Chord Segmentation and Recognition using EM-Trained Hidden Markov Models

Sheh, Alexander; Ellis, Daniel P. W.

Automatic extraction of content description from commercial audio recordings has a number of important applications, from indexing and retrieval through to novel musicological analyses based on very large corpora of recorded performances. Chord sequences are a description that captures much of the character of a piece in a compact form and using a modest lexicon. Chords also have the attractive property that a piece of music can (mostly) be segmented into time intervals that consist of a single chord, much as recorded speech can (mostly) be segmented into time intervals that correspond to specific words. In this work, we build a system for automatic chord transcription using speech recognition tools. For features we use "pitch class profile" vectors to emphasize the tonal content of the signal, and we show that these features far outperform cepstral coefficients for our task. Sequence recognition is accomplished with hidden Markov models (HMMs) directly analogous to subword models in a speech recognizer, and trained by the same Expectation-Maximization (EM) algorithm. Crucially, this allows us to use as input only the chord sequences for our training examples, without requiring the precise timings of the chord changes— which are determined automatically during training. Our results on a small set of 20 early Beatles songs show frame-level accuracy of around 75% on a forced-alignment task.


Also Published In

ISMIR 2003
International Symposium on Music Information Retrieval

More About This Work

Academic Units
Electrical Engineering
Published Here
June 29, 2012