Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate

Simpson, Isla R.; Seager, Richard; Ting, Mingfang; Shaw, Tiffany Ann

A critical aspect of human-induced climate change is how it will affect precipitation around the world. Broadly speaking, warming increases atmospheric moisture holding capacity, intensifies moisture transports and makes sub-tropical dry regions drier and tropical and mid-to-high-latitude wet regions wetter. Extra-tropical precipitation patterns vary strongly with longitude, however, owing to the control exerted by the storm tracks and quasi-stationary highs and lows or stationary waves. Regional precipitation change will, therefore, also depend on how these aspects of the circulation respond. Current climate models robustly predict a change in the Northern Hemisphere (NH) winter stationary wave field that brings wetting southerlies to the west coast of North America, and drying northerlies to interior southwest North America and the eastern Mediterranean. Here we show that this change in the meridional wind field is caused by strengthened zonal mean westerlies in the sub-tropical upper troposphere, which alters the character of intermediate-scale stationary waves. Thus, a robust and easily understood model response to global warming is the prime cause of these regional wind changes. However, the majority of models probably overestimate the magnitude of this response because of biases in their climatological representation of the relevant waves, suggesting that winter season wetting of the North American west coast will be notably less than projected by the multi-model mean.

Geographic Areas


Also Published In

Nature Climate Change

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Ocean and Climate Physics
Published Here
August 14, 2017