascular complications, these genetic association studies have implicated genes unique to 

each complication. 

 

 2.3 Does the risk for one complication increase the risk for a second complication? 

There is little published research investigating whether all three microvascular complications 

involve similar etiological pathways, and whether the development of one complication 

predisposes toward the risk of developing a second complication. A review by Girach and 

colleagues (2006) identifies interrelationships among all three diabetic microvascular 

complications, where the presence of one complication increases the risk for developing a second 

complication (121). El-Asrar and colleagues (2002) found that T1D with retinopathy were 

almost 14 times, and T2D patients retinopathy almost 4 times as likely and to have nephropathy 

than those T1D and T2D patients without retinopathy (122). Monti and colleagues demonstrated 

that a complication in a sibling increased the risk for a complication in the proband (OR=9.9) 

(83). The EURODIAB Complications study reported a positive association between the degree 

of retinopathy and level of albuminuria. Schmechel & Heinrich (1993) demonstrated that 

individuals with retinopathy exhibited proteinuria more often than individuals without 

retinopathy and that the prevalence of proteinuira increased relative to the increasing severity of 

retinopathy (123). Parving and colleagues (1988) showed that the prevalence of neuropathy and 

retinopathy was higher in patients with microalbuminuria compared with normoalbuminuria 

patients (124). These associations indicate interrelationships among microvascular complications, 
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but are not very well understood. If there are similarities in the pathogenesis of each of the 

complications, then the presence of one complication may be linked to the presence of another.  
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2.4 Summary and Conclusion 

In summary, type 1 diabetes is an autoimmune disease characterized by destruction of beta cells 

in the pancreas resulting in insulin deficiency, which leads to hyperglycemia and organ damage. 

T1D patients experience an increased risk of morbidity and mortality due to long-term 

complications, specifically retinopathy, nephropathy, and neuropathy. While glycemic control is 

a risk factor for the development of complications, even normalizing HbA1c does not eliminate 

the risk of developing complications. Studies demonstrating familial aggregation support the 

claim that a genetic contribution may influence the development of complications. Further, 

associations among complications have been noted, where the presence of one complication may 

increase the risk for developing a second complication.  

To date very little is known about the inheritance of microvascular complications. There have 

been a number of association studies implicating specific alleles for microvascular complications. 

The vast majority of these studies used the candidate gene approach. Few previous studies have 

used linkage analysis to identify genetic loci for diabetic complications. They have not examined 

all three microvascular complications as one phenotype, which considers the possibility of a 

common genetic susceptibility. In this dissertation, I use statistical methods to identify genetic 

risk factors predisposing T1D individuals to, or protecting from, the development of 

microvascular complications (Chapter 3). I use linkage analysis to identify genetic susceptibility 

loci to microvascular complications (Chapter 4). Linkage will identify large chromosomal 

regions that may contain susceptibility loci with large genetic effects. Finally, I summarize the 

results in the concluding chapter (Chapter 5). 
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Table 2. Studies investigating predisposing (or protective) genes/loci with retinopathy 

Author / Journal 

/ Year 

Gene/ 

region 

Risk allele / 

SNP 

Effect size / p-

value 

Study 

population 

Study design 

Dornan et al 

Diabetes 1982 

HLA DRB1*04:01 3.7 127 Caucasian 

T1D patients 

Case-control 

Malone et al  

Pediatrics 1984 

HLA DRB1*04:01 

DRB1*03:01 

P < 0.001 74 T1D patients Case-control 

Groop et al 

Diabetes 1986 

HLA DRB1*04:01 

 

NS 99 T1D patients Case-control 

Cruickshanks et al 

Diabetes 1992 

HLA DRB1*04:01 

 

5.43 428 T1D 

patients from 

WESDR Study 

Case-control 

Stewart et al 

Diabetologia 1993 

HLA DR alleles NS 102 T1D 

patients 

Case-control 

Falck et al 

J Diab Comp 1997 

HLA Class I and II 

alleles 

NS 155 T1D 

patients from 

the UK 

Case-control 

Wong et al 

Ophthalmology 

2002 

HLA DRB1*04:01 

DRB1*03:01 

NS 428 T1D 

patients from 

WESDR Study 

Case-control 
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Mimura et al 

Am J Ophthal 

2003 

HLA Class I and II 

alleles 

NS 80 T1D 

Japanese 

patients 

Case-control 

Demaine et al 

Invest Ophthal & 

Vis Science 2000 

Aldose 

Reductase 

Z-2 allele Chisq=18.1 

(0.0001) 

229 Caucasian 

British T1D 

patients 

Case-control 

Taverna et al.  

J Clin Endocrin & 

Metab. 2005 

VDR FokI 

polymorphism 

OR=0.64 (0.016) 

 

508 Caucasian 

T1D patients 

Case-control 

Al -Kateb et al 

Diabetes 2007 

VEGFA T/ rs3025021 

T/ rs3025028 

T/ rs3025021 

C/rs699947 

HR=1.37 (0.0017) 

HR=1.24 (0.026) 

p-value=0.013 

p-value=0.029 

1,369 

Caucasian T1D 

patients  

Prospective 

cohort  

Family-based 

Rudofsky et al. 

Exp Clin 

Endocrinol 

Diabetes 2008 

SUMO4 M55V OR=0.37 (0.004) 223 T1D 

patients 

Case-control 

Hovnik T et al 

Diabetes Care 

2009 

GSTM1 

MnSOD 

GSTM1-1 

deletion 

V16A 

2.63 (0.031) 

2.49 (0.045) 

124 Caucasian 

T1D patients 

Case-control 

Nakanishi et al 

Clinica Chimica 

Acta 2009 

VEGF rs833070 

rs2146323 

HR=1.67 (0.047) 

HR=1.67 (0.047) 

175 Japanese 

T1D patients 

Prospective 

cohort 
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Grassi et al. Hum 

Mol Genet. 2011 

Chr 6 

(intergenic 

region) 

Rs227455 p-value=1.6x10-7 2,829 T1D 

patients 

Case-control 

Charles et al 

Ophthalmic Res. 

2011 

Adenosine

A(2A) 

rs2236624 

rs4822489 

OR=0.36 (0.04) 

OR=0.23 (0.001) 

658 T1D 

patients 

Prospective 

cohort 

*NS=not significant 
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Table 3. Studies investigating predisposing (or protective) genes/loci with nephropathy 
Author / 

Journal / Year 

Gene/ 

region 

Risk allele / 

SNP 

Effect size / p-value Study 

population 

Study design 

Svejgaard et al 

Tissue Antigens 

1986 

HLA DRB1*04:01 

 

P<0.02 317 T1D 

Danish patients 

Case-control 

Ronningen et al 

Diabetes Res 

1993 

HLA  Class II 

alleles 

NS 114 T1D 

patients 

Case-control 

Chowdhury et al 

Diabetologia 

1999 

HLA Class I and II 

alleles 

NS 3 Caucasian 

cohorts (n=258, 

153, 264) 

Case-control 

Cordovado et al 

Diabetes 2008 

HLA DRB1*04:01 P<0.0001 829 European 

T1D patients 

Case-control 

Moczulski et al 

Diabetes 1998 

3q AT1 P=7.7 x 10-5 66 Caucasian 

sib-pairs  

Linkage 

Osterholm et al 

Kidney Intl 2006 

3q  P=4.4 x 10-4 73 Finnish 

discordant sib-

pairs 

Linkage 

Heesom et al 

Diabetes 1997 

Aldose 

Reductase 

Z-2 allele 32% vs 12.7% 

(complicated vs 

uncomplicated group) 

275 British 

Caucasian T1D 

patients 

Case-control 
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Vionnet et al 

Diabetes 2006 

Adiponectin rs17300539 OR=1.46 (0.006) 3,665 Danish, 

Finnish, French 

T1D patients 

Case-control 

Al -Kateb et al 

Diabetes 2008 

SOD1 C/ 

rs17880135 

HR=2.62 (5.6x10-5) 1,362 

Caucasian T1D 

patients 

Case-control 

He et al AJHG 

2009 

3q22 C/ rs1866813 OR=1.33 (7.07x10-6) 3,696 Finnish, 

Icelandic, 

British T1D 

patients  

Case-control 

Mollsten et al 

Diabetologia 

2009 

SOD2 V16A / 

rs4880 

OR=1.5 (0.036) 441 Danish 

T1D patients 

Case-control 

Pezzolesi et al 

Diabetes 2009 

FRMD3  

CARS 

rs1888746 

rs451041 

OR=1.45 (6.3x10-7) 

OR=1.36 (3.1x10-6) 

1,879 

Caucasian T1D 

patients 

Case-control 

Kure et al  

Mol Genet 

Metab. 2011 

MMP-12  Asn357Ser/ 

rs652438 

OR=0.51 (6.2x10-6) 1,705 T1D 

patients of 

European 

ancestry 

Case-control 

*NS=not significant 
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Table 4. Studies investigating predisposing (or protective) genes/loci with neuropathy 

Author / 

Journal / Year 

Gene/ 

region 

Risk allele / 

SNP 

Effect size / p-value Study 

population 

Study design 

Vague et al 

Diabetologia 

1997 

ATP1 A1 Bgl II 

polymorphism 

Chisq=35.6 (0.0001) 81 Caucasian 

T1D patients 

Case-control 

Donaghue et al 

Diabetic 

Medicine 2005 

Aldose 

Reductase 

Z-2 OR=3.02  

95% CI (1.14 - 7.98) 

363 Australian 

T1D patients 

Case-control 

Nikitin et al 

Diabetes Res & 

Clin Practice 

2008 

PARP-1 54Phe 

762Ala 

OR=1.66 (0.023) 

OR=2.88 (0.0023) 

212 Caucasian 

Russian T1D 

patients 

Case-control 
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Chapter 3: 
 

HLA Class I and II Alleles are Associated with Microvascular Complications of Type 1 
Diabetes. 

 
Ettie M. Lipner
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3.1 ABSTRACT 

 

Although HLA alleles are associated with type 1 diabetes, association with microvascular 

complications remains controversial. We tested HLA association with complications in multiplex 

type 1 diabetes families. 

 

Probands from 425 type 1 diabetes families from the Human Biological Data Interchange 

(HBDI) collection were analyzed. The frequencies of specific HLA alleles in patients with 

complications were compared with the frequencies in complications-free patients.  The 

complications we examined were: retinopathy, neuropathy, and nephropathy. We used logistic 

regression models with covariates to estimate odds ratios.  

 

We found that the DRB1*03:01 allele is a protective factor for complications (OR=0.58; p = 

0.03), as is the DQA1*05:01-DQB1*02:01 haplotype (OR= 0.59; p = 0.031). The DRB1*04:01 

allele showed no evidence of association (OR=1.13; p = 0.624), although DRB1*04:01 showed 

suggestive evidence when the carriers of the protective DRB1*03:01 were removed from the 

analysis. The class II DQA1*03:01-DQB1*03:02 haplotype was not associated with 

complications but the class I alleles B*39:06 (OR=3.27; P = 0.008) and B*44:02 (OR=3.19; P = 

0.027) showed strong positive association with complications.  

 

Our results show that in type 1 diabetes patients, specific HLA alleles may be involved in 

susceptibility to, or protection from, microvascular complications. 
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3.2 Introduction  

Type 1 diabetes represents a major health problem, and data show that its prevalence is rising [1]. 

By year 2030, over 3 million people are predicted to have type 1 diabetes in the US alone [2], 

(American Diabetes Association). As more people develop type 1 diabetes, the prevalence of the 

associated complications also increases. The major pathologies related to type 1 diabetes are the 

chronic microvascular complications: retinopathy, nephropathy, and neuropathy. These 

complications are responsible for much of the morbidity and mortality in patients, leading to 

blindness, end stage renal disease, neuropathy and consequent amputation in many patients. 

Previous work has shown that while the type 1 diabetes-associated complications may be the 

result from persistent high blood sugar, they are also familial, suggesting the existence of a 

genetic contribution to these phenotypes [3-6]. However, the findings from studies of the 

genetics of microvascular complications are inconclusive and controversial (see Discussion) [7-

22]. 

 

Type 1 diabetes is a complex, autoimmune disease in which dendritic cells, macrophages, CD4+ 

and CD8+ T lymphocytes infiltrate the pancreas and destroy the insulin-producing !  cells in the 

islets of Langerhans [23]. The Human Leukocyte Antigen (HLA) region on chromosome 6p21 is 

the major susceptibility locus for type 1 diabetes. The class II loci, HLAÐDRB1, -DQA1 and -

DQB1, have the strongest effects on type 1 diabetes risk. Specifically, the haplotypes with the 

highest risk for type 1 diabetes among Europeans are DRB1*03:01-DQA1*05:01-DQB1*02:01 / 

DRB1*04:01-DQA1*03:01-DQB1*03:02 [24,25]. The class I HLA genes have also been 

implicated in type 1 diabetes risk, but these alleles have smaller effects on type 1 diabetes than 

do the class II HLA alleles [26]. While the influence of HLA on type 1 diabetes is well known 
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[27],  their role in the development of microvascular complications is less clearly understood. 

Some studies have reported significant associations of retinopathy or nephropathy with HLA 

class I or II alleles [7,8,14-22], while other studies have failed to report such associations [9-13].  

 

In this study, we examined the association of HLA alleles with type 1 diabetes-related 

complications in a large Caucasian cohort. We report newly observed associations of 

complications with specifically chosen HLA alleles. These hypothesis-driven statistical 

associations may shed light on genetic influences that affect susceptibility to complications. 

 

3.3 Materials and methods  

 

3.3.1 Family identification and data collection  

Families were ascertained through the presence of at least one family member with type 1 

diabetes (the ÒprobandÓ); most families were multiplex for type 1 diabetes, i.e., there were at 

least two affected offspring per family. HBDI designated probands were used as the proband 

cases and controls. Families were invited to be part of the Human Biological Data Interchange 

(HBDI) data collection through a series of advertisements sent to the entire mailing list of the 

Juvenile Diabetes Foundation International (JDFI) during the period 1988Ð1990 [28]. All 

member families were asked to complete a standardized confidential questionnaire sent by mail 

and the responses were added to the HBDI database. The questionnaire was administered to the 

proband (or parents, if the proband was a child) and also to additional family informants. 

Inquiries included demographic, medical, genealogical, and familial information about 

complications. Informed consent was obtained. 
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3.3.2 HBDI data 

Our dataset included 425 families with cases diagnosed with type 1 diabetes before age 30. There 

were 2506 family members included from the HBDI database as of the end of 2004. Families 

were selected for inclusion in the HBDI sample based on the presence of at least one type 1 

diabetes patient per family. Multiplex ( > 1 case per family) families were preferentially sought. 

In this sample, all participants were diagnosed with type 1 diabetes. All patients in this study 

sample are Caucasian. A total of 49% of all subjects were female. We emphasize that, for this 

study, only 1 individual (the proband) per family was used in the analyses. 

 

3.3.3 Assessment and definition of diabetes and diabetic complications 

We included only patients with type 1 diabetes diagnosed before 30 years of age who required 

insulin treatment. The accuracy of the self-reported information with respect to presence/absence 

of complications (e.g. presence of retinopathy, yes or no) was evaluated by: 

1) Including extra questions about related conditions in the questionnaire. The presence of 

macular edema or complete or partial blindness were considered indicators of retinopathy; the 

presence of end- stage renal failure, kidney failure, or repeated high urinary albumin levels were 

considered indicators of nephropathy. In cases of inconsistencies (e.g. presence of macular 

edema but not retinopathy), further investigations were carried out through phone interviews, 

around the time of data collection. 

2) Data available from follow-up were used to confirm or update the presence/absence and 

progression of complications. 
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Starting in 2004, follow-up questionnaires have been periodically sent to a subset of families to 

obtain updated information about development of complications, new cases of diabetes, and 

related medical history data, with 1000-2000 families targeted each year (for further description, 

please see (3)). 

3) Collecting medical records. For the subset of patients [n=179] with medical records available, 

the presence of type 1 diabetes and complications was verified according to American Diabetes 

Association guidelines [29-32]. 

4) Information indicating absence of a complication in a subject was considered reliable only if 

the subject was without that complication for at least 15 years after type 1 diabetes onset. 

 

3.3.4 Type 1 diabetes subjects and complications  

 Of the 425 probands in the sample, 128 had at least one complication, and 297 were free of 

complications. The majority of cases that had any complication had retinopathy (93.0%), fewer 

cases had nephropathy or neuropathy (Table 1). 

 

3.3.5 Study design 

We used a case-control study design nested on the cohort of the HBDI type 1 diabetes patients 

and, for some analyses, their affected siblings. The probands with at least one microvascular 

complication were considered cases, and the probands without microvascular complications were 

considered controls. Every proband, whether case or control, has type 1 diabetes. 

To identify genetic risk factors for microvascular complications, the presence of an allelic risk 

predictor was considered the exposure. The outcome variable was defined as the presence of any 

microvascular complication(s). Analyses were also done treating retinopathy, nephropathy and 
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neuropathy as separate outcomes. However, results for nephropathy and neuropathy are not 

reported due to small sample sizes. We included sex, age at type 1 diabetes diagnosis, and 

duration of type 1 diabetes as covariates to control for environmental factors that may influence 

the development of microvascular complications.  

 

3.3.6 HLA genotyping 

Genotyping of the HBDI cohort was performed by sequence-specific oligonucleotide probe 

(SSOP) technology and has been described previously [33-36]. Briefly, relevant polymorphic 

exons for each locus (exon 2 for class II alleles and exons 2 and 3 for class I alleles) were 

amplified by polymerase chain reaction with biotinylated primers, denatured, and hybridized to 

an array of unlabeled oligonucleotide probes (corresponding to known polymorphic sequence 

motifs) on a backed nylon membrane. Hybridization was visualized with a colorimetric detection 

system, and probe binding patterns were interpreted using Sequence COmpliation and 

REarrangement software (SCOREª ) [37]. The HBDI collection was included as one of the 

extant cohorts in Type 1 Diabetes Genetics Consortium (T1DGC), and the HBDI samples were 

re-genotyped at higher resolution, with updated SSOP reagents, to ensure uniformity of 

resolution in the HLA genotyping data in the T1DGC [24,26,38,39].  

   

3.3.7 Statistical analysis 

We performed logistic regression among type 1 diabetes probands to determine associations with 

microvascular complications. We calculated odds ratios (ORs) and 95% confidence intervals 

(CIs), adjusting for sex, age of type 1 diabetes diagnosis (using 5-year intervals) and duration of 

type 1 diabetes. The duration variable was split into intervals of having type 1 diabetes for 0-29 
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yrs, 29-38 yrs, >38 yrs (approximately equal numbers of individuals in each category).  As with 

an earlier study [3], we included sex as a covariate in the logistic regression. Age at type 1 

diabetes diagnosis and duration were also included as covariates since these factors may be 

influential for the onset and development of complications. HLA alleles were included in the 

regression models as independent predictors for microvascular complications. Each HLA allele 

or (in the case of DQ-encoding loci) haplotype encoding the heterodimeric protein (e.g., 

DRB1*03:01, DRB1*04:01, DQA1*05:01-DQB1*02:01, DQA1*03:01-DQB1*03:02, B*39:06, 

B*44:02) was analyzed in separate regression models.  A two tailed test was used and a p < 0.05 

was considered statistically significant. All of the analyses were performed using the statistical 

package Stata 10.1 (Stata Corp., College Station, TX, 2003). 

 

3.3.8 Multiple Testing 

Correction for multiple tests was not required in our primary analysis of four HLA factors (2 

DRB1 alleles and 2 DQA1-DQB1 haplotypes): DRB1*03:01 and DRB1*04:01 alleles and the 

DQA1*03:01-DQB1*03:02 and DQA1*05:01-DQB1*02:01 haplotypes. These four hypotheses 

were chosen a priori on the basis of prior knowledge that these four HLA factors are strongly 

associated with type 1 diabetes.  

 

In an exploratory analysis of the HLA class I loci, multiple alleles were tested with the aim of 

generating hypotheses that could be tested in a larger follow-up study. These tests were based 

upon either the high prevalence of a particular allele in the population or prior association of type 

1 diabetes and a particular allele. Six alleles were tested based on the high prevalence in the 



!

!

&T!

population (>30%) or because of prior knowledge: A*01:01, A*02:01, B*08:01, B*39:06, 

B*44:02, C*07:01. 

 

3.4 Results  

3.4.1 Patient characteristics  

The clinical and familial characteristics of our study population are summarized in Table 1. The 

distribution of each microvascular complication among probands is summarized in Table 2. We 

performed the #2 test for gender and StudentÕs t-test for duration of type 1 diabetes. For the 425 

type 1 diabetes probands in the study, the mean durations of type 1 diabetes in complications 

cases (n=128) and controls (n=297) were 39.4 +/- 8.90 years and 31.2+/- 9.71 years, respectively. 

The difference in the mean duration of diabetes between cases and controls was statistically 

significant (p<0.0001). However, according to StudentÕs t-test, age of type 1 diabetes diagnosis 

did not show a statistically significant difference, nor did gender, according to the #2 test.   

 

3.4.2 MHC Class II genes analyses  

The distribution of HLA DRB1*03:01, DRB1*04:01, DQA1*05:01-DQB1*02:01, and 

DQA1*03:01-DQB1*03:02 alleles/haplotypes among the probands is shown in Table 2. Among 

the 425 probands, 19% of probands did not express either DRB1*03:01 or DRB1*04:01 alleles 

and 14% had neither the DQA1*05:01-DQB1*02:01 nor DQA1*03:01-DQB1*03:02 haplotype 

(data not shown). Sixty-two percent of probands had at least one DRB1*03:01 allele, and 49% of 

probands had at least one DRB1*04:01 allele. Sixty-five percent were positive for at least one 

DQA1*03:01-DQB1*03:02 and 58% for at least one DQA1*05:01-DQB1*02:01 haplotype.  
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Table 3 provides unadjusted and adjusted ORs for the presence of one or more microvascular 

complications (e.g., retinopathy, nephropathy, neuropathy) using specific HLA alleles as 

predictor variables. Table 4 shows the unadjusted and adjusted ORs for retinopathy alone.  The 

adjusted estimates are controlled for sex, age at type 1 diabetes diagnosis, and duration of type 1 

diabetes.  Using a multivariable logistic regression model, adjusting for covariates, the presence 

of a DRB1*03:01 allele was protective both for one or more microvascular complications 

(OR=0.58, 95% CI 0.35-0.95) and for retinopathy alone (OR=0.58, 95% CI 0.35-0.96), which 

was the most frequent complication in the dataset.  In the multivariable logistic regression model 

for DRB1*04:01, no relationship between DRB1*04:01 and microvascular complications was 

found for either retinopathy alone  (OR=1.17, 95% CI 0.72-1.92) or for one or more 

microvascular complications (OR=1.13, 95% CI 0.70-1.81).  

 

Thus, unlike the results for DRB1*03:01, the presence of DRB1*04:01 shows little evidence of 

influence on the risk for complications. We observed a similar trend (i.e., DRB1*03:01 appears 

mildly protective, while DRB1*04:01 appears neutral) for nephropathy, but the OR did not reach 

statistical significance. Such a trend was not observed for neuropathy, but the sample size 

precluded detecting all but the strongest effects. 

 

We examined the association of DQ haplotypes with the risk for one or more microvascular 

complications and the risk for retinopathy alone (Tables 3 & 4). DQA1*05:01-DQB1*02:01 

(which is in linkage disequilibrium with DRB1*03:01) was significantly protective for the 

presence of one or more complications (OR=0.59, 95% CI 0.37-0.95) and for retinopathy (OR= 

0.58, 95% CI 0.36-0.95). Because every individual with a DQA1*05:01-DQB1*02:01 haplotype 
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also had a DRB1*03:01 allele (except for three individuals who were DRB1*03:01-positive and 

DQA1*05:01-DQB1*02:01-negative), the strong linkage disequilibrium between these two 

alleles means it is difficult to determine the origin of the protective effect.   There was no 

influence of DQA1*03:01-DQB1*03:02 on either retinopathy or one or more complications.  

 

3.4.3 MHC Class I genes analyses  

To better guide future studies involving the genetics of microvascular complications, we sought 

to identify specific HLA class 1 genes that might warrant further consideration. We chose six 

independent class I risk alleles based on prior knowledge related to T1D or because of the high 

prevalence of these alleles in our study population; only the HLA-B*39:06 allele demonstrated a 

significant influence on susceptibility to complications after adjusting for covariates (Tables 3 & 

4).  

 

HLA-B*39:06 

After adjusting for covariates in multivariable logistic regression models, the HLA-B*39:06 

allele showed a notable increased risk for one or more complications (OR=3.27, 95% CI 1.36-

7.89), and for retinopathy alone (OR=3.34, 95% CI 1.34-8.30). We also observed elevated risks 

for nephropathy alone and neuropathy alone, but these were not statistically significantly (data 

not shown). The mean durations of those positive (n=32) and negative (n=380) for the B*39:06 

allele were 33.98 +/- 10.27 years and 30.86+/- 8.91 years, respectively. The difference in the 

mean durations was not statistically significant (P=0.097). When stratifying on duration, the 

strongest effect was seen among those who have had T1D for 29-38 years (OR=6.17); the 
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weakest effect was seen among those who have had T1D for over 38 years (OR=1.69) (data not 

shown). 

 

 

HLA-B*44:02 

Before adjusting for covariates, the HLA*B44:02 allele showed an increased risk for one or 

more complications (OR=2.02, 95% CI 1.12-3.66). After adjusting for covariates, this allele did 

not retain statistical significance for one or more complications. In multivariable logistic 

regression models, neuropathy was highly significantly associated with the presence of HLA-

B*44:02 (OR=3.19, 95% CI 1.14-8.95, number affected = 9 (25.7%), number unaffected = 29 

(9.8%), data not shown). The HLA-B*44:02 allele did not demonstrate a statistically significant 

effect for nephropathy alone. 

 

3.5 Discussion  

Our results suggest that, in type I diabetes, HLA- DRB1*03:01 or DQA1*05:01-DQB1*02:01 

(or an allele in linkage disequilibrium with these alleles) protects against the presence of 

complications. The evidence is strongest for protection specifically against retinopathy.  

 

3.5.1 MHC Class II genes and complications risk: Current study and past work  

 

In our covariate-adjusted models, both DRB1*03:01 and DQA1*05:01-DQB1*02:01 were 

significant protective factors for both for the presence of more than one microvascular 

complication (Table 3) and retinopathy alone (Table 4), although it is likely that the effect we see 
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in our data arises mostly from the retinopathy phenotype. Analyses of the DRB1*04:01 allele, on 

the other hand, suggest its presence influences the risk for complications. Cruickshanks et al. 

[22] reported an association of retinopathy with HLA- DRB1*04:01, among those negative for 

HLA-DRB1*03:01  (DRB1*04:01/X, X"  DRB1*03:01), an observation similar to one seen in 

our analyses. Cruickshanks et al. found that type 1 diabetes patients with HLA- DRB1*04:01, 

who were negative for HLA- DRB1*03:01 were significantly more likely to have proliferative 

retinopathy (OR=5.43, 95% CI 1.04-28.30) than those negative for both alleles. However in a 

follow-up study, Wong et al. [13] investigated the effect of HLA- DRB1*03:01 and 

DRB1*04:01 on the development of diabetic retinopathy and they failed to observe a 

relationship between HLA- DRB1*03:01 or DRB1*04:01 and diabetic retinopathy. Dornan et al. 

[17] reported that DRB1*04:01 was a risk allele for retinopathy. The Cruickshanks et al. [22] 

study and our study also found DRB1*04:01 was a risk allele but only in subjects without 

DRB1*03:01.  Jensen et al. [16] examined the effect of DRB1*03:01-DQA1*05:01-

DQB1*02:01 and DRB1*04:01- DQA1*03:01-DQB1*03:02 haplotypes and the risk of 

retinopathy after 15 years of type 1 diabetes duration. Consistent with our findings, they 

observed that DRB1*03:01-DQA1*05:01-DQB1*02:01 is protective, but their findings were not 

statistically significant. They also reported, as we found here, that the DRB1*04:01- 

DQA1*03:01-DQB1*03:02 haplotype was neither a risk factor nor protective for developing 

retinopathy, although they did not examine the effect of the DRB1*04:01 allele without the 

presence of the DRB1*03:01 allele. Contrary to our findings and to those by Jensen et al., 

Agardh et al. [7] reported that the DRB1*03:01-DQA1*05:01-DQB1*02:01 haplotype was more 

frequent in patients with severe retinopathy. Concerning nephropathy, Svejgaard et al. [18] and 

the GoKinD study [8] reported that DRB1*04:01 was a protective allele for nephropathy. While 
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we did not identify DRB1*04:01 as a protective allele for any of the complications, Svejgaard et 

al. and the GoKinD work do support the notion that HLA is involved in the development of 

microvascular complications. Other studies, however, failed to report any association of 

DRB1*03:01 or DRB1*04:01 with either retinopathy or nephropathy [9-15]. 

 

Thus, the earlier literature is somewhat contradictory, although most of the studies report an 

association of HLA class II alleles with some complications.  

 

Among some of the possible reasons for these contradictory results involve differences in 

ascertainment. Whether one examines ÒretinopathyÓ or Òproliferative retinopathyÓ, the definition 

of which diabetes patients are cases and which are controls, as well as analysis techniques used, 

all play a role. For example, in our sample, it is may be that severe retinopathy was more likely 

to be noted in a self-report than mild retinopathy. The GoKinD study [8] and Rogus et al.Õs [40] 

samples defined controls as not having nephropathy after at least 10 years diabetes duration.  Our 

controls had type 1 diabetes for at least 15 years and 90% had diabetes for more than 20 years. 

Heitala et al. [41] included patients with type I diabetes onset age greater than 35 years. Our 

sample is one of the few that used probands from families multiplex for type I diabetes. The 

absence of retinopathy among the controls in these genetically loaded families suggests genetic 

factors played a greater role in protection from complications because of the strong evidence that 

inherited factors influence risk for complications [3-6]. Thus, while there can be several 

explanations for the contradictory results in the literature, the number of studies finding 

association with HLA class II alleles and complications strongly suggest that such an effect 

exists. 
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3.5.2 Effect of DRB1*03:01 vs. DRB1*04:01 

Since DRB1*03:01 appears to have a protective effect on the risk of complications, we 

investigated the effect of DRB1*04:01 on its own, in the absence of DRB1*03:01  (i.e., 

excluding individuals who were heterozygous for DRB1*03:01 and DRB1*04:01). In an 

adjusted multivariable regression model, we observed a stronger positive association between 

DRB1*04:01 and the risk for retinopathy (closer to, but not reaching, statistical significance; 

OR=1.74, p-value=0.069; data not shown) compared with a model in which heterozygous 

DRB1*03:01/ DRB1*04:01 individuals were included. The failure to reach significance could be 

due to decreased sample size, because a quarter of the study population was heterozygous for the 

excluded DRB1*03:01/ DRB1*04:01 genotype. In a further examination, when stratifying on 

DQA1*03:01-DQB1*03:02, we observed that the DRB1*04:01 allele was associated with an 

even greater elevated risk of retinopathy. In the absence of DQA1*03:01-DQB1*03:02, 

DRB1*04:01 becomes a significant risk factor for the risk of retinopathy with borderline 

statistical significance (OR=2.67, 95% CI 0.94-7.60). In the presence of DQA1*03:01-

DQB1*03:02, the DRB1*04:01 allele does not influence risk of complications (data not shown). 

While the sample size is too small to confidently assert this putative risk effect of DRB1*04:01 

(17 DRB1*04:01 individuals in the absence of DQA1*03:01-DQB1*03:02), it is worthy of 

conducting further research to investigate whether an increased risk exists.  

 

3.5.3 MHC Class I genes  

After covariate adjustment, we found that the presence of the HLA-B*39:06 allele was 

associated with an elevated risk for both retinopathy alone and for the presence of one or more 
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complications. HLA-B*39:06 has also been reported to be associated with the risk for type 1 

diabetes risk, whether conditioned on the class II DR-DQ alleles or not [26,36,42]. However, no 

previous study has identified this allele as a risk factor for complications [14].  

 

Other studies have reported associations between different class I alleles and microvascular 

complications in the Japanese population [14,20,21]. In an earlier study, Nakanishi et al. reported 

an association between HLA-A24 and retinopathy [20], and in a more recent study, Nakanishi et 

al. reported that the HLA-A24 allele was associated with early beta cell loss and with early 

development of diabetic retinopathy [21]. Mimura et al. investigated the relationship between 

HLA and proliferative diabetic retinopathy (PDR) and reported a higher frequency of the HLA-

B62 and Cw4 alleles among type 1 diabetics with PDR compared with the non-PDR group [14]. 

These findings aside, the relationship between HLA class I alleles and complications has not 

been widely explored. Although among studies reporting associations, findings have been 

inconclusive [11,12,14,20,21]. 

 

3.5.4 Effect of age-of-onset of type I diabetes 

Onset of complications is influenced by type 1 diabetes duration, and previous research suggests 

that age at onset and progression to type 1 diabetes are directly linked to the MHC class II genes 

[43]. Early age of type 1 diabetes onset is commonly associated with the high risk haplotypes 

HLA DRB1*03:01-DQA1*05:01-DQB1*02:01 and DRB1*04:01-DQA1*03:01-DQB1*03:02, 

especially the very high risk heterozygous genotype comprised of these two haplotypes [44,45]. 

This association with early onset suggests a stronger genetic predisposition to disease than other 

haplotypes [45]. The majority of patients who develop some degree of retinopathy do so by 15-
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20 years duration of type 1 diabetes [31,46]. Up to 40-50% of patients develop nephropathy or 

neuropathy within 15-20 years of the onset of type 1 diabetes [46]. Among probands in the 

current study, the average duration of type 1 diabetes was almost 34 years, the average age of 

diagnosis for type 1 diabetes was approximately 9 years of age. On average, the duration of type 

1 diabetes in our sample exceeds the peak risk of 15-20 years for both case and control probands 

and thus variation in duration is unlikely to influence these analyses. In our data, DRB1*03:01-

positive subjects do not have later onset of disease than DRB1*03:01-negative subjects, however 

we retained the duration variable in the adjusted models because cases had a significantly longer 

duration of disease than controls. 

 

3.6 Advantages and limitations  

Our study examined complications as the phenotype of interest because complications are 

ultimately responsible for much of the morbidity and mortality seen with type 1 diabetes. Other 

HLA studies that have examined complications suffer from small sample sizes. Our work has the 

benefit of using one of the larger type 1 diabetes multiplex family-based datasets in the world 

(meaning that genetic factors may be more prominent among the subjects used in our study), a 

dataset that also has information on all three microvascular complications. One limitation in our 

study is that we do not have HbA1c measurements or data on other environmental factors such as 

smoking status that may influence the development of complications, although smoking status is 

unlikely to be associated with any particular HLA allele or haplotype. Previous work has 

established that reducing blood glucose concentrations close to normal glycemic ranges also 

significantly reduces the incidence of diabetes-associated complications (although, in a recent 

study of T2D, tight control appears to increase mortality [47,48]). However, recent reports 
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indicate that HbA1c may not adequately explain the risk for complications. Some patients with 

poor glycemic control do not develop complications, and some with good glycemic control 

develop complications [4,49,50]. The literature indicates that HbA1c may not be a necessary 

predictor of complications and consequently it does not impede our ability to detect genetic risk 

factors for complications. Further, while our data include information on the presence/absence of 

complications, we lack information on the age of onset of complications. Information on age of 

onset would enable more accurate analyses. Survival analysis, for example, would be more 

powerful than a case-control design, however we are precluded from doing survival analysis 

because we have no data on the timing of complicationsÕ onset. Nonetheless, our current data 

provide a solid indication that genes influence the expression of complications and suggest that 

HLA plays a role in risk. 

 

3.7 Conclusion 

In conclusion, these data indicate that, in addition to their strong association with disease 

susceptibility, HLA alleles and haplotypes are also associated with microvascular complications 

of type 1 diabetes.  The formal possibility exists that the classical HLA loci themselves are not 

involved, but that alleles at other loci in linkage disequilibrium with the diabetes risk alleles are 

responsible for our findings.  Lastly, further research needs to be conducted in separate study 

populations to validate these findings. Confirmation of these results could provide greater 

insights into the mechanisms leading to the development of microvascular complications. 

Ultimately, the findings of our study could lead to the ability to stratify risk of developing 

microvascular complications in type 1 diabetes patients. 
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Table 1. Characteristics of type 1 diabetes by numbers of total proband  
 cases and controlsa  

 
 
 
 
 
 
 
 
 
 
 
 

 
aÕCaseÕ refers to a proband with type 1 diabetes and at least 1 microvascular complication.  
 ÔControlÕ refers to a proband with type 1 diabetes only and no history of microvascular 
complications. 
bStatistically significant difference between cases and controls according to StudentÕs t-test. 
 
 

 

Characteristic Cases Controls 
No. of subjects (in 425 families) 128 297 
Females (n, %) 60 (46.9) 132 (44.4) 
Age of type 1 diabetes diagnosis 
(yr±SD) 

8.7 ± 5.3  9.1 ± 7.1 

Duration of type 1 diabetes 
[yr±SD]b 

39.4 ± 8.9 31.2 ± 9.7 

Retinopathy (n, %) 119 (93.0) N/A 
Nephropathy (n, %) 46 (35.9) N/A 
Neuropathy (n, %) 35 (27.3) N/A 
>1 complication (n, %) 54 (42.2) N/A 
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Proband 

cases with 

retinopathy 

Proband 

cases  

n(%) 

Proband 

cases with 

nephropathy 

Proband 

cases  

n(%) 

Proband 

cases with 

neuropathy 

Proband 

cases  

n(%) 

Retinopathy 

alone 

65 (54.6) Nephropathy 

alone 

5 (10.9) Neuropathy 4 (11.4) 

Retinopathy + 

Nephropathy 

23 (19.3) Retinopathy + 

Nephropathy 

23 (50) Neuropathy + 

Retinopathy 

13 (37.1) 

Retinopathy + 

Neuropathy 

13 (10.9) Nephropathy 

+ Neuropathy 

0 (0) Neuropathy + 

Nephropathy 

0 (0) 

All 3 

complications 

18 (15.1) All 3 

complications 

18 (39.1) All 3 

complications 

18 (51.4) 

Total 119/128 

(93.0) 

Total 46/128 

(36.0) 

Total 35/128 (27.3) 
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Table 3. Results of logistic regression models for one or more microvascular complications 
among probands with T1D. 
Allele/haplotype Total 

probands  
N (%) 

Cases 
N (%) 

Controls 
N (%) 

Unadjusted 
OR (95% 
CI), p-value 

Adjusted ORc 
(95% CI), p-
value 

No. of DR-typed 
subjects 

400 120  280   

DRB1*03:01-negative 151 (37.7) 54 (45.0) 97 (34.6) Referent Referent 

DRB1*03:01-positive  249 (62.3) 66 (55.0) 183 
(65.4) 

0.65 (0.42, 
1.00), 

0.051 

0.58 (0.35, 0.95), 
0.030 

DRB1*04:01 -negative 205 (51.3) 57 (47.5) 148 
(52.9) 

Referent Referent 
 

DRB1*04:01 -positive 195 (48.8) 63 (52.5) 132 
(47.1) 

1.24 (0.81, 
1.90), 

0.326 

1.13 (0.70, 1.81), 
0.624 

No. of DQ-typed  
subjects 

425 128  297    

DQA1*03:01-
DQB1*03:02-negative 

150 (35.3) 47 (36.7) 103 
(34.7) 

Referent Referent 
 

DQA1*03:01-
DQB1*03:02-positive 

275 (64.7) 81 (63.3) 194 
(65.3) 

0.92 (0.59, 
1.41), 

0.687 

0.81 (0.49, 1.32), 
0.390 

DQA1*05:01-
DQB1*02:01-negative 

179 (42.1) 63 (49.2) 116 
(39.1) 

Referent Referent 
 

DQA1*05:01-
DQB1*02:01-positive 

246 (57.9) 65 (50.8) 181 
(60.9) 

0.66 (0.44, 
1.00), 
0.052 

0.59 (0.37, 0.95) 
0.031 

No. of HLA-B-typed  
subjects 

425 128  297    

HLA-B*39:06-negative 393 (92.5) 115 
(89.8) 

278 
(93.6) 

Referent Referent 
 

HLA-B*39:06-positve 32 (7.5) 13 (10.2) 19 (6.4) 1.65 (0.79, 
3.46) 

0.182 

3.27 (1.36, 7.89) 
0.008 

HLA-B*44:02-negative 373 (87.8) 105 
(82.0) 

268 
(90.2) 

Referent Referent 
 

HLA-B*44:02-positve 52 (12.2) 23 (18.0) 29 (9.8) 2.02 (1.12, 
3.66) 

0.02 

1.85 (0.94, 3.62) 
0.074 

cAdjusted for sex, age at type 1 diabetes diagnosis, duration of type 1 diabetes 
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Table 4. Results of logistic regression models for retinopathy among probands with T1D. 
Allele/haplotype Total 

probands  
N (%) 

Cases 
N (%) 

Controls 
N (%) 

Unadjusted OR  
(95% CI), p-
value 

Adjusted ORc 
(95% CI), p-
value 

No. of DR-typed subjects 400 
 

111 289   

DRB1*03:01-negative 151 (37.7) 50 (45.1) 101 (34.9) Referent Referent 
DRB1*03:01-positive  249 (62.3) 61 (54.9) 188 (65.1) 0.66 (0.42, 1.02), 

0.063 
0.58 (0.35, 0.96), 
0.031 

DRB1*04:01 -negative 205 (51.3) 52 (46.8) 153 (52.9) Referent Referent 
 

DRB1*04:01 -positive 195 (48.7) 59 (53.2) 136 (47.1) 1.28 (0.82, 1.98) 
0.275 

1.17 (0.72, 1.92), 
0.520 

No. of DQ-typed  
subjects 

425 119  306    

DQA1*03:01-
DQB1*03:02-negative 

150 (35.3) 43 (36.1) 107 (35.0) Referent Referent 
 

DQA1*03:01-
DQB1*03:02-positive 

275 (64.7) 76 (63.9) 199 (65.0) 0.95 (0.61, 1.48) 
0.821 

0.85 (0.51, 1.41) 
0.531 

DQA1*05:01-
DQB1*02:01-negative 

179 (42.1) 59 (49.6) 120 (39.2) Referent Referent 
 

DQA1*05:01-
DQB1*02:01-positive 

246 (57.9) 60 (50.4) 186 (60.8) 0.66 (0.43, 1.00), 
0.053 

0.58 (0.36, 0.95) 
0.029 

No. of HLA-B-typed  
subjects 

416 119  297    

HLA-B*39:06-negative 385 (92.5) 107 (89.9) 278 (93.6) Referent Referent 
 

HLA-B*39:06-positve 31 (7.5) 12 (10.1) 19 (6.4) 1.64 (0.77, 3.50) 
0.199 

3.34 (1.34, 8.30) 
0.01 

HLA-B*44:02-negative 366 (88.0) 98 (82.4) 268 (90.2) Referent Referent 
 

HLA-B*44:02-positve 50 (12.0) 21 (17.6) 29 (9.8) 1.98 (1.08, 3.64) 
0.027 

1.77 (0.89, 3.55) 
0.106 

cAdjusted for sex, age at type 1 diabetes diagnosis, duration of type 1 diabetes 



!

!

N%!

 

Chapter 4: 

Linkage Analysis: Genomic Regions Contributing to the Expression of  

Type 1 Diabetes Microvascular Complications 

 

Ettie M. Lipner  
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4.1 ABSTRACT 

 

We conducted linkage analysis aimed at identifying susceptibility loci for microvascular 

complications. We used 415 genotyped families with cases diagnosed with type 1 diabetes before 

age 30 from the Human Biological Data Interchange (HBDI). Our most significant results were 

found on chromosome 6, so we restricted our further analyses to SNPs on chromosome 6 using 

402 markers. We performed an analysis of linkage to the phenotypes of 1) the presence of any 

microvascular complication, 2) the presence of retinopathy alone, 3) the presence of nephropathy 

alone, 4) the presence of neuropathy alone. We also did an analysis with the phenotype of T1D. 

The contrast between the analysis with complications as the phenotype and the analysis with 

T1D as the phenotype ensures that the observed linkage peaks using complications as the 

phenotype are, in fact, related to the expression of complications, rather than to the expression of 

T1D. Initially, we confirmed the influence of the HLA locus on T1D expression. In subsequent 

analyses, using Òany complicationÓ as the phenotype, we identified two linkage peaks: a linkage 

peak located at the HLA locus and another, novel locus telomeric to HLA. These same two peaks 

also were evident when retinopathy alone was the phenotype. We did not find evidence for 

linkage for nephropathy alone or neuropathy alone. We then stratified on families whose 

probands were positive for DRB1*03:01 or DRB1*04:01. When we only used DRB1*03:01-

positive families in the analysis, the HLA peak was observed but there were also two novel loci, 

one telomeric and one centromeric to HLA. When we stratified on DRB1*04:01-positive 

families, again the HLA peak appeared, followed by two novel loci, both telomeric to HLA. The 

linkage peaks based on the DRB1*03:01-positive families were only suggestive of linkage 

(3>HLOD>2) or were below the suggestive threshold for linkage (1<HLOD<2), while two of the 
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three peaks based on DRB1*04:01-positive families either reached or exceeded the significant 

threshold for linkage (HLOD>3). Based on large differences in the LOD scores, we argue that 

the DRB1*03:01-positive and DRB1*04:01-positive groups are genetically distinct and have 

different genetic influences, a finding in accordance with the observation that DRB1*03:01 is 

protective for retinopathy. Our findings showed that both HLA and non-HLA loci are involved 

in the expression of complications, specifically for retinopathy alone. While the HLA region is a 

major contributor to the expression of T1D, there may be an interaction between specific HLA 

alleles and a region telomeric to the HLA locus that influences the expression of complications. 
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4.2 INTRODUCTION  

 

Retinopathy, nephropathy, and neuropathy are chronic microvascular complications and are 

responsible for much of the morbidity and mortality in type 1 diabetes (T1D). Data indicate that 

the prevalence of T1D is rising (1) and, thus, the prevalence of the complications associated with 

T1D will also increase. Identifying factors that influence the expression of complications is 

crucial to determining how to treat and possibly prevent them. 

 

Type 1 diabetes is a complex autoimmune disease in which dendritic cells, macrophages, CD4+ 

and CD8+ T lymphocytes infiltrate the pancreas and destroy the insulin-producing !  cells in the 

islets of Langerhans (2,3). Previous work has shown that T1D-associated complications may 

result from persistent high blood sugar. In addition, evidence of the familiality of complications 

has also been clearly demonstrated, which suggests a possible genetic contribution to these 

phenotypes (4-7). Many genome-wide linkage analyses have focused on identifying 

susceptibility loci for T1D and studies have consistently found evidence that the Human 

Leukocyte Antigen (HLA) region on chromosome 6p21 is the major susceptibility locus for T1D. 

However, there have been few studies investigating genetic influences on the expression of 

complications.  

 

The class II loci, HLAÐDRB1, -DQA1 and -DQB1, have the strongest effects on risk for T1D. 

The alleles with the highest risk for type 1 diabetes among Europeans are DRB1*03:01 and 

DRB1*04:01 (8).  Of the few linkage analyses focused on identifying susceptibility loci for 

T1D-related complications, only nephropathy has been investigated (9-12). Despite the strong 
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effect of the HLA region on risk for T1D, to our knowledge there have been no linkage studies 

aimed at investigating the influence of the HLA locus on the expression of complications.  

 

In this study, we describe linkage analyses aimed at identifying susceptibility loci for 

microvascular complications among families of patients with T1D. We focus on chromosome 6 

to determine whether high-risk susceptibility alleles for T1D contribute to the expression of 

complications and, in addition, if there are novel loci that also contribute to the expression of 

complications. Further, we sought to determine if previously unknown loci are observed with 

specific microvascular complications (e.g. retinopathy alone) and whether these loci interact with 

alleles for TID at the HLA locus.  

 

4.3 METHODS 

4.3.1 Family recruitment and data collection  

Families were ascertained through the presence of at least one family member with type 1 

diabetes (the ÒprobandÓ). Families were invited to be part of the Human Biological Data 

Interchange (HBDI) data collection through a series of advertisements sent to the entire mailing 

list of the Juvenile Diabetes Foundation International (JDFI) during the period 1988Ð1990 (13). 

All member families were asked to complete a standardized confidential questionnaire sent by 

mail and the data were added to the HBDI database. The questionnaire was administered to the 

proband (or parents if the proband was a child) and also to additional family informants. The 

questionnaire included demographic, medical, genealogical, and familial information about 

complications.  
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4.3.2 HBDI data 

Our dataset included 427 families with cases diagnosed with type 1 diabetes before age 30. There 

were 2576 family members in the 427 families included in the HBDI database as of the end of 

2004. Families were selected for inclusion in the HBDI sample based on the presence of at least 

one type 1 diabetes patient per family, although multiplex families were preferentially sought. Of 

the 427 HBDI ascertained families, twelve families were excluded from the analysis due to 

missing genotype information; thus, there were a total of 415 families and a total of 2,544 

individuals. Forty-nine percent of all subjects were female. 

 

4.3.3 Assessment and definition of diabetes and diabetic complications 

For these analyses, we included only patients with type 1 diabetes diagnosed before 30 years of 

age who required insulin treatment. The accuracy of the self-reported information with respect to 

presence/absence of complications (e.g. presence of retinopathy, yes or no) was evaluated by: 

1) Including extra questions about related conditions related to these complications in the 

questionnaire. Reports of macular edema or complete or partial blindness were considered an 

indicator of retinopathy; reports of end- stage renal failure, kidney failure, or repeated high 

urinary albumin levels were considered an indicator of nephropathy. In cases of inconsistencies 

(e.g. report of macular edema but not retinopathy), further investigations were carried out 

through phone interviews. 

2) Data available from follow-up were used to confirm or update the presence/absence and 

progression of complications. 

3) Collecting medical records. For the subset of patients (n=179) with medical records available, 

the presence of type 1 diabetes and complications was verified according to American Diabetes 
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Association guidelines (14-17). 

4) Information indicating absence of a complication in a subject was considered reliable only if 

the subject was without that complication for at least 15 years after type 1 diabetes onset. 

 

4.3.4 Type 1 diabetes subjects and complications  

 From the families sent for genotyping, 239 individuals had at least 1 microvascular 

complication: 219 individuals had retinopathy, 87 had nephropathy, and 76 had neuropathy.  

 

4.3.5 Genotyping 

A total of 5,966 SNP markers were genotyped, with an average of 0.58-cM spacing across the 

genome. Genotyping was performed by the Center for Inherited Disease Research (CIDR), a 

division of the National Human Genome Research Institute. Our genome-wide analysis did not 

yield significant results, so we restricted our analyses to SNPs on chromosome 6 using 402 

markers.  

 

4.3.6 Phenotype definitions 

Separate linkage analyses were performed using the following phenotype definitions: 1) the 

presence of any microvascular complication, 2) the presence of retinopathy, 3) the presence of 

nephropathy, 4) the presence of neuropathy.  

 

We defined ÒaffectedÓ as T1D patients with complications and T1D patients without 

complications as ÒunaffectedÓ (T1D only). Individuals without T1D were excluded from these 

analyses. For linkage analyses, we assumed a penetrance of 50% and a dominant mode of 
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inheritance (18) . 

 

We also performed an analysis of linkage to the phenotype of T1D.  For the T1D analysis, we 

defined ÒaffectedÓ as individuals with T1D (without complications). The ÒunaffectedÓ group was 

defined as individuals without T1D (clinically normal).  

 

4.3.7 Analysis Overview 

In the initial analysis, by excluding T1D patients with complications and their families, we 

sought to confirm genomic regions that were linked to T1D in this dataset. The purpose of 

analyzing T1D alone as a phenotype was to determine whether genomic regions that were 

identified when complications were the phenotype could also be seen with the T1D phenotype. 

Subsequently, we conducted a series of analyses to identify genomic regions that were linked to 

complications, regions that may be the same or different than the loci observed for the presence 

of T1D. This contrast ensures that the observed linkage peaks in which complications are used as 

the phenotype are, in fact, related to the expression of complications, rather than to the 

expression of T1D. 

 

Linkage analyses for complications were performed using all families with at least one 

ÒaffectedÓ family member and one ÒunaffectedÓ family member, or families with at least two 

affected members (e.g., there had to be at least two siblings with T1D, at least one of whom had 

complications). Individuals without T1D were classified as ÒunknownÓ.  
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4.3.8 Linkage analysis 

Linkage analysis was performed using LOD (Òlogarithm of oddsÓ) score analysis. Multipoint 

LOD scores and multi-point heterogeneity LOD scores (HLOD scores) were calculated using the 

Genehunter program (19). We assumed both dominant and recessive modes of inheritance (20). 

A dominant gene frequency of 0.006 and a recessive gene frequency of 0.1 were used. For all 

linkage analyses, we report linkage findings that were maximized over the mode of inheritance 

(20,21) and penetrance level. Subsequently, for all reported analyses, we assumed a dominant 

mode of inheritance, and 50% penetrance.  

 

4.3.9 Pedigree stratification for high-risk alleles using T1D with complications as the phenotype 

In previous work (Lipner et al, in press, Human Immunology), we demonstrated that the 

DRB1*03:01 allele provided a significant protective effect on the risk of complications, 

specifically on retinopathy alone. Therefore, we explored the influence of specific HLA alleles 

by performing a linkage analysis in subsets of families that were grouped according to the 

presence of either DRB1*03:01 or DRB1*04:01 in the proband. The four phenotypes we 

analyzed were: 1) the presence of any complication, 2) retinopathy alone, 3) nephropathy alone 

and 4) neuropathy alone. Families in which the proband carried a DRB1*03:01 or DRB1*04:01 

allele and had a microvascular complication were included in these analyses. Our aim was to 

identify genomic regions associated with complications among families that were identified by 

the probandÕs ÐDR status. Figure 1 describes the numbers of families with complications and the 

DRB1 status in the stratification sets.  
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4.4 RESULTS 

4.4.1 Distribution of affected (T1D +complications) and unaffected (T1D only) individuals 

within families 

Among all families, 50 families (12%) had exactly 2 family members with T1D and no 

unaffected family members (T1D only families), 68 families (16%) had one affected and one 

unaffected family member (mixed families). 210 families (51%) had 2 siblings with TID only 

and no family members with microvascular complications. The remaining 87 families (21%) 

contained either a single individual with complications or more than 2 individuals with various 

combinations of complications/no complications s (Table 1). 

 

Of the 415 families and 2,544 total family members, 536 people were not genotyped, and of 

these 470 (88%) did not have T1D, leaving a total of 2,008 family members who were available 

for linkage analysis. In the sample population for linkage, family members were classified as 

those with or without T1D, and T1D with or without microvascular complications. Among 

individuals with genotyping information, 1140 (56.8%) were without T1D, 629 (31.3%) had 

T1D but no complications, and 239 (11.9%) had T1D and complications. All patients in this 

study sample are Caucasian.  Among those with at least one complication, the prevalence of 

retinopathy was 91.6%, the prevalence of nephropathy was 36.4%, and the prevalence of 

neuropathy was 31.8% (Table 2). 

 

4.4.2 Linkage analysis with type 1 diabetes as the phenotype 

To locate the linkage signal(s) for the phenotype of T1D, and to determine if that signal 

coincides with the signal when the phenotype is ÒcomplicationsÓ, we performed linkage analysis 
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on chromosome 6 in which the affected phenotype was T1D alone. Only families in which T1D 

individuals did not have complications were classified as ÒaffectedÓ for this T1D phenotype 

analysis (n=629). Family members without T1D were classified as ÒunaffectedÓ (n=1140). 

Family members with T1D and complications were classified as unknown (n=239). We observed 

a highly significant linkage signal (HLOD=28.5, LOD=28.0) in the HLA region (50.8-52.3 cM) 

(Figure 2), which was expected and replicates many previous studies (22-25).  

 

4.4.3 Linkage analysis with the Ôpresence of any complicationÕ as the phenotype 

When we analyzed the data for linkage with the phenotype Òpresence of any complicationÓ 

defined as affected, we found that, in addition to the single peak centered on the HLA region 

(presumably detecting linkage predominantly to T1D, although there is evidence that HLA 

influences the expression of complications also (see below)), there are indications of two 

separate genetic influences for complications, lying outside the HLA region (Table 3A, Figure 

3), one telomeric and one centromeric to the HLA region. The linkage signal(s) for 

complications is statistically significant at the genome-wide level (HLOD>3) for two of the three 

peaks (HLOD=3.27 for the peak at position 42.85 cM, telomeric to HLA, and HLOD=3.61 for 

the peak at HLA itself at position 52.37 cM). A third peak, centromeric to the HLA peak, was 

below the threshold for genome-wide linkage (HLOD=1.53 at position 61.01 cM). To confirm 

whether these linkage signals were due to loci related to complications and not arising from 

artifacts of strong linkage between HLA and T1D, we compared the pattern of linkage peaks 

found in the analyses of complications with the linkage pattern for T1D in families with no 

complications. When the phenotype was T1D only, we observed only the linkage peak centered 

on the HLA region and not the peak at 42.85 cM, telomeric to HLA, showing that the peak was 
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observed in the presence of complications, not among those with the T1D alone phenotype.  

 

4.4.4 Linkage analysis with retinopathy as the phenotype 

When ÒretinopathyÓ was the phenotype of interest, we observed a pattern similar to that found 

for the phenotype of Òany complicationÓ (Table 3A, Figure 4). Although the strength of the 

linkage peaks in and outside the HLA region were attenuated compared with analyses using Òany 

complicationÓ as the phenotype, the telomeric peak (HLOD=2.43) and the HLA peak 

(HLOD=2.24) indicate strong linkage evidence. The drop in the HLOD score is due to the 

smaller sample size, but the location is identical to the location in the analysis with all 

complications. The peak centromeric to HLA did not demonstrate statistically significant 

evidence for linkage to the Òretinopathy aloneÓ phenotype (HLOD<1). The telomeric linkage 

peak for retinopathy alone was not observed when we performed linkage for ÒT1DÓ as the 

phenotype (Figure 2).  

 

4.4.5 Linkage analysis with nephropathy alone & neuropathy alone as the phenotypes 

For nephropathy alone, the evidence for linkage approached the ÒsuggestiveÓ threshold and is 

provided as supplemental data (Supplemental Appendix). For neuropathy alone, we observed no 

significant or suggestive evidence for linkage (data not shown).  

 

4.4.6 Stratification by HLA-DRB1 alleles among probands 

i. Linkage analysis with the presence of any complication as the phenotype 

In analyses using families stratified by the presence of DRB1*03:01 in the proband, we found 

the strength of the linkage peak telomeric to the HLA region to be diminished. This could 
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suggest a protective effect for DRB1*03:01 on risk of complications (66 out of 156 families) 

(Table 3B, Figure 5A). The signal at HLA for Òany complicationÓ phenotype decreased from an 

HLOD score of 3.61 (unstratified) to 2.33 (when including only families with DRB1*03:01-

positive families), with an additional reduction in the HLA-telomeric linkage peak outside the 

HLA region (HLOD=3.27 for unstratified, HLOD=1.76 for DRB1*03:01-stratified). In contrast, 

the HLA-centromeric peak increased and reached the threshold for suggestive linkage 

(HLOD=1.53 unstratified, HLOD=1.96 DRB1*03:01-stratified) with the inclusion of only 

DRB1*03:01 positive families. The decrease in HLOD score might be attributed entirely to a 

decrease in sample size when dividing the dataset. Arguing against that explanation is a) the 

increase in the HLA centromeric peak in the reduced size sample (indicating a decrease in 

heterogeneity) and b) the notable HLOD score for the DRB1*04:01 families (see below). 

 

In a parallel analysis, including only DRB1*04:01 families, we observed a different trend than 

with the analysis using only families whose probands carries a DRB1*03:01 allele. Using 

comparable numbers of families to those used in the DRB1*03:01 stratified analysis (described 

above) (63 out of 156 families in DRB1*04:01-stratified analysis; 66 out of 156 families in 

DRB1*03:01-stratified analysis), we repeated the linkage analysis using families in which the 

proband was DRB1*04:01 positive  (which include heterozygous DRB1*03:01/DRB1*04:01) 

(Table 3B, Figure 5B). The linkage peak in the HLA region remained highly significant when 

only DRB*04:01 positive proband families were included in the analysis  (HLOD=4.15), even 

given the reduction in the total number of families. There were also two additional peaks outside 

of the HLA region at position 32.38 cM (HLOD=2.43) at position 42.6 cM (HLOD=3.68). The 

strength of the linkage peaks at the HLA locus and at the telomeric locus (position 42.6 cM) 
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actually increased in comparison with the unstratified analysis, which was comprised of a larger 

sample of families. The HLA-centromeric peak decreased (from HLOD=1.53 unstratified to 

HLOD=1.43 DRB1*04:01-stratified) in comparison with the peak identified in the DRB1*03:01-

stratified analysis (HLOD=1.96). 

 

We then repeated the DRB1*04:01- and DRB1*03:01-stratified analyses but excluding families 

of probands with the DRB1*03:01/ DRB1*04:01 genotype (Table 3B, Figure 5C).  

 

With a pool of pure DRB1*03:01 positive families, (that is, with only DRB1*03:01/X proband 

families included (X=any allele but *04:01)), the linkage signals for both the HLA region as well 

as the peak outside the HLA region did not exceed 1.  

 

In contrast, when we exclude the heterozygous DRB1*03:01/DRB1*04:01 -carrying individuals 

from the analysis of DRB1*04:01 positive families, the HLOD for the HLA locus remained 

surprisingly high (HLOD=2.34), even with the severe reduction in total number of families, but 

with numbers still comparable to the DRB1*03:01 families. The peak telomeric to HLA remains 

high with an HLOD=2.47 (Table 3B, Figure 5D). Even with smaller sample sizes in this subset 

of families (without DRB1*03:01/DRB1*04:01 heterozygotes), the evidence for linkage remains 

high and implies an interaction between the HLA DRB1*04:01 allele and this broad region 

telomeric to HLA. With comparable numbers of families as those in the pure DRB1*03:01 

positive families (without DRB1*03:01/DRB1*04:01 heterozygotes), we retain HLODs 

suggestive of linkage (HLOD>2). Among DRB1*04:01-positive families, these are distinct 
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regions that may be involved in expression of complications. These regions are not observed 

among DRB1*03:01-positive families.  

 

Of note, there are approximately equal proportions of complications among the DRB1*03:01-

positive families (75%) compared with the DRB1*04:01-positive families (74%) as well as the 

distribution of family structures being approximately equal between the groups. Among the 

DRB1*03:01-positive families, there are 31 families with 1 affected (T1D+complications) 

sibling and 31 families with 2 affected (T1D+complications) siblings. There are 2 families with 3 

affected siblings, 1 family has 4 affected siblings and 1 family has 5 affected siblings (66 total 

families). Among the DRB1*04:01-positive families, there are 32 families with 1 affected sibling, 

29 families with 2 affected siblings and 2 families with 3 affected siblings (63 total families). 

While retinopathy constitutes the majority of complications among affected individuals, there are 

also approximately equal numbers of nephropathy patients among the DRB1*03:01-positive 

families (n=43) compared with the DRB1*04:01-positive families (n=41). 

 

ii. Linkage analysis with retinopathy as the phenotype 

To determine if the presence of the DRB1*03:01 and DRB1*04:01 had the same effect on 

linkage evidence when the phenotype was Òretinopathy aloneÓ as with the Òany complicationÓ 

phenotype, we stratified families with retinopathy on the DRB1*03:01 and DRB1*04:01 status 

of the probands. 

 

For DRB1*03:01 positive families with retinopathy alone, we see a pattern of linkage peaks 

similar to that of Òany complicationÓ, with slightly diminished HLOD scores (Table 3B, Figure 
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6A). The major peak is over the HLA region (HLOD=1.84); the peak centromeric to HLA 

remains distinct (HLOD=1.77). When we removed the DRB1*03:01/DRB1*04:01 heterozygotes 

so that there are no DRB1*04:01 alleles among probands, we observe an almost identical pattern 

to the linkage scan for Òany complicationÓ (Table 4B, Figure 6C), i.e, the 3 distinct peaks did not 

exceed HLODs of 1.  

 

The retinopathy phenotype follows the same pattern of linkage as we observed using the 

phenotype Òany complicationÓ, for both the DRB1*03:01 and DRB1*04:01-stratified analyses, 

but with diminished linkage signals. There is a small reduction in the sample size using 

retinopathy alone compared with Òany complicationÓ. It is possible that the reduced sample size 

is responsible for the decreased strength of the linkage signal for retinopathy alone.  

 

When we look only at the ÒretinopathyÓ phenotype, including only the DRB1*04:01 positive 

families, we see a pattern similar to what we observed for the Òany complicationÓ phenotype 

(Table 3B, Figure 6B). The linkage peak at the HLA locus remains significant (HLOD=3.18), 

but one HLOD unit lower than what we saw for Òany complicationÓ (HLOD=4.15). The second 

peak, telomeric to the HLA region, remains a significant signal for retinopathy (HLOD=2.97). 

The peak most distal (position 32.38 cM) to HLA is close to the threshold for suggestive linkage 

(HLOD=1.87). The peak centromeric to the HLA peak is dramatically diminished (HLOD<1). 

When we remove the DRB1*03:01/DRB1*04:01 heterozygotes, the telomeric peak closest to the 

HLA locus becomes the most distinct peak and very broad (peak linkage ranging from 

approximately 35-42 cM), exceeding an HLOD of 2 (Table 3B, Figure 6D). This region, 

suggestive of linkage, indicates that among DRB1*04:01-positive families, there may be a region 
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of interest that lies outside of the HLA region involved in the expression of retinopathy. Further, 

as we showed in chapter 3, DRB1*03:01-carrying patients may be ÒprotectedÓ from the 

development of retinopathy. The fact that the linkage signal declines for retinopathy both in and 

near the HLA region, for families with a DRB1*03:01 positive probands, supports the finding of 

the protective effect and further strengthens the evidence that the loci at those two linkage peaks 

interact in some way with the susceptibility related to DRB1*04:01. 

 

iii. Linkage analysis with nephropathy alone & neuropathy alone as the phenotypes 

For nephropathy alone, stratified analyses approach the suggestive threshold for linkage and data 

are provided in the supplemental appendix. 

 

For neuropathy alone, we observed no evidence for linkage in either the unstratified or in the 

DRB1*03:01 and DRB1*04:01 stratified analyses (data not shown). However, the sample size of 

these families may be too small to expect a good signal. 

 

4.5 DISCUSSION 

This HBDI dataset constitutes one of the larger collections of multiplex T1D families in the 

country and perhaps the largest collection of family data on T1D complications in the world. 

Despite numerous reports of loci linked to T1D (8,23,25-34), few studies have performed linkage 

analysis using microvascular complications of T1D as the phenotype of interest (9,10,12,35). 

The majority of studies examining T1D or complications have done so using association analysis 

or affected-only sib-pair analyses (23,25,36-39). In this study, we used LOD score linkage 

analysis to identify loci that contribute to the expression of microvascular complications, as the 
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phenotype of interest. Such linkage analysis has been shown to have the most power to detect 

loci important for disease expression and the greatest ability to give us information about the 

genetic characteristics of the phenotype and the existence of heterogeneity.  

 

The aim of this linkage analysis was to search for genomic regions that were linked to 

microvascular complications in general, and to each complication separately. Our initial analysis 

confirmed the linkage signal for the phenotype of T1D in this dataset, although we know of no 

other analysis that excluded the presence of complications in the families. The purpose for 

analyzing T1D alone as a phenotype was to determine whether genomic regions that were 

identified when complications were the phenotype could also be seen with the T1D phenotype. 

We confirmed the presence of the HLA locus in T1D (figure 2). Subsequently, we conducted a 

series of analyses to identify genomic regions that were linked to complications, regions that 

may be the same or different than the locus observed for the presence of T1D. This contrast 

ensured that any observed linkage peaks in which complications are used as the phenotype are, in 

fact, related to the expression of complications, rather than to the expression of T1D. In the 

subsequent analyses, using Òany complicationÓ as the phenotype, we identified three linkage 

peaks (Figure 3). The major peak was located at the HLA locus (seen with the T1D phenotype) 

and another, not previously reported peak, was telomeric to HLA. A third linkage peak was 

located centromeric to the HLA region. Though not quite suggestive of linkage (1<HLOD<2), it 

remained a distinct peak. We repeated this linkage analysis using T1D with retinopathy as the 

phenotype. We identified the same two major linkage peaks, but we found that the telomeric 

peak was now higher than the peak at the HLA locus (Figure 4), a reversal of the Òany 
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complicationÓ phenotype analysis. The centromeric peak that we previously observed using Òany 

complicationÓ as the phenotype, disappeared when we used retinopathy as the phenotype. 

 

We did not find suggestive or significant evidence for linkage when using nephropathy or 

neuropathy as the phenotype. However, the sample size of families with these phenotypes may 

have been too small to expect a good signal. Retinopathy constituted the majority of 

complications in our families, so we had the greatest ability to locate linkage signals linked to 

retinopathy. It was most notable that in addition to the peak centered on the HLA locus, we 

identified two separate genetic influences for complications, lying outside the HLA region, one 

telomeric and one centromeric to the HLA region. Notably, these linkage signals were not 

observed when we used T1D alone as the phenotype. 

 

In a previous paper (Aim 2 - Lipner et al, in press, Human Immunology), we had identified 

DRB1*03:01 as a significant protective factor for complications, while DRB1*04:01, in certain 

subgroup analyses, demonstrated elevated risk for complications. In order to determine whether 

the DRB1*03:01 or DRB1*04:01 allele had differential effects on the expression of 

complications, we performed linkage on chromosome 6 using subsets of families, stratified 

according to the probandÕs DRB1*03:01 or DRB1*04:01 status.  

 

When stratifying according to the probandÕs DRB1 status, we acknowledge that all family 

members may not harbor the same allele as the probands. Using this stratification scheme 

however increases the likelihood that the allele will be found more frequently in those family 

members compared with family members in which the proband does not carry that allele. This 
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approach has been used in previous linkage analyses to detect genetic heterogeneity, in which 

T1D families were divided based upon genetic marker criterion (40). A variation of this 

stratification approach has also been used in a linkage analysis to identify genetic interactions in 

T1D susceptibility (23,41).  

 

Using families whose probands were positive for DRB1*03:01, (for both phenotypes - any 

complication and retinopathy alone), we identified three linkage peaks. The HLA peak was the 

most dominant, followed by two previously unreported loci. We observed a peak telomeric to 

HLA, which approached the suggestive threshold for linkage, as well as a peak centromeric to 

HLA, which was suggestive of linkage. In the unstratified analyses using the Òany complicationÓ 

phenotype, the centromeric peak did not reach the threshold suggestive for linkage. However 

using only DRB1*03:01 positive families, the strength of the centromeric peak increased and 

was suggestive for linkage. Interestingly, when the phenotype is retinopathy, the centromeric 

peak disappeared in the unstratified analysis, but when we used only the DRB1*03:01 positive 

families, the centromeric peak not only appeared, but approached the threshold suggestive for 

linkage. 

 

To further explore the effect of DRB1*03:01 on complicationsÕ expression, we obtained a pure 

pool of DRB1*03:01 positive families by restricting the analyses to families, in which the 

probands did not have DRB1*04:01, excluding DRB1*03:01/ DRB1*04:01 heterozygotes, (that 

is, with only DRB1*03:01/X proband families included (X=any allele but *04:01)). For both 

phenotypes, the linkage signal for all three peaks either did not reach or did not far exceed 

HLODs of 1. These linkage results are consistent with our previous findings (Aim 2) that 
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DRB1*03:01 is a protective factor for the development of complications (for the presence of at 

least one complication and for retinopathy alone). While it is possible that these decreased 

linkage peaks are simply the result of decreased power (i.e., fewer individuals among 

DRB1*03:01-positive families have complications), we cannot rule out the possibility that a 

higher prevalence of the DRB1*03:01 allele within families confers a decreased risk for 

developing complications, as we have seen in our previous analysis. 

 

To explore the influence of the HLA DRB1*04:01 allele, we performed the same linkage 

analyses using families whose probands were positive for DRB1*04:01. When we stratified on 

DRB1*04:01-positive families (for both phenotypes), the peak centromeric to HLA disappeared. 

Instead, we identified two peaks telomeric to HLA. The peaks that we observed based on the 

DRB1*03:01-positive families were only suggestive or below the threshold for linkage. However 

the peaks based on DRB1*04:01-positive families either reached or exceeded the significant 

threshold for linkage. The DRB1*04:01 families retain two distinct linkage peaks outside 

(telomeric) of HLA. For both phenotypes, the HLA peak, as well as the more prominent 

telomeric peak, both exceed the significant threshold for linkage. The more distal telomeric peak 

approaches (for retinopathy) or exceeds (Òany complicationÓ) the suggestive threshold for 

linkage. Despite a smaller sample size for the DRB1*04:01-stratified analysis compared with the 

unstratified analysis, not only do we still report significant evidence for linkage at the HLA locus 

and at the region telomeric to HLA, for both phenotypes, but the evidence for linkage in the 

DRB1*04:01-stratified analysis exceeds the evidence for linkage in the unstratified analysis with 

a larger sample size. When we remove the DRB1*03:01/DRB1*04:01 heterozygotes, thus 

leaving no families of probands with a DRB1*03:01 allele, this pattern of linkage peaks remains, 



!

!

P&!

though now the evidence is only suggestive of linkage. These data suggests that among 

DRB1*04:01-positive individuals, there may be a region of interest that lies outside of the HLA 

region involved in the expression of microvascular complications, especially for retinopathy.  

 

After stratifying families by the presence of DRB1*03:01 or DRB1*04:01 in the probands, we 

observed greatly diminished HLOD scores (when excluding DRB1*03:01/DRB1*04:01 

heterozygotes) compared with the unstratified linkage analyses for any complication and for 

retinopathy. One explanation for the change in HLOD scores could be attributed to a change in 

sample size. As sample size decreases, so do the HLOD scores, as we would to expect to observe 

among the DRB1*03:01 and DRB1*04:01-positive stratifications. While there was a substantial 

decrease in HLOD scores among the DRB1*03:01 positive families (including 

DRB1*03:01/DRB1*04:01 heterozygotes), we in fact see an increase in the HLOD scores when 

we use the DRB1*04:01 positive families (including DRB1*03:01/DRB1*04:01 heterozygotes). 

With comparable numbers of families, we observed dramatically different patterns of linkage 

peaks when using the DRB1*03:01-positive families compared with the DRB1*04:01-positive 

families, as well as dramatically different strengths of HLOD scores between these groups. Such 

differences would imply that the presence of these alleles represents a genetically distinct subset 

of influences on the expression of T1D related complications in general and specifically for 

retinopathy.  

 

We intended to test whether our reported LOD scores for DRB1*03:01-stratified families and 

DRB1*04:01-stratified families come from groups that are genetically distinct from each other at 

the HLA locus. To do this, we attempted to apply the predivided sample test (PST) to our dataset. 
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According to the PST, a statistically significant result would show that the genetic contribution 

of the marker locus being tested (in this case, the HLA locus) contributes unequally to the two 

groups, i.e., that there is genetic heterogeneity between the groups. Upon further examination of 

this test, we learned that the PST was designed specifically for two-point linkage analysis, and it 

would not be statistically valid to apply the PST to multipoint linkage analysis. Additionally, 

while we observe multiple peaks, this test is used to compare only one major peak in the region 

((42), S.E. Hodge, personal communication). To the best of our knowledge, there is currently no 

method to statistically test whether these groups are genetically different from one another. 

Ultimately, the LOD score differences between the DRB1*03:01-stratified and DRB1*04:01-

stratified groups can only be assessed in a qualitative manner, rather than a quantitative one. 

Using the Òany complicationÓ phenotype and only the DRB1*03:01-positive families, the LOD 

score at the HLA locus is 1.13 (HLOD=2.33). Using only the DRB1*04:01-positive families, the 

LOD score at the HLA locus for the same phenotype is 4.14 (HLOD=4.15), and 1.20 

(HLOD=3.61) for the unstratified linkage analysis. When the phenotype is retinopathy and we 

used the DRB1*03:01-stratified families, the LOD score at the HLA locus is 0.15 (HLOD=1.84). 

Using only the DRB1*04:01-stratified families, the LOD score at the HLA locus is 3.16 

(HLOD=3.18), and 1.66 (HLOD=2.24) for the unstratified linkage analysis. Even though we are 

unable to formally test for genetic heterogeneity between these groups, based on a qualitative 

assessment of these scores it appears that these differences are likely large enough to argue that 

the genetic contribution to the phenotype is not the same in the two groups. An alternative 

explanation may be that the phenotypic information content is different in the two groups, 

yielding different LOD scores. Resolving this issue however is beyond the scope of this 
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dissertation. Examining how differing phenotypic information influences the outcome of LOD 

scores could be another venue for research. 

 

4.5.1 Other linkage analyses 

A number of T1D linkage scans have been reported (23,25-28), but there have been only a few 

scans for complications and it is useful to contrast the results for T1D with the results for 

complications associated with T1D. All T1D linkage studies have reported evidence of linkage 

of T1D to the HLA region on chromosome 6p21. Concannon and colleagues reported a LOD 

score of 213 using approximately 2,500 multiplex families (26). Morahan and colleagues 

reported a LOD score of 398 using over 4400 affected sib-pairs (23). These exceedingly strong 

LOD scores reinforce the importance of the HLA complex in the etiology of T1D. Only a few 

linkage analyses aimed at identifying susceptibility to complications, specifically nephropathy, 

have been conducted (9,10,12,35). Igo and colleagues conducted a genome-wide linkage analysis 

for diabetic nephropathy using Caucasian multiplex families (10). Authors observed evidence 

suggestive of linkage (LOD=2.84) on chromosome 6p24.3 (24.9 cM), telomeric to the HLA 

region, which was not significant at the genome-wide level. This study however claimed a mixed 

study population of type 1 and type 2 diabetics. Iyengar and colleagues performed genome-wide 

linkage analysis for nephropathy using an affected sib-pair analysis in a mixed study population 

of type 1 and type 2 diabetics, but did not report evidence of linkage on chromosome 6 (35), 

consistent with the findings of this study. A third genome-wide linkage analysis using a 

discordant sib-pair analysis for nephropathy showed evidence for linkage, but not on 

chromosome 6 (9). Moczulski and colleagues performed a linkage study using 66 pairs of 

Caucasian T1D siblings who were discordant for nephropathy. This linkage analysis focused on 
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chromosomal regions previously implicated in nephropathy (12). These authors reported a 

susceptibility locus for diabetic nephropathy on chromosome 3q (LOD=3.1), but not on 

chromosome 6. Interestingly, all four nephropathy studies did not report linkage to the HLA 

region. There is conflicting evidence from case-control studies regarding the contribution of 

HLA, in particular, the DRB1*04:01 allele, to the risk of retinopathy and nephropathy. In a 

recent study examining the genetics of kidney disease (GoKinD), authors reported that 

DRB1*04:01 is a protective allele for nephropathy (43). While this was not a linkage analysis, 

but rather a case-control study, this finding intersects our results which indicate that 

DRB1*04:01 contributes to the expression of complications, in our case, to retinopathy 

specifically.  

 

I found no reports of linkage using T1D-related retinopathy as the phenotype of interest. While 

we found evidence for linkage on chromosome 6 in and outside of the HLA region for 

retinopathy, we have no literature for comparison. This analysis is the first study to present 

strong evidence of a genetic effect for retinopathy. The peak centromeric to HLA may in fact be 

influential among T1D patients carrying the DRB1*03:01 allele, but with our sample size, this 

remains an intriguing research question.   

 

Based on our findings as well as on the published literature, HLA may be involved in the 

expression of retinopathy, but findings regarding nephropathy appear inconclusive.  
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4.6 CONCLUSION    

This is one of the largest linkage analyses for microvascular complications using multiplex T1D 

families conducted to date. Our aim was to identify loci that contribute to the expression of 

complications using families with T1D patients. We are confident that our signals are the result 

of complications rather than the known, strong linkage signal for T1D itself. Linkage analysis for 

T1D without complications as the phenotype did not reveal peaks outside the HLA region. In 

contrast, analyses using complications as the affected phenotype did show evidence for non-

HLA loci. However, the stratification results suggest that HLA itself does influence the 

expression of retinopathy.  

 

We showed that both HLA and non-HLA loci are involved in the expression of complications, 

specifically for retinopathy. We observed a dramatic alteration in linkage trends by stratifying 

according to the probandÕs DRB1 status. Since the HLA locus is the major genetic contributor to 

the expression of T1D, it is not surprising to find that it is also involved in the expression of 

T1D-related complications. What is surprising, however, is the differential effect that stratifying 

on the presence of HLA DRB1*03:01 and DRB1*04:01 alleles has on complications expression, 

as reflected in the HLOD scores. We observed entirely different linkage trends seen for the 

DRB1*03:01 allele compared with the DRB1*04:01 allele. While we were unable to apply the 

predivided sample test to detect genetic heterogeneity in our dataset, the dramatic difference in 

LOD scores between the families who have probands with the DRB1*03:01 versus the 

DRB1*04:01 allele suggest that these sets of families comprise different genetic groups. We can 

speculate that while the HLA region is a major contributor to the expression of T1D, there may 

be an interaction between specific HLA alleles and a region telomeric to the HLA locus that 
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influences the expression of complications. The next step for this study would be to perform 

genome wide linkage analysis, stratified according to the probandÕs DRB1 status. This approach 

may identify interaction between HLA alleles and other genomic regions on different 

chromosomes that may influence susceptibility to complications.  
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Figure 1. Distribution of DRB1*03:01 and DRB1*04:01 among families whose probands 
have at least 1 complication or retinopathy alone. 
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Table 1. Number of families with affected (T1D + complications)-unaffected (T1D only) 
members. 

Affected-unaffected family members Nfamilies (%) 
1 affected-1 unaffected 68 (16) 
2 affected-0 unaffected  50 (12) 
0 affected-2 unaffected 210 (51) 
Other 87 (21) 
Total 415 (100) 
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Table 2. Prevalence of clinical characteristics among 415 T1D families. 

Clinical characteristic Number (%) of individuals 
Total 2,008 (100.0) 
T1D + microvascular complications 239 (11.9) 

T1D + retinopathy 219 (91.6) 
T1D + nephropathy 87 (36.4) 
T1D + neuropathy 76 (31.8) 

T1D only 629 (31.3) 
No T1D 1140 (56.8) 
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Table 3. A. HLOD scores for each phenotype. 

Phenotype Position 
(cM) 

HLOD at 
telomeric 

peak 

Position 
(cM) 

HLOD at  
HLA peak 

Position 
(cM) 

HLOD at  
centromeric 

peak 
Presence of any 
complication 
Nfamilies=156 

42.85 cM 3.27 52.37 cM 3.61 61.01 cM 1.53 

Retinopathy 
alone 
Nfamilies=145 

41.60 cM 2.43 52.37 cM 2.24 61.01 cM 0.54 

 
Table 3. B. DRB1*03:01 and DRB1*04:01 stratifications for each phenotype and the 
associated HLOD scores. 
Phenotype HLOD at 

telomeric 
peak 

HLOD at  
HLA peak 

HLOD at centromeric 
peak 

Presence of any complication    
DRB1*03:01-positive families 
Nfamilies=66 

1.76 2.33 1.96 

Pure DRB1*03:01-positive families 
Nfamilies=40 

0.48 0.56 0.80 

DRB1*04:01-positive families 
Nfamilies=63 

3.68 4.14 1.43 

Pure DRB1*04:01-positive families 
Nfamilies=38 

2.47 2.34 0.52 

Retinopathy alone    
DRB1*03:01-positive families 
Nfamilies=61 

1.41 1.84 1.77 

Pure DRB1*03:01-positive families 
Nfamilies=37 

0.51 0.45 0.59 

DRB1*04:01-positive families 
Nfamilies=59 

2.97 3.18 0.56 

Pure DRB1*04:01-positive families 
Nfamilies=35 

2.13 1.56 -0.002 

 
 
 



!

!

"MP!

 
Figure 2. Phenotype: T1D 

 
*Box denotes HLA locus  
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Figure 3. Phenotype: Presence of any complication 

 
   

 
*Box denotes HLA locus  
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Figure 4. Phenotype: Retinopathy 

      
   

 
 

 
*Box denotes HLA locus  
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 Figure 5. DRB1*03:01/DRB1*04:01 stratifications. 
Phenotype: Presence of any complication. 

 
A. Families with DRB1*03:01-positive probands B. Families with DRB1*04:01-positive probands 

 

 
  
 
C. Families with DRB1*03:01-positive probands D. Families with DRB1*04:01-positive probands 
(No DRB1*04:01 positive individuals)   (No DRB1*03:01 positive individuals) 

 
 
*Box denotes HLA locus  
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Figure 6. DRB1*03:01/DRB1*04:01 stratifications. 
Phenotype: Retinopathy alone 
 

A. Families with DRB1*03:01-positive probands B. Families with DRB1*04:01-positive probands 
 

 
 
C. Families with DRB1*03:01-positive probands D. Families with DRB1*04:01-positive probands 
(No DRB1*04:01 positive individuals)   (No DRB1*03:01 positive individuals) 
 

 
*Box denotes HLA locus  
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Chapter 5: Summary and Conclusions 

 

Retinopathy, nephropathy, neuropathy are chronic microvascular complications that represent a 

major health burden associated with type 1 diabetes. Among individuals with type 1 diabetes, 50-

90% will develop retinopathy (1), 40% are at risk for developing nephropathy and, of those, 20% 

will progress to end stage renal failure (1,2). Another 30-50% of patients will develop some form 

of neuropathy (1). Further, the presence of one complication is highly associated with an 

increased risk of developing a second complication. Thus, determining the causes of these 

complications is an important public health priority. 

 

The role of genetic risk factors in the development of microvascular complications is not clearly 

understood. Although the role of HLA in type 1 diabetes susceptibility has been extensively 

illuminated, the possible influence of HLA alleles in T1D complications presents a murky 

picture. Some studies have reported significant associations of HLA class I or II alleles with 

retinopathy or nephropathy, while other studies have failed to report such associations. 

 

The overall aim of the thesis was to identify genetic factors associated with risk for 

microvascular complications in individuals with type 1 diabetes.  We hypothesized that known 

susceptibility alleles for T1D may also influence the expression and risk for T1D-related 

microvascular complications. By using the tools of both logistic regression and linkage analysis, 

we have shown strong evidence of genetic influences in complications on chromosome 6, and 

not only in the HLA region. 
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To accomplish this aim I first began by reviewing the literature on type 1 diabetes and 

microvascular complications (retinopathy, nephropathy, and neuropathy) (Chapter 2). I identified 

gaps and deficiencies in previous studies and provided the rationale for my analytic aims and 

methods. I then investigated genetic risk factors, specifically the HLA DRB1*03:01 and 

DRB1*04:01 alleles, associated with type 1 diabetes that may also influence the risk for 

complications. Cases were defined as T1D patients with the presence of at least one complication, 

while controls consisted of T1D patients who have been free of complications for at least 15 

years. I examined the association between known T1D HLA susceptibility alleles and risk for 

any complication, as well as the risks for retinopathy alone, nephropathy alone, and neuropathy 

alone and found significant differences in risk for different HLA alleles (Chapter 3). Finally, I 

performed linkage analysis to identify chromosomal regions that may contribute to the 

expression of complications. I performed genome-wide linkage analysis and tested 5,966 

markers for co-segregation with microvascular complications. The only chromosome that 

yielded statistically significant indications of loci related to complications was on chromosome 6. 

I used linkage analysis as a way to examine the evidence for several phenotypic classifications: 

1) the phenotype of T1D itself, 2) the presence of any microvascular complication, 3) retinopathy 

alone, 4) nephropathy alone, and 5) neuropathy alone (Chapter 4). A particular advantage in the 

dataset we used was that the long follow-up period assured that individuals who were diagnosed 

with type 1 diabetes without complications were, in fact, free of complications and were unlikely 

to develop complications, particularly retinopathy, at their advanced ages.  

 

 

 



!

!

""T !

5.1. Summary of Findings  

In Chapter 2, I reviewed and evaluated the existing literature on the epidemiology, pathogenesis, 

clinical diagnoses, symptoms, risk factors, genetics, and familiality for type 1 diabetes and 

microvascular complications.  The highly varied geographic distribution of type 1 diabetes has 

been well documented and points to differences in allele and haplotype frequencies in different 

ethnic groups. Studies have found that some susceptibility alleles/haplotypes common in 

Caucasian populations are less common in Asian populations. However the effect of individual 

alleles/haplotypes is consistent across populations. This suggests that the variation in the 

worldwide prevalence of type 1 diabetes is primarily related to differences in the frequency of 

the risk alleles in different populations. As noted above, many studies have focused on genetic 

risk factors that contribute to the expression of T1D. However, the findings from studies of 

genetic risk factors for complications are inconsistent. Further, there have only been a few 

linkage scans performed attempting to identify chromosomal regions that co-segregate with 

complications. However, these studies examined either mixed populations of type 1 and type 2 

diabetics, or were limited to sib-pair analyses. 

 To summarize the background chapter: The influence of genetic risk factors (specifically the 

HLA region) on type 1 diabetes is well known, studies have been contradictory about the role 

those factors play in the development of microvascular complications. The objective of this 

dissertation was to fill these gaps in the type 1 diabetes literature 

 

In Chapter 3, I reported our findings from a series of logistic regression analyses examining 

known type 1 diabetes susceptibility alleles and their association with the presence of at least one 

microvascular complication, and subsequently with each complication alone. I hypothesized that 
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the alleles with the highest risk for type 1 diabetes among Caucasians (DRB1*03:01 and 

DRB1*04:01) may also be susceptibility alleles for type 1 diabetes-related microvascular 

complications.  After controlling for important type 1 diabetes related covariates, including sex, 

age of T1D diagnosis and duration of T1D, we found that DRB1*03:01 was a significant 

protective factor for the presence of one or more complication, and more specifically, that this 

association was found only for retinopathy. The DRB1*04:01 allele appeared to have no effect 

on the risk of any complications. However, to isolate the effect of DRB1*04:01 by itself, we 

removed individuals carrying the DRB1*03:01, including those who were heterozygous for 

DRB1*03:01/ DRB1*04:01. When we included only the probands who were positive for at least 

one DRB1*04:01 allele, we observed a stronger association for DRB1*04:01 and the risk of 

retinopathy. This association with DRB1*04:01 and the risk of retinopathy may have emerged in 

the DRB1*04:01 carriers who did not have DRB1*03:01 because the protective effect of 

DRB1*03:01 masked the weaker positive effect of DRB1*04:01 on retinopathy expression. Our 

data also demonstrated a strong positive association between the HLA class I alleles, B*39:06 

and B*44:02, and complications. Only the B*39:06 allele showed a dramatic change in the 

estimate from the unadjusted model compared with the model adjusted for covariates. The results 

from this study indicate that the immune system may be involved in the mechanisms leading to, 

or protecting individuals with type 1 diabetes from the development of microvascular 

complications, and/or for retinopathy specifically. 

 

In Chapter 4, I used linkage analysis to identify loci on chromosome 6 that may contribute to the 

expression of microvascular complications. I found linkage markers that co-segregated 

specifically with retinopathy, but not with other complications.  
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First, we confirmed that alleles of the HLA region (50.8-52.3 cM) on chromosome 6 co-

segregated with T1D in our dataset. This was an important control that we used to compare with 

the results for linkage to complications. It also demonstrated that well-established markers for 

T1D were also a characteristic of our study sample. 

 

We then conducted linkage analysis using Òthe presence of any microvascular complicationÓ as 

the phenotype. We identified a linkage peak on chromosome 6 at 42.85 cM that was at least 5 

cM telomeric from the HLA region and was distinct from it. In analyses examining each 

microvascular complication separately, we identified a distinct linkage peak outside (telomeric) 

of the HLA region for retinopathy alone that appeared to coincide with the peak for the Òany 

complicationsÓ phenotype. While the linkage peak for retinopathy was slightly narrower than 

what we observed for the phenotype Ôany complicationÕ, it was significant and, again, distinct 

from the HLA peak.  

For both phenotypes (any complications and retinopathy alone) we also observed a linkage peak 

centromeric to the HLA region when we stratified on families positive for the DRB1*03:01 

allele. However, this peak was not seen when we used only families positive for DRB1*04:01 in 

the analysis. There was a marked increase in the strength of the centromeric linkage peak when 

we used families positive for DRB1*03:01. However, we also observed further evidence that the 

DRB1*03:01 allele was protective. We found that, for both phenotypes, families with a 

DRB1*03:01-positive proband demonstrated diminished linkage signals in and outside 

(telomeric) of the HLA region, while families with a DRB1*04:01-positive proband maintained 

significant linkage signals in regions both in and outside (telomeric) of the HLA region. This 
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observation is compatible with our finding that DRB*03:01 is protective for complications, 

specifically for retinopathy.  It also suggests that there may be an interaction between the region 

centromeric to HLA and the HLA DRB1*03:01 allele that influences protection against the 

development of complications. 

 

In summary, we observed significant evidence for linkage at locations in and out of the HLA 

region for these phenotypes: T1D alone; the presence of at least one complication; and 

retinopathy alone.  Since the majority of our cases with complications were retinopathy cases, 

our evidence was strongest for retinopathy. The sample size for nephropathy and neuropathy 

may have been too small to detect a significant signal.  

 

To my knowledge, this is the first study to investigate both the association between T1D 

susceptibility alleles and microvascular complications and, in same study sample, perform 

linkage analyses to identify genomic regions that may contribute to the expression of 

complications. This study suggests that DRB1*03:01 and DRB1*04:01 may be involved in 

mechanisms leading to, or protecting T1D patients from, the development of microvascular 

complications. Further functional studies will be needed to elucidate the pathophysiological 

pathways that may be involved in the development of complications. 

 

5.2. Strengths and limitations 

These findings have multiple strengths as well as several weaknesses that must be considered in 

order to draw inferences from the study findings.  
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5.3. Strengths of the study 

This study used one of the largest databases of multiplex type 1 diabetes families in the country 

and is also the first study using one of the larger datasets in the world with multiplex T1D 

families that also has information on three microvascular complications (retinopathy, 

nephropathy and neuropathy). While most genetic studies obtain clinical and genetic information 

for only affected individuals, this study obtained clinical and genetic data from all family 

members, even those without type 1 diabetes. Thus we were able to use family members with 

T1D but without complications as a control group.  This type of study design vastly increases 

study power, as well increasing the analytic possibilities. 

Among other strengths of this study is the unique data set that allowed us to examine 

complications as the phenotype of interest. The vast majority of studies have used T1D as the 

phenotype of interest, rather than complications. 

 

5.4. Weaknesses of the study 

The lack of data on age of onset of complications was possibly the greatest limitation to the 

analyses. Using the presence/absence of complications provided a cruder measure for 

complications compared with using age of onset of complications. However our large sample 

size increased the power of the study and provided a solid indication that genes influence the 

expression of complications.  

These analyses are also limited by the self-reported diagnosis of both T1D and microvascular 

complications, although subjects were contacted periodically for health updates. The possibility 

exists that some T2D patients may have been misclassified as T1D. To characterize the extent of 

the study sample homogeneity, I used a random sample of autoantibody markers from T1D study 
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subjects (n=76), since the presence of autoantibodies in people with diabetes confirms an 

autoimmune response. Only five percent of patients classified as having T1D in this subsample 

tested negative for autoantibodies. Five percent misclassification of diabetes diagnoses is not 

unusual, and many studies have reported autoantibody negativity among T1D patients ranging 

from 3.5% to 10% (3,4).  

Lastly, because all patients in this study were Caucasian, findings from this study are 

generalizable only to Caucasian populations and are not generalizable to patients of other 

ethnicities, such as African-Americans, Asians or Latinos who may have different risk alleles for 

microvascular complications.  

 

5.5. Future research directions 

This dissertation provides a solid first step to illuminate specific genetic factors and genomic 

regions that may be involved in the expression of microvascular complications. Additional 

DRB1*03:01 and DRB1*04:01 stratified genome-wide linkage analyses should be performed to 

identify other genomic regions that may interact with HLA to influence the expression of 

microvascular complications. Further research also needs to be conducted in separate study 

populations to validate our findings. Confirmation of these results could provide greater insights 

into the mechanisms leading to the development of microvascular complications and point to 

targeted interventions to delay or prevent their development.   
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Figure 2. DRB1*03:01/DRB1*04:01 stratifications. 
Phenotype: Nephropathy alone 
 
A. Families with DRB1*03:01-positive probands  

 

!!

B. Families with DRB1*04:01-positive probands 
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C. Families with DRB1*03:01-positive probands  
(No DRB1*04:01 positive individuals)    

 

D. Families with DRB1*04:01-positive probands 
(No DRB1*03:01 positive individuals) 
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Appendix 2. Genome-wide linkage analyses  
Phenotype: Retinopathy 
 
Figure 1. Chromosome 1 
 

 
Figure 2. Chromosome 2 
 

 



!

!

"#N!

 
Figure 3. Chromosome 3 
 

 
 
Figure 4. Chromosome 4 
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Figure 5. Chromosome 5 
 

 
 
Figure 6. Chromosome 6 
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Figure 7.  Chromosome 7 
 

 
 
Figure 8. Chromosome 8 
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Figure 9. Chromosome 9 
 

 
 
Figure 10. Chromosome 10 
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Figure 11. Chromosome 11 
 

 
 
Figure 12. Chromosome 12 
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Figure 13. Chromosome 13 
 

 
 
Figure 14. Chromosome 14 
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Figure 15. Chromosome 15 
 

 
 
Figure 16. Chromosome 16 
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Figure 17. Chromosome 17 
 

 
 
Figure 18. Chromosome 18 
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Figure 19. Chromosome 19 
 

 
 
Figure 20. Chromosome 20 
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Figure 21. Chromosome 21 
 

 
 
Figure 22. Chromosome 22 
 

 


