
Secure Anonymous Database Search

Mariana Raykova
Columbia University

New York, USA
mariana@columbia.edu

Binh Vo
Columbia University

New York, USA
binh@columbia.edu

Steven M. Bellovin
Columbia University

New York, USA
smb@columbia.edu

Tal Malkin
Columbia University

New York, USA
tal@columbia.edu

ABSTRACT
There exist many large collections of private data that must
be protected on behalf of the entities that hold them or
the clients they serve. However, there are also often many
legitimate reasons for sharing that data in a controlled man-
ner. How can two parties decide to share data without prior
knowledge of what data they have? For example, two in-
telligence agencies might be willing to cooperate by sharing
documents about a specific case, and need a way of deter-
mining which documents might be of interest to each other.

We introduce and address the problem of allowing such en-
tities to search each other’s data securely and anonymously.
We aim to protect the content of the queries, as well as
the content of documents unrelated to those queries, while
concealing the identity of the participants. Although there
exist systems for solving similar problems, to our knowledge
we are the first to address this specific need and also the
first to present a secure anonymous search system that is
practical for real-time querying. In order to achieve this in
an efficient manner, we make use of Bloom filters [5], defi-
nitions of security for deterministic encryption [22] that we
adapt and instantiate in the private key setting and of a
novel encryption primitive, reroutable encryption.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; E.3 [Data]: Data Encryption

General Terms
Security

Keywords
encrypted Bloom filters, private information retrieval, anonymity,
database, deterministic encryption, encrypted search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-784-4/09/11 ...$10.00.

1. INTRODUCTION
Often, different parties possess data of mutual interest.

They might wish to share portions of this data for collabora-
tive work, but consider the leak of unrelated portions to be a
privacy issue for themselves or their clients. Thus, methods
that provide a well-defined and secure sharing of the data
between untrusting parties can be useful tools. One such
method that we introduce in this paper, is the ability for a
client to search the information residing on another server
without revealing to the server his identity or the content of
his query; at the same time, it is desirable to guarantee that
query capability is only granted to appropriate clients and
that they do not learn anything unrelated to the query. Such
a tool is useful in deciding and agreeing upon information-
sharing between parties who do not initially know if they
have data worth sharing with each other, and do not want
to share information until they do. In addition the very fact
that a client is interested in running certain queries is con-
sidered sensitive, and thus both his identity and the query
content must be protected from the server.

The system we are proposing has many possible applica-
tions. For example, two intelligence agencies might like to
search each other’s data to discover if they have comple-
mentary information about the same parties. Similarly, the
police may need to search the databases of different institu-
tions, e.g., banks for information about people suspected of
embezzlement. Even outside of law enforcement, this type
of search might be useful to a physician who wants to find
out about other patients with the same rare disease as a
patient of his own, along with treatment methods that have
given good results. Or institutions might wish to protect
logs containing sensitive information about the activities of
their members, and yet allow restricted searches on informa-
tion about suspicious behavior that, when correlated across
different domains, may help detect attacks. These scenar-
ios all present a common problem: a facility has data that
legitimately could or should be shared with another party,
embedded within a large amount of data that should be held

This material is based on research sponsored by IARPA under agree-
ment number FA8750-09-1-0075. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA or
the U.S. Government.

confidential. Further in cases such as business acquisition re-
search and law enforcement the identity of the querier needs
to be kept anonymous to avoid causing fluctuation in share
prices or tipping off investigation.

Our Contributions. We address the above concerns
by defining and implementing Secure Anonymous Database
Search (SADS). Although the framework can support more
general queries, we focus here on the specific functionality of
keyword search, which allows an authorized client to anony-
mously and securely query a server for documents containing
a desired keyword. We design an efficient SADS scheme, and
provide for it proofs of security and performance evaluation.

Although it sounds similar to existing work on encrypted
search, our system differs in a significant manner: existing
papers assume that the data being searched is owned by the
querier and must be protected from the server [8,9,11,14,22,
26]. In our scenario, the querier and the owner of the data
are different parties. This constitutes a different adversar-
ial model: we must protect the database from the querier.
Additionally, we aim to protect the identity of the querier
which also introduces new issues, such as how to ensure that
the data owner can prevent arbitrary unauthorized parties
from sending queries. The PIR/SPIR line of work [13, 16]
assumes a similar scenario to ours in that an authorized user
is requesting some data from a server who owns it, but dif-
fers in that they do not aim to protect the identity of the
user, and also (with a small number of exceptions, e.g., [12]).
merely support simple selection, not full query capability.

Another important distinction from existing work is that
we aim to achieve time efficiency that is sufficient for real-
time search, something unseen in both encrypted search and
PIR solutions. As in [22], we consider this to mean sub-
linear search time in the total size of the searchable data.
Protocols such as [8, 11, 26, 27] achieve linear search time;
to improve this complexity, we may be willing to sacrifice
strict definitions of privacy and security in a limited and
measurable manner. Thus, our goal is to guarantee practical
performance and achieve the maximum privacy, security and
anonymity possible under the efficiency requirement.

Our Approach. We introduce two parties, the query
router (QR) and the index server (IS), which will serve as
intermediaries in the search protocol. They are trusted with
limited information necessary to perform their functions in
the scheme. The index server stores encrypted search struc-
tures produced by the data owner and executes submit-
ted queries without learning the query content or anything
about the underlying database. The query router connects
queriers to index servers without revealing identities of ei-
ther participant to any other entities. He further translates
encryption by the client to encryptions appplicable to the
IS index ensuring that the results cannot be traced. To ac-
complish this, we introduce a new primitive that we call re-
routable encryption, which we use for the query submission
and result return via the query router to the index server.
To achieve efficiency of the search algorithm we use Bloom
filters [5] as our search structures. We use the security model
introduced in [22] that allows sublinearity of search schemes.
We adapt the definition for IND-CCA secure deterministic
encryption from [22] for use in the private key setting and
use this scheme to produce ciphertexts from which we build
our Bloom filter search structures.

Organization. In Section 3 we more formally describe
the problem we are addressing and our solution approach.

Section 4 describes the building block protocols that we use
for our system. We present our complete scheme with its
security properties in Section 5. The implementation struc-
tures used to store Bloom filters and optimize parallel search
across multiple filters are discusses in Section 6. We follow
with performance measurements that demonstrate this sys-
tem is efficient and practical in Section 7.

2. RELATED WORK
The problem of secure anonymous database search can be

considered in general as a special case of the problem of se-
cure multiparty computation [18, 30, 31] and be solved with
general techniques such as [18]. Although this approach pro-
vides strong privacy guarantees for the participating parties,
the time complexity of generic secure multiparty computa-
tion schemes is too high to be practical for real world use.

Protocols for Private Information Retrieval (PIR) [13] and
Symmetric Private Information Retrieval (SPIR) [16] pro-
vide a limited type of privacy preserving search. The sce-
nario that PIR addresses is between two parties: server and
user, where the server has a database of n items and the
user wants to obtain the item at position i without the server
learning the value of i. In the case of SPIR, it is additionally
required that the user does not learn any other item except
the one that was requested. These protocols have sub-linear
communication and polynomial computational complexity,
which may be better than a generic multiparty protocol, but
are still inefficient for practical uses. Additionally, these pro-
tocols typically support only simple selection, rather than
general query capability (a notable exception being [12]).

Papers that present encrypted search address a different
type of search scenario from ours, namely database outsourc-
ing [1,8–11,14,26,28,29]. In this setting one party possesses
data but does not have enough resources to store it. He
keeps the data on an untrusted storage server, but mainains
the ability to search the data without leaking any informa-
tion to the server. As in our search scenario, the query must
be protected from the server, however in our system the
data is owned by the server. Since in these systems, each
user’s data is encrypted and only readable by themselves,
protecting anonymity and handling authentication are rela-
tively trivial matters.

Many approaches to this problem use encryption systems
that allow matching of ciphertexts of the same encrypted
word [8–10,26]. However, this approach only aims to protect
the query content under the assumption the querier owns the
data; the server could otherwise easily match the queries to
its own data text. Most developments in improving privacy
and efficiency also rely on this assumption: [14] suggests the
querier preprocess the data by computing inverted indexes
on search words, and [29] suggests the user reorder the data
on the storage server between queries to prevent the server
from learning access pattern.

Another common technique is to grant search capability
for a keyword by providing a trapdoor that allows decryp-
tion only of encryptions of that keyword [8–10, 26]. This,
however, requires computational complexity linear in the
number of words stored at the database. As with [22] we
consider this running time unacceptable, and aim to achieve
performance comparable to non-private search. Linear time
is a trivial search time that has proven to be extremely in-
efficient for large data sets. Bellare et al. [22] show that
in order to achieve better than linear complexity of search

the underlying encryption scheme must be deterministic,
which presents a clear tradeoff between efficiency and the
strong privacy guarantees that come with non-deterministic
encryption.

Papers like [27] and [25] present the scenario most similar
to ours: the problem of log sharing in which investigator
obtains from an authorization party the capability to search
encrypted audit logs for particular words or values. To ac-
complish this, queriers are given all encrypted keywords in
the documents, but are ensured to be only capable of de-
crypting matching ciphertexts and consequently incurring
linear computational cost. Since each querier must receive
all of the encrypted text, the communication complexity is
not constant. If the encrypted logs are stored and matched
by a third party instead, we run the risk that a possible leak
of the encryption key will reveal all sensitive data.

Our approach addresses the issues of efficiency and database
protection using Bloom filters as a basis for our search struc-
tures. Bloom filters can be much smaller than the data
they represent and cannot be used to reconstruct the origi-
nal data. The works of [3] and [17] also utilize Bloom filters
for search purposes. However, [3] uses weaker privacy defi-
nitions. The scheme of [17] combines Bloom filters with one
way functions to achieve security guarantees but addresses
a different setting where the trapdoor giving search capabil-
ity for a keyword has to be generated by the owner of the
private key used for the generation of the index. This is not
applicable for our scenario since we would like to hide the
search term from the database owner and search capabili-
ties are granted for a collection of documents as opposed to
separate words.

One of the problems we address is limiting permission for
search capability to sets of users. In schemes like [8, 26, 27],
permissions are granted on a per-term basis by including a
trapdoor allowing decryption of ciphertexts of this particular
word. However, this leaks information about what queries
parties will make to the authenticating authority, since they
must request trapdoors for query terms. We instead allow
setting different granularities of search capability, where one
can allow search on the whole database, on particular doc-
uments or if some words are especially sensitive one can
further restrict the search capability for those.

A final major addition we provide over existing schemes is
the protection the querier’s identity from the server. An im-
portant tool we use to provide this is re-routable encryption.
Similar to this tool are the ideas of proxy encryption [4] and
universal re-encryption [21]. Proxy encryption [4] allows one
party to decrypt on behalf of another party. For this purpose
the two parties compute and publish a transformation key
between their encryptions that allows an untrusted proxy to
convert ciphertexts for the first party to ciphertexts for the
second party without learning anything about the key of any
of them. Our re-routable encryption instead assumes that
only the intermediary part will know the transformation key,
and will use this to protect identities of the participants from
each other. Universal re-encryption [21] allows a party given
a ciphertext to obtain a different encryption of the hidden
message under the same key but with different randomness
without learning the message. However, it does not provide
for transformations between encryption under different keys.

3. SECURITY ARCHITECTURE

3.1 Problem Setting and Requirements
The general scenario we consider includes multiple parties

who possess private sensitive data, which they are willing
to share under certain very specific circumstances. Each
execution of the scheme will involve a party who owns a set of
documents he wishes to make available for secure anonymous
keyword search by authorized parties. Any other party may
be authorized to take the role of the querier, whose input is
some keyword that he wishes to search for in the database.
We will interchangeably refer to the first party as data owner
or server, and the second party as querier or client. The goal
is for the protocol to meet the following requirements:
Correctness: The querier’s output consists of all the matches,
namely the indices of all documents containing the keyword.
A tolerated probability of expected error (false positives or
negatives) may be specified.
Client Security: The data owner does not learn any infor-
mation about the query (keyword).
Server Security: The querier learns nothing about the data
except for the specified output (matches) for his query.
Server Access Control: Only parties authorized by the data
owner can submit queries and receive outputs for this data.
Client Anonymity: The data owner learns no information
about the identity of the querier as chosen from amongst the
pool of authorized parties. This also precludes information
about linkage of two queries coming from the same client.

We note that some application scenarios may require also
server anonymity, and our system can easily support this
(using the same mechanisms we use for client anonymity).

The formal definitions of the above properties (e.g., what
“learns no information” means) can be specified following
standard cryptographic notions.

Finally, we emphasize that practical efficiency is quite a
central requirement for our system, and we design our model
and protocol accordingly. In particular, high communica-
tion complexity, or per-query computation complexity that
scales linearly with the number of words in a document will
not be acceptable. This rules out the use of existing generic
cryptographic techniques from secure multiparty computa-
tion [18,30,31] and PIR [13,16].

3.2 The SADS Model and Protocol Structure
It is not hard to show that the security, anonymity, and

efficiency requirements stipulated above are conflicting, and
cannot all be achieved simultaneously without adjusting the
model. For example, sublinear computation and constant
communication conflict with client privacy, as they allow
the server to gain information on the answers to the query,
and thus on the query itself. Client anonymity seems to
conflict with server access control, and obviously anonymity
cannot be achieved if the server and client are the only two
parties participating in the interaction. Trying to solve the
latter problem by involving all parties in the system for each
search is not practical (both in terms of efficiency, and since
it requires a fixed and known set of parties).

Instead, we will expand our model by adding two new par-
ties that will participate in each search, the Index Server (IS)
and the Query Router (QR). These may be viewed as neutral
parties available to regulate the data sharing process with-
out learning the participants’ private inputs. The security
and anonymity requirements with respect to these new par-

Index Server
IS

Query Router
QR

P1 P2

encrypted
data

f'(m)=m'

f"(m',P2)
= m"

Search(m")
= r

g'(r)=r'

g"(r')
= r"

Figure 1: General Setup: P1 makes its data available for

search providing IS with search structures, P2 submits

keyword queries anonymously to IS via QR, IS sends

back the search result though QR

ties will be reasonable, but weaker than those between the
client and server; in return, they allow us to achieve practical
efficiency. Before elaborating on these requirements (which
will complete our definition of SADS), we overview the gen-
eral architecture of our SADS protocol, demonstrating the
roles of IS and QR and their trust implications.

Figure 1 illustrates the search protocol. A database owner
(P1) generates a search structure computed from (an encryp-
tion of) his data and gives it to the index server. This struc-
ture enables IS to answer (encrypted) queries but does not
reveal information about the provided database. Outsourc-
ing the search to IS prevents the data owner from finding
out the results to encrypted queries. The IS sees the results,
but does not know what documents they correspond to. At
most, the IS will be able to tell when two submitted queries
have overlapping results. This is mitigated by preserving the
anonymity of the queriers with respect to the index server.
However, providing such anonymity introduces a new prob-
lem: how to guarantee that only authorized users are sub-
mitting queries. This is addressed by the query router, who
serves as an intermediary in the communication path be-
tween querier and IS. QR is trusted to know and protect
the identities of the participants, while enforcing correct au-
thorization before allowing queries to reach the IS. However,
he is not trusted to see the content of the queries or results.
Thus a querier (P2 in Fig. 1) will submit his encrypted
query to the QR, who checks the authorization of the user,
transforms the query and forwards it to the IS. The IS will
send back search results to the QR, which will be able to for-
ward them to the respective user. The results are encrypted
so that the QR does not learn anything.

With this architecture in mind, we make the following
requirements with respect to IS and QR
Data Security Against IS and QR: Both IS and QR learn
no information about the data.
Client Anonymity Against IS: IS learns no information about
the identity of the querier. This again includes unlinkability.

Clients Result-Security-up-to-Equality Against IS: Given a
sequence of queries (forwarded to IS from QR, possibly by
different clients), IS may learn which of the encrypted queries
result in the same set of matching documents. No other in-
formation about the queries (or the client(s) who generated
them) may be learned by IS.
Client Query-Security-up-to-Equality Against QR : Given
a sequence of queries from a given client, QR may learn
nothing beyond which of the encrypted queries are the same.

We are now ready to define our SADS model. Our scheme
will satisfy this definition against semi-honest parties, though
we will also mention what properties are maintained when
some of the parties collaborate, or behave maliciously.

Definition 1. A Secure Anonymous Database Search (SADS)
system consists of protocols for server, client, IS and QR,
satisfying all the correctness, security, anonymity, and ef-
ficiency requirements defined in Section 3.1 (between client
and server) and in this section (for IS and QR).

4. BUILDING BLOCK PROTOCOLS
In this section we present the protocols that we use as ba-

sic building blocks for our SADS scheme. First we introduce
reroutable encryption , which will be used to achieve client
anonymity and authorization. Then we introduce private
key deterministic encryption , which will allow to protect
the query content from the QR and IS, while enabling ef-
ficient search. Finally, we will utilize Bloom filters as a
basis for efficent encrypted search structure.

4.1 Re-routable Encryption
Re-routable encryption is a new primitive we will use in

our system to protect identities, when routing (encrypted)
queries from an authorized client to IS, and also when rout-
ing the (encrypted) results back to the client. Informally,
re-routable encryption is a protocol to send an encrypted
message, or some function of the message, from a sender
to receiver through a query router QR, such that two se-
curity requirements are satisfied. First is the security of
the sender’s message with respect to QR, and second is
the anonymity of the sender with respect to the receiver.
The definitions are given below. We note that this prim-
itive may be of independent interest, e.g., in cases where
the query router QR is an intermediary in some protocol
for secure multi-party computation, where it is allowed to
perform computation only on encrypted data and it must in-
teract with the data owners to perform a computation that
requires manipulation of the real data.

Definition 2. A re-routable encryption scheme consists
of algorithms (GEN, ENC,ENC-QR,TRANS,DEC-R):

• GEN(1k, Sender,QR,Receiver) outputs three keys (sk,
qrk{S,R}, rk) for the sender, the QR, and the receiver.

• ENC(sk,m) = c encrypts m with the sender’s key.

• TRANS(c, S, sti) = (R, sti+1) identifies the receiver of
the message coming from S based on the inner state
sti of QR, and computes the new state of QR.

• ENC-QR(c, qrk{S,R}, sti) = (c, sti+1) transforms the
ciphertext c to a message c for the receiver R.

• DEC-R(c) = m extracts the information that was sent
to the receiver from the query router.

Definition 3 (Message Security). Let S be a secu-
rity definition using an adversary A and applicable to a gen-
eral encryption scheme. Let R = (GEN,ENC,ENC-QR,
TRANS,DEC-R) be a re-routable encryption scheme. We
say that R provides S-message security with respect to QR
if (GEN,ENC,DEC-R ◦ ENC-QR) meets S when A is sup-
plemented with qrk{S,R}.

This definition is intentionally non-specific, and can be in-
stantiated using different definitions of security for encryp-
tion. For our scheme, we will instantiate this definition both
with a standard semantic security notion, and with deter-
ministic encryption security notion.

Definition 4 (Sender Anonymity W.r.t. Receiver).
Let Q0 and Q1 be two users with keys q0 and q1 respectively.
We say that the re-routable encryption scheme (GEN,ENC,
ENC-QR, TRANS, DEC-R) with a security parameter k pre-
serves the anonymity of the the sender with respect to the
receiver if for any polynomial time adversary A that given
ENC-QR(ENCqb(m)) for b←R {0, 1} outputs a guess b′, the
following holds: |Pr[b = b′]− 1

2
| < negl(k).

A re-routable encryption scheme is secure if it meets both
of the above definitions.

We will now show one method for constructing a re-routable
encryption scheme from an encryption scheme that possesses
the following group property:

Definition 5 (Encryption Group Property). Let
Π = (GEN,ENC,DEC) be a deterministic private key en-
cryption scheme. We say that Π has a group property if
the keys for the encryption scheme form a group and for
any message m and any keys k1 and k2 the following holds:
ENCk1(ENCk2(m)) = ENCk1·k2(m).

Construction 6 (Simple Re-reroutable Encryption).
Let Π = (GEN′,ENC′,DEC′) be an encryption scheme with
the group property from Definition 5. We construct a reroutable
encryption scheme (GEN,ENC,ENC-QR,TRANS, DEC-R)
as follows: In GEN(1k), Sender and Receiver independently
run GEN′ (1k) to create sk and rk, respectively. Sender,
Receiver, and QR then run a secure multiparty computation
with sk as input from Sender, rk as input from Receiver,
and qrk = sk

rk
as output for QR. In the appendix we give

an efficient constant round protocol that realizes the required
multiparty functionality.

In ENC(sk,m), Sender computes ENC′(sk,m) = c. In
TRANS, QR chooses a Sender, Receiver pair. In ENC-QR(qrk, c),
QR computes ENC′(qrk, c) = c. In DEC-R(rk, c), Receiver
computes DEC′(rk, c) = m.

Theorem 7. Let Π = (GEN′,ENC′,DEC′) be an encryp-
tion scheme with a group property, satisfying a security def-
inition S. The reroutable encryption (GEN,ENC,ENC-QR,
TRANS,DEC-R) obtained from Π using Construction 6 pro-
vides S-message security and ensures Sender anonymity w.r.t
the receiver. (Proof given in appendix.)

4.2 DET-CCA Deterministic Private Key En-
cryption Scheme

While the standard definitions of security (e.g., [19]) re-
quire an encryption scheme to be probabilistic, a determin-
istic scheme will allow us considerable efficiency gains, while

still providing a level of security which is acceptable in our
setting (security-up-to-equality). This tradeoff follows the
idea introduced by [22], who define deterministic encryption
in the public-key setting, and show how to convert a stan-
dard (probabilistic) PKE to a deterministic one. We follow
the same approach, adapting it to the secret key setting.

We start by defining chosen-ciphertext (CCA) security
for deterministic encryption. The adversary A = (A1, A2),
defined as in [22], is a pair of polynomial time algorithms
that share neither coins nor state and has high min-entropy
ω(log(k)) (this is the case for any adverary if the underlying
plaintext domain is dense).

Definition 8 (DET-CCA). Let Πdet = (GEN,ENC,
DEC) be a private key encryption scheme and A = (A1, A2)
be an adversary against it. We conduct the following two
experiments:

DET-EXP0
πdet,A(n) DET-EXP1

πdet,A(n)

s← GEN(1n) s← GEN(1n)

(x1, t1)← A1(1n) (x0, t0)← A1(1n); (x1, t1)← A1(1n)

c← ENCs(x1) c← ENCs(x0)

t′ ← AENCs
2 (1n, c) t′ ← AENCs

2 (1n, c)

output

(
1 if t′ = t1
0 else

output

(
1 if t′ = t1
0 else

We define the adversary advantage as AdvDET−CCA
πdet,A =

Pr[DET-EXP0
Πdet,A(n)=1]−Pr[DET-EXP1

Πdet,A(n)=1].

We say that Πdet is DET-CCA secure if for all adversaries
A the advantage AdvDET−CCA

πdet,A is negligible.

Next we give a construction for converting any semanti-
cally secure private key encryption scheme into a determin-
istic DET-CCA secure private key encryption scheme.

Construction 9 (Deterministic Private Key Enc).
Let Π = (GEN,ENC,DEC) be any probabilistic private key
encryption scheme and let H be a hash function, which we
will model as a random oracle. We define a deterministic
private key encryption scheme Πdet = (GEN′,ENC′, DEC′)
as follows:

• s = GEN′(1n) = GEN(1n)

• c = ENC′s(x) = ENCs(x;H(s, x))

• x = DEC′s(c) = DECs(c), r = H(s, x); return x if
ENCs(x, r) = c and ⊥ otherwise.

Theorem 10. Let Π = (GEN,ENC,DEC) be any proba-
bilistic private key encryption scheme and Πdet be the corre-
sponding deterministic scheme according to Construction 9.
Let A = (A1, A2) be a DET-CCA adversary with min-enthropy
µ against Πdet that outputs vectors of size v and makes at
most qh queries to the hash oracle and qd queries to the de-
cryption oracle. Let ms and mc be the max secret key and
the max-ciphertext probabilities for Π. The there exists an
IND-CPA adversary B against Π such that

AdvDET−CCA
πdet,A ≤ AdvIND−CPAπ,B +

2qhv

2µ
+ 2qhms+ 2qdmc,

where B makes at most v queries to its oracle and its running
time is within O(qh(Tε+ qd)) and Tε is the running time for
the encryption algorithm.

This proof follows the proof of Theorem 5 in [22], replac-
ing the (public key) encryptions with calls to an encryption
oracle for the private key encryption scheme.

We instantiate the above deterministic private key en-
cryption scheme following the construction of RSA-DOAEP
in [22] but with different primitives that give more secu-
rity and the group property that we need. We use the
Pohlig-Hellman (PH) function [23] and the SAEP+ (short
for Simple-OAEP) padding construction introduced in [7].
The Pohlig-Hellman function PHk(x) = xk mod p (p is
prime and k is a random key) viewed as an encryption func-
tion has the group property from Definition 5 since (Zp, ∗)
is Abelian group. The SAEP+ padding scheme is a simpler
scheme than OAEP [2] and provides better security guaran-
tees. We now define the private key probabilistic encryption
PH-SAEP+ and the private key deterministic encryption
PH-DSAEP+, both of which will be used in our scheme.
Proofs of (CCA and DET-CCA) security are given in the
appendix.

Definition 11 (PH-SAEP+ Encryption). We define
PH-SAEP+ = (GEN,ENC,DEC) in the following way

• GEN(1n) = (p, k, k′) where p is a prime that is publicly
known and k is a secret key and k′ is its inverse, which
is efficiently computable.

• c=ENCk(x)=PHk(SAEP+(M, r))=PHk(((M || G(M ||r))
⊕H(r)) || r) where r is chosen at random.

• DEC(c):

1. Compute c′ = ck
′

mod p where c′ = c′′ || r.
2. Extract r and compute H(r).

3. Compute x || g = c′′ ⊕H(r).

4. Verify that g = G(x||r) and return x.

Theorem 12. Assume that no algorithm with running
time t can solve the discrete log problem with probability
more than ε. Then PH-SAEP+ is chosen ciphertext secure
scheme in the random oracle model satisfying the following:

t′ ≤ t/2−O(qD + qG + q2
H)

ε′ ≤ ε1/2 + qD/2
s0 + qD/2

s1 ,

for an adversary with running time t′ and advantage ε′ that
issues qD decryption queries, qG queries to G, qH queries to
H where s1 is the length of the randomness used and s0 is
the length of the output of G.

Corollary 13 (PH-DSAEP+). Let PH-DSAEP+ be
the deterministic private key encryption scheme derived by
applying Construction 9 to PH-SAEP+. PH-DSAEP+ is
DET-CCA secure under the discrete log assumption and in
the random oracle model.

4.3 Bloom Filters
The deterministic encryption scheme that we presented

provides ciphertexts that are suitable to be used in effi-
cient search protocols according to [22]. Bellare et al. in
[22] suggest that the search functionality over encrypted
data produced with a deterministic encryption should be
realized by attaching “tags” that will be easily searchable
and easily computed by both the querying party and the

server. We realize the “tagging” idea with a Bloom filter [6].
This facilitates efficient search, guarantees there will be no
false negatives, and allows a tunable rate of false positives:

(1 − (1 − 1
m

)hn)h ≈ (1 − e−
hn
m)h where n is the number of

entries in the Bloom filter, h is the number of hash func-
tions, and the filter is 2m bits long. For the purposes of
our scheme we use a Bloom filter (BF) per document in the
database to store the encrypted keywords of that document.
We modify the computation of the BF indexes correspond-
ing to a keyword w. If we have a Bloom filter of size 2m bits
with h hash functions, we use as index values into the BF
the first h blocks of m bits each of the encryption of w. This
preserves the same false positive rate as a standard Bloom
filter since the ciphertexts have a pseudorandom property.

5. SECURE ANONYMOUS DATABASE SEARCH
In this section we present the protocol for secure anony-

mous database search that realizes the functionality described
in Section 3, and analyze its security.

5.1 SADS Protocol Description
We now present the SADS scheme that allows a data

owner to make its database available for search by com-
puting BF structures for encrypted search on it and send-
ing them to a index server, which executes queries submit-
ted to it anonymously by authorized queriers via a query
router. We use two instantiations of re-routable encryption:
for query submission, we instantiate with (DET-CCA se-
cure) PH-DSAEP+, where the QR computes the first BF
indices of the encrypted query before passing them on to IS.
For returning the results, we instantiate with (IND-CCA
secure) PH-SAEP+ directly accordhing to Construction 6.

Construction 14 (SADS). Let us have a server(S),
a client (C), a query router (QR) and an index server (IS).
Let FP be the upper bound on the false positive rate that we
allow for search. Let h and m be parameters computed based
on the sizes of the documents in the database of S such that
a Bloom filter of size 2m bits using h hash functions with as
many entries as the largest document in the database allows
at most false positive rate of FP .

Let (GENquery, ENCquery,TRANSquery, ENC-QRquery,
DEC-Rquery) be an instantiation of Simple re-routable en-
cryption (Construction 6) with the encryption scheme PH-
DSAEP+ and the difference that ENC-QRquery(c, qrk{S,R}, sti)
= BF(PH-DSAEP+qrk{S,R} (c)) =BF(c) = {b1, . . . , bi}, where

{b1, . . . , bi} are the BF indexes obtained from the first h m-
bit blocks of c and DEC-Rquery is the identity function.

Let (GENresult, ENCresult,TRANSresult,ENC-QRresult,
DEC-Rresult) be an instantiation of Simple re-routable en-
cryption (Definition 6) with the encryption scheme PH-SAEP+.
Preprocessing: S generates for each of its documents a
Bloom filter from the encryptions of its stemmed keywords
under PH-DSAEP+ with key rkS according to the BF modi-
fication from Section 4.3. S sends the resulting Bloom filters
to IS.
Key Generation: To authorize C for search S, QR and C
run GENquery to obtain keys (skC , qrk{C,S}, rkS) for query
submission, where rkS is the key S used in the previous step.
Also IS, C and QR run GENresult to get (skIS , qrk{IS,C}, rkC)
that will be used later for the result return.
Query Submission: To submit an encrypted query for key-
word W C computes c1 = ENCquery(skC ,W) and sends it to

QR, which computes TRANSquery(c1, C, st
′
i) = (IS, st′i+1)

and {b1, . . . , bi} = ENC-QRquery(c, rqk{C,S}, st
′
i) and sends

{b1, . . . , bi} to IS.
Search: IS obtains DEC-Rquery({b1, . . . , bi}) = {b1, . . . , bi}
and uses them for BF search to get the result R.
Query Return: IS encrypts and sends c2 = ENCresult(skIS , R)
to QR. Then QR transforms TRANSresult(c2, IS, st

′′
i) =

(C, st′′i+1) and sends c = ENC-QRresult(c2, rqk{IS,C}, st
′′
i)

to C, which decrypts DEC-Rresult(rkC , c) to obtain the re-
sult R.

5.2 Protocol Security
We now prove the security of the protocol in our semi-

honest adversarial model, and then discuss what properties
may be compromised if some parties collaborate or act ma-
liciously.

Theorem 15. The SADS protocol of Construction 14 sat-
isfies Defintion 1 for semi-honest index server and query
router, under the discrete log hardness assumption and in
the random oracle model.

Proof. The correctness of the protocol follows from the
fact that BF search does not yield false negatives and we can
make the false positive rate arbitrarily small by choosing the
appropriate size and number of hash functions for the BF
based on its capacity. We consider a false positive rate that
can be controlled to be under any acceptable threshold to be
a sufficient privacy guarantee, for example, fixing FP rate to
a value comparable to the probability of finding a collision in
a hash function. Viewing the search functionality as part of
the security of a whole system such a FP rate will be well be-
low the error rate of any other part of the system [20]. Server
security follows from the fact that the only data-dependent
information IS sends (and the client receives) consists of the
BF indices, namely the intended output. Since the original
data owner participate only in the preprocessing and not the
actual encrypted search protocol, he does not learn anything
about the queries submitted by clients, thus client security
is achieved. Since all the information IS has about the data
is encrypted, data security against IS is maintained. The
semi-honest QR controls the authorization of clients, pro-
viding server access control.

Since the query submission and query return are done
through re-routable encryption, we may use Theorem 7. For
the query submission the sender is the client, the receiver is
IS, and the underlying security notion is DET-CCA. Thus,
Theorem 7 gives client anonymity against IS, as well as
DET-CCA message security, which guarantees client query-
security-up-to-equality against QR. Client result-security-up-
to-equality against IS follows from the fact that IS has the
power of an adversary in the PH-DSAEP+ scheme, and
from the security guarantee of the det-CCA encryption. For
the query return the sender is IS, receiver is the client, and
the underlying security notion is standard IND-CCA. Thus,
Theorem 7 directly implies data security against QR.

Finally, in terms of efficiency, the scheme requires con-
stant communication for query submission and thus depends
only on the size of the return set. Computation complex-
ity grows only with the number of documents, and not with
the size of the documents, as it requires a BF search per
document, regardless of size.

As stated in the theorem, our adversarial model assumes
QR and IS are semi-honest and do not collude with each

Record 1 BF

Record 2 BF

Record 3 BF

Record n-2 BF

Record n-1 BF

Record n BF

BF index 1

BF index 2

BF index 3

BF index m-2
BF index m-1

BF index m

Figure 2: Multiple Bloom Filters Memory Storage

other or other parties. We now briefly examine what hap-
pens when this assumption is violated. First, note that if
IS and QR collude, the client’s security properties are main-
tained, but the client’s anonymity (and unlinkability) is vi-
olated (for example, they can detect when different users
submit the same queries or queries that have the same re-
sult). If IS and QR further collude with the server or the
client, the security guarantees for the other party are com-
pletely compromised If QR colludes with the client, while
IS is semi-honest, this may allow an unauthorized client to
submit a query, but no other requirements are violated. Fi-
nally, if IS collaborates with the data owner, some informa-
tion about the query may leak (e.g., the first BF indices of
the encrypted query).

6. EFFICIENT STORAGE AND EFFICIENT
BLOOM FILTER SEARCH

To minimize the number of bits that need to be read to
satisfy queries across a large number of Bloom filters, we
store them in transposed order. First, they are divided into
blocks of filters; within each block, all bits from a single
index across the filters are stored sequentially. Thus, each
document is represented by a bit within multiple slices, one
for each index of its Bloom filter representation (Fig. 2). To
run a query, we need only fetch those slices which correspond
to the indices of the query term, which is a large savings
since normally we would have to read the full contents of
every Bloom filter for every document for any query. This
technique is referred to as bitslicing and has been studied as
a method for storing signature files in database indexes [32].

6.1 Slicing optimizations
By storing the Bloom filters in blocked slices, we gain the

ability to avoid reading a large portion of the bits in the
Bloom filter set when we run queries. We need only check
those slices which correspond to an index which is present
in the query term(s). Since this is very sparse, this is a large
improvement over non-transposed storage; it would require
us to read the entirety of every Bloom filter in order to run
a query.

To run a query, we construct a result vector, which is a
bit vector equal in size to the number of Bloom filters in the

set. This is then “and”ed to each slice corresponding to a
query index. Over time, several block-sized portions of the
result vector will become zeroed out. Once this happens,
as a further optimization we cease to read those portions of
later indices. Our block size is chosen as the disk page size,
and our end goal is thus to read the minimum number of
pages necessary to answer a query. If multiple queries are
being run, we keep a cache of recently viewed bitslices with
a LRU replacement policy.

Because we are storing the Bloom filters in transposed
order, and each filter is represented by a single bit across
various slices, deletion of filters would be expensive. Thus,
we implement this simply by zeroing out the indices of a
filter so that it will not match future queries. As a future
addition, we may support a system of periodically cleaning
the slicebase by identifying ”deleted” filters and compacting
the remaining ones.

6.2 Boolean queries
Supporting AND queries is trivial; the Bloom filter indices

of the query terms can simply be unioned before running
the query indices across the set as if they were a single term.
Supporting OR queries is more difficult, since we must know
the results of each individual query before we can union
them. There is no operation we can do on the query indices
to achieve this with a single query.

However, there are still optimizations available to us. In
order to run an OR query with x terms, we must generate
x result vectors and run them over the entire set. Rather
than run them individually, we run them in parallel. This
not only improves the cache behavior of our bitslice fetching,
but also allows us to avoid reading blocks from later slices
once we see that the corresponding blocks of all x result
vectors have been zeroed out by earlier indices. In order
to increase the likelihood of this happening, we query the
indices in order of the number of distinct query terms they
appear in.

This technique for running OR queries is sufficient to ad-
dress any boolean query which can be represented with a
monotone disjunctive normal form. Disjunctive normal form
requires that the query be phrased as a disjunction (an OR
clause) of one or more conjunctions (an AND clause) of lit-
erals. We can represent conjunction queries by unioning the
indices that represent the literals within, and then pass the
disjunction of those conjunctions to our OR query method.

7. PERFORMANCE
We implemented and tested our secure anonymous search

with various parameters. Unfortunately, we cannot provide
a direct performance comparison to existing systems for a
number of reasons. Firstly, existing protocols for encrypted
search address scenarios different from ours with different
threat models. Secondly, few papers have implementations
of the schemes they propose. Those that do, have not made
their implementations publically available, so we cannot run
them on similar hardware. Thus for the sake of comparison,
we present analytical comparisons in Table 1.

Note that some schemes guarantee both client and server
privacy such as [8, 26, 27], and amongst these some can be
adapted to fit our model where the data is owned by the
server rather than the querier. We denote this with yes*
in the table. These schemes have both high computational
and communication complexities. Schemes like [14] and [9]

Proto- PEKS Logs Enc.S. SSE PKE SADS

col [8] [27] [26] [14] PIR [9]

O(w O(log0.5

1 doc O(w) O(w) O(w) O(1) log3w) FP)
n docs O(nw) O(nw) O(nw) O(n) O(Ln) O(ρn)

comm. O(poly

compl. O(nw) O(nw) O(nw) O(L) log(n)) O(L)

client

priv. yes yes yes yes yes yes

server

priv. yes* yes yes* no no yes

Table 1: Encrypted Search Schemes Comparison: com-

putational complexity for search on one or n docu-

ments each containg w keywords, communication complex-

ity for a single search, the client and server privacy;

L is the number of returned matching results and ρ =

number of BF hash functions/memory block size << 1, 0 <

FP < 1 is the expected false positive rate for the Bloom fil-

ters.

achieve better complexities, however, they assume that the
client is the real owner of the data and use this fact to em-
ploy techniques not applicable to our scenario. For example
the client, knowing the address location of the data, can re-
order it, compute inverted indexes for search, retrieve more
documents than the ones matching the search in order to
guarantee the privacy of the client with respect to the server.

Although we do not have implementations of these sys-
tems for comparison, we implemented our own system in
C++ to demonstrate practicality of use. We ran exper-
iments on a Ubuntu 8.04 Linux PC with a Pentium 4, 3.4
GHz cpu and 2GB of RAM. A variety of corpus sizes from 1K
to 50K were extracted from the Enron Email Dataset, avail-
able at http://www.cs.cmu.edu/~enron/. Each document
was stemmed using the techniques provided by the Clair li-
brary [24], and the stems were inserted into the Bloom filter
index per document. Bloom filter sizes were computed to
give a false positive rate of 0.1% based on the number of
stems we wished to be able to index.

Table 2 shows the time taken to create indexes for each
of our 7 corpuses. The creation time scales roughly linearly
with the corpus size as one would expect. Although expen-
sive, these times are a one-time cost for index creation, and
can further be parallelized if need be. Disk space require-
ment was very low, reaching only 128 Kb for the largest
corpus we indexed. Thus, both time and storage costs are
reasonable for use in real-world applications.

Before running queries, we extracted from the stem set
a subset of query terms, and grouped them by document
frequency within the database. In each experiment, we ran a
total of 100 queries and took the average time to completion
for each query. If we had less than 100 terms to query on,
we cycled through the existing ones, spacing out identical
queries to minimize artificial cache gains. Figure 3 shows

Size 1K 5K 10K 20K 30K 40K 50K
Time 10m 44m 80m 158m 229m 310m 397m

Table 2: Creation times in minutes for indexes on various

corpus sizes

 0

 20

 40

 60

 80

 100

1000 5000 10000 20000 30000 50000

Se
ar

ch
 ti

m
e

in
 m

s

Number of documents in the database

Average Query Search Time for Different Database Sizes

0 Freq
Low Freq
Mid Freq

High Freq

Figure 3: Search Times

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2 Terms 3 Terms 4 Terms 5 Terms

Se
ar

ch
 ti

m
e

in
 m

s

Number of terms in OR query

Average Search Time for OR Query

1000docs
5000docs

10000docs
50000docs

Figure 4: Time vs OR Query Terms

the average time per query plotted against the size of the
corpus the index was computed from. We further show these
curves in relation to four different types of queries based on
frequency of the query terms being searched on. The four
frequency groups used were: 0-Freq - terms which do not
appear anywhere in the corpus; Low Freq - terms which
appear in 1 or 2 documents; Med Freq - terms which appear
in 45-55% of the corpus; High Freq - terms which appear
in all but 1 or 2 of the documents.

As expected, query time grows roughly linearly with an
increase on corpus size, as a larger number of bloom filters
must be queried. There is a noticeable hump in the curve
for the higher two frequency groups when the corpus size
reaches 20K and above. This is likely because a sufficient
number of bit slices is being fetched to fulfill these queries
that no longer remains entirely in cache.

There are minor improvements when running queries on
infrequent terms (in other words, running queries with fewer
results). This culminates in a marked improvement for queries
which return no results. This is due to the fact that the bit-
slice query operation will not need to fetch later bitslices if

 0

 0.2

 0.4

 0.6

 0.8

 1

2 Terms 3 Terms 4 Terms 5 Terms

N-
Te

rm
 q

ue
ry

/N
 s

in
gl

e
qu

er
ie

s

Number of terms in OR query

Ratio of Search Times for One N-Term Query and N Single Queries

1000docs
5000docs

10000docs
50000docs

Figure 5: Ratio of OR Query time vs Individual Queries

portions of the result vector already reveal from earlier in-
dices that certain documents are not matches. Once a full
block of documents is ruled out, we do not fetch slices rep-
resenting later indices from those documents. This is most
pronounced for queries which have no results.

In this and all of our experiments, larger corpus sizes cause
queries to take a little longer, since more Bloom filters and
hence more slices must be checked. However, the relatively
small time differences compared to the size differences indi-
cates that the time spent running Bloom queries is extremely
small compared to other operations such as the exponenti-
ations required to run our encryptions, which do not vary
with corpus size.

Figure 4 shows the average time per query plotted against
OR queries with varying numbers of terms in them. As one
would expect, the larger the number of terms being queried,
the longer it takes to complete a query. Since each term
maintains a distinct result vector, a large number of terms
reduces the probability that documents can be ruled out
early and prevent us from having to fetch later slices.

Figure 5 shows the average time per query plotted against
OR queries as a ratio against the amount of time it would
take to run these queries individually and union the results
afterwards. As we can see the savings are significant, and
grow more so as the number of terms increases. When
running these terms in parallel as an OR query, a slice
fetched remains in memory and can be checked against each
query quickly. When running them separately, they must be
fetched multiple times. As we can also see, this effect grows
less pronounced with larger corpus sizes, since with smaller
corpus sizes there is an increased likelihood that slices will
remain cached from previous runs even while running the
queries individually.

Figure 6 shows the average time per query while varying
the Bloom filter size and keeping the corpus size fixed at 1K.
The Bloom filter sizes were calculated to keep the same 0.1%
false positive rate we were aiming for before while supporting
a varying number of terms to insert into the index per doc-
ument. As one would expect, with larger Bloom filter sizes,
we see an increase in the time per query; however this is still
small in relation to the increase in size. Again, this is be-

local server trans-US Europe
Ping time (ms) 0.227 90.615 110.978

Table 3: Ping Latency

 0

 10

 20

 30

 40

 50

 60

0 Freq Low Freq Mid Freq High Freq

Se
ar

ch
 ti

m
e

in
 m

s

Search Query Frequency in Corpus

Average Query Search Time for Different Sizes BFs

1000_BFCapacity
2000_BFCapacity
3000_BFCapacity
5000_BFCapacity

10000_BFCapacity

Capacity 1k 2k 3k 5k 10k
Size(bits) 16384 32768 65536 131072 262144

Figure 6: Time vs Term Frequency (varying BF size)

cause query time is dwarfed by time spent on cryptographic
operations. In general, query times remained below 100ms
per query, and are acceptably small in relation to what one
would expect for network delays. Table 3 shows network
delays for different typical distances around the world as a
point of comparison.

Furthermore, on long running tests, analysis via gprof re-
vealed that 64.9% of time was spent running cryptographic
operations. For queries, these are run by the client and the
query router, not the index server which would be the bot-
tleneck in a system with many queries coming from various
sources. This technique should thus introduce an acceptable
overhead that makes this a practical system for real world
use.

8. CONCLUSION
We proposed a solution for the problem of secure anony-

mous database search, which addresses the issue of allow-
ing untrusting parties to search each other’s private data
when there are legitimate reasons for this. A major goal
for us is to achieve practical efficiency while still achiev-
ing the maximal security and privacy guarantees that the
efficiency requirement permits. For this purpose we uti-
lized a security architecture with distributed limited trust
among two intermediary parties, which we consider viable
in practical situations where we have authorities regulat-
ing the controlled data sharing without learning any private
information of the participants. We defined a new primi-
tive, re-routable encryption, that we use to implement in-
teractions between the participants in the encrypted search
protocol. To achieve the protocol efficiency we use Bloom
filters as search structures on the ciphertexts produced from
the database keywords with a new private key deterministic
encryption, PH-DSAEP+, necessary to overcome the linear

bound on search complexity. We implement and study the
practical performance of our protocol which demonstrates
search times comparable to average network delay, which
we consider an appropriate measure for usable efficiency.

9. REFERENCES
[1] Adam J. Aviv, Michael E. Locasto, Shaya Potter, and

Angelos D. Keromytis. Ssares: Secure searchable
automated remote email storage. Computer Security
Applications Conference, Annual, 0:129–139, 2007.

[2] Mihir Bellare and Phillip Rogaway. Optimal
asymmetric encryption – how to encrypt with rsa. In
Proceedings of EUROCRYPT’94, 1995.

[3] Steven M. Bellovin and William Cheswick.
Privacy-enhanced searches using encrypted bloom
filters. Technical Report CUCS-034-07, Department of
Computer Science, Columbia University, September
2007.

[4] Matt Blaze, Gerrit Bleumer, and Martin Strauss.
Divertible protocols and atomic proxy cryptography.
In Proceedings of EUROCRYPT’98, 1998.

[5] Burton H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

[6] Burton H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[7] Dan Boneh. Simplified OAEP for the RSA and Rabin
functions. Lecture Notes in Computer Science,
2139:275–291, 2001.

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky,
and Giuseppe Persiano. Public key encryption with
keyword search. In Proceedings of EUROCRYPT’04,
pages 506–522, 2004.

[9] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and
William E. Skeith III. Public key encryption that
allows pir queries. In Proceedings of CRYPTO’07,
2007.

[10] Dan Boneh and Brent Waters. Conjunctive, subset,
and range queries on encrypted data. In the Theory of
Cryptography Conference (TCC, pages 535–554.
Springer, 2007.

[11] Yan cheng Chang and Michael Mitzenmacher. Privacy
preserving keyword searches on remote encrypted
data. In ACNS, volume 3531, 2005.

[12] Benny Chor, Niv Gilboa, and Moni Naor. Private
information retrieval by keywords. Technical Report
TR-CS0917, Dept. of Computer Science, Technion,
1997.

[13] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. Private information retrieval. J. ACM,
45(6):965–981, 1998.

[14] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail
Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In
CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 79–88,
New York, NY, USA, 2006. ACM.

[15] Eiichiro Fujisaki, Tatsuaki Okamoto, David
Pointcheval, and Jacques Stern. Rsa-oaep is secure
under the rsa assumption. J. Cryptol., 17(2):81–104,
2004.

[16] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information
retrieval schemes. Journal of Computer and System
Sciences, 60(3):592–629, 2000.

[17] Eu-Jin Goh. Secure indexes. Cryptology ePrint
Archive, Report 2003/216, 2004.
http://eprint.iacr.org/2003/216/.

[18] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In STOC ’87: Proceedings of
the nineteenth annual ACM symposium on Theory of
computing, pages 218–229, New York, NY, USA, 1987.
ACM.

[19] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

[20] Laura J. Heath. An analysis of the systemic security
weaknesses of the U.S. Navy Fleet Broadcasting
System, 1967–1974, as exploited by CWO John
Walker. Master’s thesis, U.S. Army Command and
General Staff College, 2005.

[21] Markus Jakobsson, Ari Juels, and Paul Syverson.
Universal re-encryption for mixnets. In In Proceedings
of the 2004 RSA Conference, CryptographerÕs track,
pages 163–178. Springer-Verlag, 2004.

[22] A. Boldyareva M. Bellare and A. O’Neill.
Deterministic and efficiently searchable encryption. In
Proceedings of CRYPTO’07, 2007.

[23] Stephen Pohlig and Martin Hellman. An improved
algorithm for computing logarithms overgf(p)and its
cryptographic significance. IEEE Transactions on
Information Theory, 24(1):106–110, 1978.

[24] Dragomir R. Radev, Mark Hodges, Anthony Fader,
Mark Joseph, Joshua Gerrish, Mark Schaller,
Jonathan dePeri, and Bryan Gibson. Clairlib
documentation v1.03. technical report cse-tr-536-07.
University of Michigan. Department of Electrical
Engineering and Computer Science, 2007.

[25] Elaine Shi, John Bethencourt, T-H. Hubert Chan,
Dawn Song, and Adrian Perrig. Multi-dimensional
range query over encrypted data. In SP ’07:
Proceedings of the 2007 IEEE Symposium on Security
and Privacy, pages 350–364, Washington, DC, USA,
2007. IEEE Computer Society.

[26] Dawn Xiaodong Song, David Wagner, and Adrian
Perrig. Practical techniques for searches on encrypted
data. In SP ’00: Proceedings of the 2000 IEEE
Symposium on Security and Privacy, page 44,
Washington, DC, USA, 2000. IEEE Computer Society.

[27] B. Waters, D. Balfanz, G. Durfee, and D. Smetters.
Building an encrypted and searchable audit log. In
NDSS 2004., 2004.

[28] Peter Williams and Radu Sion. Usable pir. In NDSS
2008., 2004.

[29] Peter Williams, Radu Sion, and Bogdan Carbunar.
Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In CCS
’08: Proceedings of the 15th ACM conference on
Computer and communications security, pages
139–148, New York, NY, USA, 2008. ACM.

[30] Andrew Chi-Chih Yao. Protocols for secure
computations. In FOCS, pages 160–164, 1982.

[31] Andrew Chi-Chih Yao. How to generate and exchange

secrets (extended abstract). In FOCS, pages 162–167,
1986.

[32] Justin Zobel and Alistair Moffat. Inverted files versus
signature files for text indexing. ACM Transactions on
Database Systems, 23:453–490, 1998.

APPENDIX
A. RE-ROUTABLE ENCRYPTION

Proof of Theorem 7. First we show that the obtained
reroutable encryption provides S-message security. Assume
that (GEN, ENC,DEC-R ◦ ENC-QR) does not meet the
security definition S. Therefore there exists an adversary
A that can obtain information t about a message m given
ENC(m). Since ENC(m) = ENC′(m) it follows that A is
an adversary against Π that manages to learn information t
about an encrypted message from its ciphertext, which is a
contradiction with the security property of Π.

Second we prove that the reroutable encryption ensures
Sender anonymity w.r.t the receiver. Let q0 and q1 be the
keys of two senders and qr0 = rk

q0
and qr1 = rk

q1
be the

corresponding transformation keys at the third party. Let
m be any message. Now using the group property of Π we
have

ENC-QR(ENCq0(m)) = ENCqr0(ENCq0(m)) =

= ENC′qr0(ENC′q0(m)) = ENC′qr0·q0(m) = ENC′rk(m)

ENC-QR(ENCq1(m)) = ENCtp1(ENCq1(m)) =

= ENC′qr1(ENC′q1(m)) = ENC′qr1·q1(m) = ENC′rk(m)

Therefore the index server will always get the same cipher-
text and cannot guess the user identity with probability non-
negligibly different from 1/2.

B. DET-CCA PRIVATE KEY ENCRYPTION

Proof of Theorem 12 and Corollary 13 . In [7] Boneh
shows how to construct a CCA secure public key encryption
from a trapdoor permutation and the SAEP+ scheme. We
modify this technique to obtain a CCA secure private key
encryption scheme.

The idea of public key scheme is captured in the function-
ality of a trapdoor permutation. The definition of a trapdoor
permutation is a function f which is easy to evaluate, hard
to invert on its own, but easy to invert with the knowledge
of some trapdoor information. Now we consider the Pohlig-
Hellman function from Section 4. The value PHk(x) is hard
to invert without knowledge of k because of the hardness
assumption of the discrete logarithm problem. On the other
hand, given k and PHk(x) it is easy to compute the inverse
k−1 and find m. The only thing left to be able to view
PHk(x) as a trapdoor permutation is to provide a way to
compute easily without knowing k. We can achieve this by
queries to an oracle OPHk that implements the functionality
of PHk(x).

Boneh ([7]) defines the set partial one-wayness problem to
find a set of values that contains the inverse of a given value
produced by a trapdoor function f and connects the security
of the f -SAEP+ to the hardness of solving the onewayness
problem. We translate this result to the case of the Pohlig-
Hellman function.

Definition 16 (PH Set Partial One-wayness Problem).
Let PHk(x) be the Pohlig-Hellman function that is modeled
as a random oracle OPHk and k is secret. We say that
an algorithm A solves the set partial one-wayness problem
(PHk(x), r) if given c = PHk(x) it produces a set S =
{x1, . . . , xr} such that c = PHk(xi) for some 1 ≤ i ≤ r.

Lemma 17. Let A be a (t, qD, qH , qG) chosen ciphertext
attack algorithm in the random oracle model where A runs
in time t, makes qH queries to the oracle H, qG queries to the
oracle G and qD decryption queries of PH-SAEP+ and has
an advantage ε. Then there exists an uniform algorithm B
that solves the set partial one-wayness problem (PHk(x), qH)
with the following time and advantage:

time(B) ≤ time(A) +O(qH + qG + qD)

adv(B) ≤ adv(A)(1− qD/2s0 − qD/2s1)

The proof of the Lemma 17 is analogous to the proof of
Theorem 5 in [7] where the evaluation of the trapdoor func-
tion f are substituted with calls to the random oracle OPHk

implementing the Pohlig-Hellman function.
We now have all the necessary tools for the theorem proof.

Let us assume that there is a (t, qD, qH , qG) chosen cipher-
text adversary A against PH-SAEP+ with advantage ε. By
Lemma 17 we know that there is a t′-time adversary B that
solves the PH set partial one-wayness problem (PHk, qH)
with advantage ε′ for some t′ and ε′. Fujisaki et al. in [15]
demonstrate an algorithm that runs B twice on C∗ and αC∗

for some α and uses the resulting sets S and Sα to compute
the k-th root of C∗ in time O(q2

H) and hence breaks the
PH with probability ε′2. The theorem now follows. And
Corollary 13 also follows.

C. KEY GENERATION FOR OUR SADS PRO-
TOCOL

The key generation algorithm is not our main focus since
general multiparty computation techniques ([18,30,31]) can
be applied to distribute the appropriate keys. However, we
give here an efficient algorithm that allows the sender (S),
the receiver (R) and the query router (QR) to obtain their
keys. The sender and the receiver choose their keys kS and
kR respectively. The sender chooses a random number rS
and the receiver chooses a random number rR; the following
messages are exchanged between the three parties using a
public key encryption scheme (GEN,ENC,DEC) in which
pkQR and pkS are public encryption keys for the third party
and the sender.

S → QR : kS · rS
R→ QR : kR · rR
R→ S : rR

S → QR : rS · r−1
R

At the end of the above message exchange the query router
can compute: kQR = (kR · rR) · (kS · rS)−1 · rS · r−1

R =
(kR) · (kS)−1.
In the above protocol a misbehaving party can cause at most
invalid third party key but it cannot learn any secret. Our
adversarial model assumes no colluding parties during key
generation. If the query router colludes with the sender or
the receiver, they can compute from their keys the key of the
non-colluding party. Collusion between sender and receiver
is not possible since these parties want to protect their data
from each other.

