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Abstract

A Spacetime Alexandrov Theorem

Ye-Kai Wang

Let Σ be an embedded spacelike codimension-2 submanifold in a spherically symmetric

spacetime satisfying null convergence condition. Suppose Σ has constant null mean curva-

ture and zero torsion. We prove that Σ must lie in a standard null cone. This generalizes

the classical Alexandrov theorem which classifies embedded constant mean curvature hyper-

surfaces in Euclidean space. The proof follows the idea of Ros and Brendle. We first derive

a spacetime Minkowski formula for spacelike codimension-2 submanifolds using conformal

Killing-Yano 2-forms. The Minkowski formula is then combined with a Heintze-Karcher type

geometric inequality to prove the main theorem. We also obtain several rigidity results for

codimension-2 submanifolds in spherically symmetric spacetimes.
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Chapter 1

Introduction

1.1 Alexandrov Theorem

The main goal of this work is to study the properties of constant normalized null curvature

(CNNC) surfaces, a generalization of constant mean curvature (CMC) surfaces, in spherically

symmetric spacetimes. We start by reviewing some history and notions of classical theory of

CMC surfaces and general relativity which motivate this work. In this work, all submanifolds

are assumed to be connected.

CMC hypersurfaces arise naturally as the stationary points of the isoperimetric problem

in calculus of variations:

inf
{
Hn−1(Σ) : Σ = ∂Ω,Ω ⊂ Rn is a smooth region with Ln(Ω) = V

}
(1.1)

Here Hn−1 and Ln denote the (n − 1)-dimensional Hausdorff measure and the Lebesgue

measure on Rn.

Definition 1.1. Minimizers of the isoperimetric problem (1.1) are called the isoperimetric

hypersurfaces. A closed CMC hypersurface Σ is stable if Hn−1(Σ)′′ ≥ 0 for any variation that

preserves the enclosed volume.
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It is a natural question to characterize the minimizers and (stable) stationary points of

(1.1). Besides the early work of Delauney on CMC surfaces of revolution in 19th century,

the first breakthrough was made by Alexandrov in 1950’s.

Alexandrov theorem. [1] Let Σ ⊂ Rn be a closed (compact without boundary), embedded

CMC hypersurface. Then Σ is a round sphere.

Alexandrov theorem is remarkable in that it holds in all dimensions and requires no

topological and stable assumptions for the hypersurface. The immersed stable stationary

points were classified by Barbosa-do Carmo.

Theorem 1.2. [2, Theorem 1.3] Let Σ ⊂ Rn be a closed, orientable immersed stable CMC

hypersurface. Then Σ is a round sphere.

There are many proofs of Alexandrov theorem nowadays. Here we present the one, due

to A. Ros, that is the most relevant to us. We start with the classical Minkowski formula.

Theorem 1.3. Let Σ ⊂ Rn be a closed immersed hypersurface. Let X, ν and H be the

position vector, normal vector and the mean curvature of Σ. Then

(n− 1)

∫
Σ

dµ =

∫
Σ

H〈X, ν〉dµ. (1.2)

The next step is a sharp geometric inequality.

Theorem 1.4. Let Σ ⊂ Rn be a closed, embedded hypersurface with positive mean curvature.

Then

∫
Σ

1

H
dµ ≥

∫
Σ

〈X, ν〉dµ. (1.3)

Moreover, the equality holds if and only if Σ is a round sphere.

(1.3) was proved in [26] by Reilly’s formula. Later Ros-Montiel [22] gave another proof

inspired by the paper of Heintze-Karcher.
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For a CMC hypersurface, the Minkowski formula implies

(n− 1)

∫
Σ

1

H
dµ =

∫
Σ

〈X, ν〉dµ.

Hence the equality in (1.3) is achieved and Σ is a round sphere.

It turns out that Ros’ idea generalizes to other rotationally symmetric manifolds. Con-

sider the rotationally symmetric manifold (M, g) with the metric given by

g =
1

f(r)2
dr2 + r2gSn−1

where f : (r0, r1)→ R, called the static potential, is a positive function with limr→r0 f(r) = 0

and limr→r0 f
′(r) > 0. Here r0 > 0 and r1 can be taken to be ∞. The Minkowski formula is

readily generalized to (M, g) thanks to the observation that the position vector of Σ ⊂ Rn

can be replaced by the restriction of the (global) conformal Killing vector r ∂
∂r

to Σ. Since

(M, g) carries a conformal Killing vector X = rf ∂
∂r

, the same proof of Minkowski formula

gives

(n− 1)

∫
Σ

fdµ =

∫
Σ

H〈X, ν〉dµ.

On the other hand, Brendle was able to generalize (1.3) to a large class of rotationally

symmetric manifolds.

Theorem 1.5. [5] Let Σ ⊂ (M, g) be a closed, embedded hypersurface with positive mean

curvature. Suppose f satisfies

(∆gf)g −Hessgf + fRic(g) ≥ 0. (1.4)
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Then

∫
Σ

f

H
dµ ≥

∫
Σ

〈X, ν〉dµ. (1.5)

Moreover, the equality holds if and only if Σ is umbilical.

An important class of rotationally symmetric manifolds arises in general relativity. For

example, the Schwarzschild manifold with mass m given by

gS =
1

1− 2mr2−ndr
2 + r2Sn−1, r ∈ (2m,∞)

satisfies (∆gSf)gS−HessgSf +fRic(gS) = 0. As a consequence, Brendle proves the Alexan-

drov theorem for Schwarzschild manifolds.

Theorem 1.6. [5] Let Σ be a closed embedded CMC hypersurface in Schwarzschild manifold.

Then Σ is a sphere of symmetry.

Another motivation for studying CMC hypersurfaces comes from general relativity. In

general relativity, we study four (more generally, n + 1) dimensional Lorentzian manifolds

(V, ḡ) that satisfy the Einstein equation

Ric(ḡ)− 1

2
R(ḡ)ḡ = 8πT, (1.6)

where T is the stress-energy tensor of matter. When T = 0, (1.6) is called the vacuum

Einstein equation and is equivalent to Ric(ḡ) = 0. Shortly after Einstein posed his equation,

Schwarzschild discovered a solution to the vacuum Einstein equation that describes the

gravitational field outside a static star. The metric of the Schwarzschild spacetime with

mass m

ḡ = −
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2gS2

is static and spherically symmetric. When m = 0, Schwarzschild spacetime reduces to
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Minkowski spacetime. Note that Schwarzschild spacetime has an (n+ 1)-dimensional gener-

alization (found by Tangherlini) with the metric given by

ḡ = −
(
1− 2mrn−2

)
dt2 +

1

1− 2mrn−2
dr2 + r2gSn−1 .

Given a spacelike hypersurface M ⊂ V , the Gauss and Codazzi equation impose con-

straints on the induced metric g and the second fundamental form p of M , called the Einstein

constraint equations:

1

2

(
R(g) + (trgp)

2 − |p|2g
)

= µ (1.7)

∇j (pij − (trgp)gij) = Ji (1.8)

where µ = T (~n, ~n), Ji = T (~n, ∂i) for the unit timelike normal ~n of M .

Definition 1.7. An initial data set consists of a manifold M , a Riemannian metric g and a

symmetric (0,2)-tensor p on M that satisfy (1.7) and (1.8).

It is well-known that the Einstein equation admits an initial value formulation [30, Chap-

ter 10]. Given an initial data set of the vacuum Einstein constraint equation (µ = J = 0),

there exists a spacetime (V, ḡ), called the maximal Cauchy development of (M, g, p), sat-

isfying the vacuum Einstein equation (T = 0) and M is embedded in (V, ḡ) with induced

metric g and second fundamental form p. It is thus natural to study the geometric and

physical problems on the initial data set. For example, in the time-symmetric case, p = 0,

the dominant energy condition reduces to R(g) ≥ 0. Problems motivated by physics provide

interesting geometric questions on Riemannian manifolds with nonnegative scalar curvature.

Recall that we call the t = 0 slice of Schwarzschild spacetime Schwarzschild manifold

with mass m, (Sch, gS). It is useful to express the metric in the conformally flat coordinates

gSij =

(
1 +

m

(n− 1)rn−2

) 4
n−2

δij (1.9)
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Bray initiated the study of isoperimetric surfaces in Schwarzschild manifolds. In [4,

Theorem 8], he proved that in Schwarzschild manifold with m ≥ 0, the spheres of symmetry

are isoperimetric surfaces and any isoperimetric surface must be a sphere of symmetry.

Definition 1.8. An n-dimensional Riemannian manifold (M, g) is Ck-asymptotic to Schwarzschild

of mass m if there exists a bounded open set U ⊂ M such that M \ U ' Rn \ B 1
2

(0), and

such that in the coordinates,

k∑
l=0

rn−2+l|∂l(g − gS)ij| ≤ C for all r ≥ 1

where r =
√∑n

i=1 x
2
i and gSij is given in (1.9).

In their seminal paper [18], Huisken-Yau showed that outside a bounded set, a three-

dimensional Riemannian manifold (M, g) that is C4-asymptotic to Schwarzschild of mass

m > 0 is foliated by strictly stable CMC spheres. Moreover, the leaves of the foliation are

the unique stable CMC spheres within a large class of surfaces. The result is strengthened

in [25, 17, 21]. Finally, Eichmair and Metzger [14] proved the uniqueness of the stable CMC

constructed by Huisken-Yau. More precisely,

Theorem 1.9. [14, Theorem 1.1] Let (M, g) be an n-dimensional Riemannian manifold that

is C2-asymptotic to Schwarzschild of mass m > 0. There exists V0 > 0 such that for every

V ≥ V0 the infimum in

inf{Hn−1
g (∂Ω) : Ω ⊂M is a smooth region with Lng (Ω) = V } (1.10)

is achieved by a unique smooth minimizer (hence isoperimetric) ΣV = ∂ΩV .

CMC surfaces play an important role in studying the conserved quantities of initial data

sets. The first example contains two results on the behavior of the Hawking mass

mH(Σ) =

√
H2(Σ)

16π

(
1− 1

16π

∫
Σ

H2dµ

)
(1.11)
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in a three dimensional time-symmetric initial data set. Christodoulou-Yau [12] showed that

the Hawking mass is nonnegative for stable CMC surfaces. In addition, Bray [4, Lemma 1]

proved that the Hawking mass is non-decreasing along an isoperimetric foliation.

The second example concerns the center of mass.

Definition 1.10. For a three dimensional Riemannian manifold (M, g) that is asymptotic

to Schwarzschild with mass m > 0, the ADM center of mass is defined by, for α = 1, 2, 3,

Cα =
1

16πm
lim
r→∞

[∫
|x|=r

∑
i,j

xα(gij,j − gii,j)
xj

|x|
dH2

δ −
∫
|x|=r

∑
i

(
giα

xi

|x|
− gii

xα

|x|

)
dH2

δ

]
(1.12)

Here dH2
δ denotes the area element with respect to the Euclidean metric.

Huisken-Yau defined a geometric center of mass using the CMC foliation.

Definition 1.11. Let {ΣV }V≥V0 be the CMC foliation constructed by Huisken-Yau. The

Huisken-Yau center of mass is defined by, for α = 1, 2, 3,

CαHY = lim
V→∞

1

H2
δ(ΣV )

∫
ΣV

xαdH2
δ . (1.13)

The expression in (1.13) has the advantage that it is easy to compute once we have a

CMC foliation. Moreover, in [16], Huang proved that the definition of Huisken-Yau coincides

with that of ADM for a wide class of physical relevant asymptotics (see also [14, Theorem

6.1]).

1.2 Statement of the Main Theorem

Codimension-2 submanifolds play a special role in general relativity. Their null expansions

are closely related to gravitation energy as seen in Penrose’s singularity theorem [24] and
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the definition of quasilocal mass [32]. It is desirable to characterize when a codimension-2

submanifold lies in the null hypersurface generated by a round sphere.

Definition 1.12. A null hypersurface in a static spherically symmetric spacetime is called

a standard null cone if it contains a sphere of symmetry in some static time slice.

The main result in this work is a spacetime Alexandrov-type theorem. The CMC condi-

tion for hypersurfaces is replaced by the constant null normalized curvature condition.

Definition 1.13. A spacelike codimension-2 submanifold Σ of an (n+1)-dimensional space-

time is said to have constant normalized null curvature (CNNC) if there exists a future null

normal vector field L̃ such that 〈 ~H, L̃〉 = constant and (DL̃)⊥ = 0.

We give a characterization of spacelike codimension-2 submanifolds in the standard null

cones of the Schwarzschild spacetime.

Main Theorem. Let Σ be a future incoming null smooth (see Definition 4.8) closed em-

bedded spacelike codimension-2 submanifold in the Schwarzschild spacetime. Suppose Σ has

〈 ~H,L〉 = constant and (DL)⊥ = 0 for its future incoming null normal L. Then Σ lies in a

standard null cone.

The main theorem holds for a class of static spherically symmetric spacetimes (see Chap-

ter 4 for precise statement). For simplicity, we state our results on Schwarzschild spacetimes.

We follow Ros’ idea to combine Minkowski formula and a Heintze-Karcher type inequality.

First of all, we derive a spacetime Minkowski formula using conformal Killing-Yano 2-forms

which generalize conformal Killing vectors.

Definition 1.14. [19, Definition 1] Let Q be a 2-form on an (n + 1)-dimensional pseudo-

Riemannian manifold (V, 〈, 〉) with Levi-Civita connection D. Q is said to be a conformal
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Killing-Yano 2-form if

(DXQ)(Y, Z) + (DYQ)(X,Z)

=
2

n

(
〈X, Y 〉〈ξ, Z〉 − 1

2
〈X,Z〉〈ξ, Y 〉 − 1

2
〈Y, Z〉〈ξ,X〉

)
(1.14)

for any tangent vectors X, Y, and Z, where ξβ = (divQ)β = DαQ
αβ.

Schwarzschild spacetime admits a conformal Killing-Yano 2-form Q = rdr ∧ dt with

ξ = −n ∂
∂t
.

We have

Theorem 1.15. Let Σ be a closed immersed oriented spacelike codimension-2 submanifold

in Schwarzschild spacetime. For any normal vector field L of Σ, we have

−(n− 1)

∫
Σ

〈 ∂
∂t
, L〉 dµ+

∫
Σ

Q( ~H,L) dµ+

∫
Σ

Q(∂a, (D
aL)⊥) dµ = 0. (1.15)

Secondly, we show that there is a monotonicity formula, Proposition 4.1, when we evolve

the surface along its incoming null hypersurface. The idea comes from Brendle’s work. In

particular, we learned a preliminary version of the monotonicity formula in Minkowski space-

time from Brendle. As a consequence of the monotonicity formula, we obtain a spacetime

Heintze-Karcher inequality.

Theorem 1.16. Let Σ be a future incoming null smooth closed spacelike codimension-2

submanifold in Schwarzschild spacetime. Suppose 〈 ~H,L〉 > 0 where L is a future incoming

null normal. Then

−(n− 1)

∫
Σ

〈 ∂
∂t
, L〉

〈 ~H,L〉
dµ− 1

2

∫
Σ

Q(L,L)dµ ≥ 0, (1.16)

for a future outgoing null normal L with 〈L,L〉 = −2. Moreover, the equality holds if Σ lies

in a standard null cone.
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The main theorem follows from the spacetime Minkowski formula and the Heintze-

Karcher inequality. Suppose Σ satisfies 〈H,L〉 = constant and (DL)⊥ = 0. Note that

~H = −1
2
〈 ~H,L〉L− 1

2
〈 ~H,L〉L and the Minkowski formula implies

−(n− 1)

∫
Σ

〈 ∂
∂t
, L〉

〈 ~H,L〉
dµ− 1

2

∫
Σ

Q(L,L)dµ = 0.

Hence the equality in the previous theorem is achieved and Σ lies in a standard null cone.

Another natural substitute of CMC condition for higher codimension submanifold is the

notion of parallel mean curvature vector. Yau [33] and Chen[8] proved that a closed immersed

spacelike 2-sphere with parallel mean curvature vector in Minkowski spacetime must be a

round sphere. We are able to generalize their result to Schwarzschild spacetime.

Corollary 1.17. Let Σ be closed embedded spacelike codimension-2 submanifold with par-

allel mean curvature vector in Schwarzschild spacetime. Suppose Σ is both future and past

incoming null smooth. Then Σ is a sphere of symmetry.

Now we describe the organization of this work. In Chapter 2, we set up the notations

and derive the Gauss, Codazzi, and Ricci equations for spacelike codimension-2 submanifolds

in Lorentzian manifolds. In Chapter 3, we derive two spacetime Minkowski formulae. We

discuss how they recover classical Minkowski formulae. The first is the one needed in the

proof of the spacetime Alexandrov theorem. The second one concerns the integral of null

expansions which serves as a measure of gravitational energy. The main theorem is proved

in Chapter 4. We first derive a monotonicity formula. Next we discuss the CNNC condition.

In mean curvature gauge, it can be cast into a single equation. We then flow the submanifold

into the totally geodesic slice where Brendle’s result takes over. We thus get the spacetime

Heintze-Karcher inequality and Alexandrov theorem. The characterization of submanifolds

with parallel mean curvature vector would be a direct consequence. In the final Chapter

5, we discuss three rigidity results on codimension-2 submanifolds in spherically symmetric

spacetimes. First of all, we show that codimension-2 submanifolds in the standard null cone
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is infinitesimally rigid in the sense of CNNC. The result is relevant to the construction of

CNNC foliation in asymptotically Schwarzschild initial data set. Secondly, we show that a

codimension-2 submanifold in the standard null cone with constant mean curvature vector

norm must be a sphere of symmetry. In particular, our argument for the Minkowski space-

time provides a unified proof of the classical Liouville theorem (in 2-dimension) and Obata

theorem (in higher dimension). At last, we show that a codimension-2 submanifold that

has zero connection 1-form in the mean curvature gauge and satisfies a starshaped condition

must lie in a totally geodesic slice. For all results, the energy condition comes in. It is

reminiscent of how positivity of mass supports the uniqueness of CMC foliations.
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Chapter 2

Preliminaries

Let F : (Σn−1, σ) → (V n+1, 〈, 〉) be a closed immersed oriented spacelike codimension-2

submanifold in an oriented (n+1)-dimensional Lorentzian manifold (V n+1, 〈, 〉). We assume

the normal bundle is also orientable. Fix a point p ∈ Σ. We choose a local orthonormal frame

e1, e2, . . . , en, en+1 in V such that, when restricted to Σ, e1, . . . , en−1 are tangent to Σ and

en, en+1 are normal to Σ with 〈en, en〉 = 1, 〈en, en+1〉 = 0, and 〈en+1, en+1〉 = −1. Moreover,

e1∧e2∧· · ·∧en−1, en∧en+1, and e1∧e2∧· · ·∧en−1∧en∧en+1 coincide with the orientation on

TΣ, NΣ, and TV. We also choose a coordinate system {ua| a = 1, 2, · · · , n−1} for Σ near p.

We identify ∂F
∂ua

with ∂
∂ua

, which is abbreviated as ∂a. We use the following convention on the

range of indices: 1 ≤ a, b, c, . . . ≤ n−1, 1 ≤ α, β, γ . . . ≤ n+1 and agree that repeated indices

are summed over the respective ranges. Let D and ∇ denote the Levi-Civita connection of

V and Σ respectively and let R̄αβγδ, R̄αβ, and R̄ (Rabcd, Rab, and R respectively) denote the

Riemann curvature tensor, Ricci curvature, and scalar curvature of V (Σ respectively). Let

hα = hαab ≡ 〈Daeα, ∂b〉 be the second fundamental form with respect to eα, α = n, n+ 1.

We recall the Gauss, Codazzi, and Ricci equations.

Theorem 2.1. Let σ2(hα) denote the second symmetric function of the eigenvalues of hα, α =

n, n+ 1. Let ζa = 〈Daen, en+1〉 be the connection one-form of the normal bundle with respect
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to the corresponding frame. We have

R = R̄− 2R̄nn + 2R̄n+1,n+1 − 2R̄n,n+1,n,n+1 + 2σ2(hn)− 2σ2(hn+1) (2.1)

∇ahnbc −∇bhnac = R̄abcn + ζbhn+1,ac − ζahn+1,bc (2.2)

∇ahn+1,bc −∇bhn+1,ac = R̄abc,n+1 + ζbhnac − ζahnbc (2.3)

R̄ab,n+1,n = (dζ)ab + h c
na hn+1,bc − h c

nb hn+1,ac (2.4)

Proof. For the Gauss equation, we compute

R̄abdc = 〈DaDb∂c, ∂d〉 − 〈DbDa∂c, ∂d〉

= 〈Da(∇b∂c − hnbcen + hn+1,bcen+1), ∂d〉

− 〈Db(∇a∂c − hnacen + hn+1,acen+1), ∂d〉

= Rabdc − hnbchnad + hn+1,bchn+1,ad + hnachnbd − hn+1,achn+1,bd.

Taking trace twice with respect to the induced metric on Σ, we obtain

R− 2 (σ2(hn)− σ2(hn+1)) = σadσbcR̄abdc

= σad(R̄ad − R̄andn + R̄a,n+1,d,n+1)

= R̄− R̄nn + R̄n+1,n+1 − (R̄nn + R̄n+1,n,n+1,n)

+ R̄n+1,n+1 − R̄n,n+1,n,n+1

= R̄− 2R̄nn + 2R̄n+1,n+1 − 2R̄n,n+1,n,n+1.

For the Codazzi equation, we derive

∇ahnbc = 〈DaDben, ∂c〉 − 〈D∇a∂ben, ∂c〉+ 〈Dben, (Da∂c)
⊥〉

where v⊥ denotes the normal component of the vector v. As 〈Dben, (Da∂c)
⊥〉 = ζbhn+1,ac,
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anti-symmetrizing a, b, we obtain

∇ahnbc −∇bhnac = 〈R̄(∂a, ∂b)en, ∂c〉+ ζbhn+1,ac − ζahn+1,bc.

(2.3) is derived similarly. The Ricci equation is derived as follows:

R̄ab,n+1,n = 〈DaDben, en+1〉 − 〈DbDaen, en+1〉

= 〈Da(h
c

nb ∂c − ζben+1), en+1〉 − 〈Db(h
c

na ∂c − ζaen+1), en+1〉

= (dζ)ab + h c
na hn+1,bc − h c

nb hn+1,ac.

Given a spacelike codimension-2 submanifold Σ in a Lorentzian manifold, it is usually

more convenient to take two null normals instead of one spacelike and one timelike nor-

mal. Let L,L be two future-directed null normals along Σ such that 〈L,L〉 = −2. Let

χab = 〈DaL, ∂b〉 and χ
ab

= 〈DaL, ∂b〉 be the corresponding second fundamental form. Let

ζnull(X) = 1
2
〈DXL,L〉 be the torsion of Σ with respect to L,L. When L = en+1 + en and

L = en+1 − en, the torsion is the same as the connection one-form defined in Theorem 2.1.

We omit the subscript null if there is no risk of confusion. We list the Gauss, Codazzi and

Ricci equations in terms of the null frame without proof.

Theorem 2.2.

R̄ + R̄LL +
1

2
R̄LLLL = R + trχtrχ− χabχab,

∇aχbc −∇bχac = R̄abcL + χacζb − χbcζa,

∇aχbc −∇bχac = R̄abcL − χacζb + χ
bc
ζa,

1

2
R̄abLL = (dζ)ab +

1

2

(
χ c
a χcb − χ

c

a
χcb

)
.

To finish the preliminary, we recall the notion of mean curvature gauge from [32].
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Definition 2.3. Let ~H = σab(Da∂b)
⊥ denote the mean curvature vector of Σ. Suppose ~H is

spacelike. We choose eHn = − ~H

| ~H|
and the complementing eHn+1 as the orthonormal frame in

the normal bundle. The connection form with respect to such frame is denoted by

αH(v) = 〈Dve
H
n , e

H
n+1〉.
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Chapter 3

Minkowski formulae

We recall the definition of conformal Killing-Yano 2-forms.

Definition 3.1. [19, Definition 1] Let Q be a two-form on an n + 1-dimensional pseudo-

Riemannian manifold (V, 〈, 〉) with Levi-Civita connection D. Q is said to be a conformal

Killing-Yano 2-form if

(DXQ)(Y, Z) + (DYQ)(X,Z)

=
2

n

(
〈X, Y 〉〈ξ, Z〉 − 1

2
〈X,Z〉〈ξ, Y 〉 − 1

2
〈Y, Z〉〈ξ,X〉

)
(3.1)

for any tangent vectors X, Y, and Z, where ξβ = (divQ)β = DαQ
αβ

In mathematical literatures, conformal Killing-Yano 2-forms were introduced by Tachibana

[29], based on Yano’s work on Killing forms. More generally, Kashiwada introduced the con-

formal Killing-Yano p-forms [20].

The main results of this section are the following two integral formulae.

Theorem 3.2. Let Σ be a closed immersed oriented spacelike codimension-2 submanifold in

an (n + 1)-dimensional Riemannian or Lorentzian manifold V that possesses a conformal



17

Killing-Yano 2-form Q. For any normal vector field L of Σ, we have

n− 1

n

∫
Σ

〈ξ, L〉 dµ+

∫
Σ

Q( ~H,L) dµ+

∫
Σ

Q(∂a, (D
aL)⊥) dµ = 0, (3.2)

where ξ = divQ as in Definition 3.1.

Proof. Let hab = 〈DaL, ∂b〉. Consider the one-form Q = Q(∂a, L)dua on Σ. We derive

divΣQ = ∂aQa −Q(∇a∂a, L)

= (DaQ)(∂a, L) +Q( ~H,L) +Q(∂a, D
aL)

=
n− 1

n
〈ξ, L〉+Q( ~H,L) + habQ

ab +Q(∂a, (D
aL)⊥)

=
n− 1

n
〈ξ, L〉+Q( ~H,L) +Q(∂a, (D

aL)⊥).

The assertion follows by integrating over Σ.

The following is a generalization of the k = 2 Minkowski formula:

Theorem 3.3. Let Σ be a closed immersed oriented spacelike codimension-2 submanifold

in an (n + 1)-dimensional Lorentzian manifold V that possesses a conformal Killing-Yano

tensor Q. Then

n− 2

n

∫
Σ

〈ξ, ~J〉dµ = 2

∫
Σ

(
σ2(hn)− σ2(hn+1)

)
Qn,n+1dµ (3.3)

+

∫
Σ

(
R̄ab

anQb,n+1 − R̄ab
a,n+1Qbn

)
dµ

+

∫
Σ

(
R̄ab

n+1,n − (dζ)ab
)
Qabdµ.

Proof. Consider the divergence quantity on Σ:

∇a

(
[σ1(hn)σab − h ab

n ]Qb,n+1 − [σ1(hn+1)σab − h ab
n+1 ]Qbn

)
. (3.4)
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From the Codazzi equations, we derive

∇a(σ1(hn)σab − h ab
n ) = −R̄ab

an − ζbσ1(hn+1) + ζah
ab

n+1

∇a(σ1(hn+1)σab − h ab
n+1 ) = −R̄ab

a,n+1 − ζbσ1(hn) + ζah
ab
n .

(3.5)

On the other hand,

∇aQb,n+1 = (DaQ)(∂b, en+1)− hnabQn,n+1 +Qbch
c

n+1,a −Qbnζa

∇aQbn = (DaQ)(∂b, en) + hn+1,abQn+1,n +Qbch
c
na −Qb,n+1ζa.

(3.6)

Putting (3.5) and (3.6) together, we get

∇a

(
(σ1(hn)σab − h ab

n )Qb,n+1 − (σ1(hn+1)σab − h ab
n+1 )Qbn

)
= −R̄ab

anQb,n+1

+ (σ1(hn)σab − h ab
n )

(
(DaQ)(∂b, en+1)− hnabQn,n+1 +Qbch

c
n+1,a

)
+ R̄ab

a,n+1Qbn

− (σ1(hn+1)σab − h ab
n+1 ) ((DaQ)(∂b, en) + hn+1,abQn+1,n +Qbch

c
na)

(3.7)

From the definition of conformal Killing-Yano 2-forms,

(σ1(hn)σab − h ab
n )(DaQ)(∂b, en+1) (3.8)

=
1

2
(σ1(hn)σab − h ab

n )((DaQ)(∂b, en+1) + (DbQ)(∂a, en+1))

=
1

n
(σ1(hn)σab − h ab

n )〈ξ, en+1〉σab

=
n− 2

n
〈ξ, σ1(hn)en+1〉.

Similarly,

(σ1(hn+1)σab − h ab
n+1 )(DaQ)(∂b, en) =

n− 2

n
〈ξ, σ1(hn+1)en〉
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By the Gauss and Ricci equations, we have

∇a

(
(σ1(hn)σab − h ab

n )Qb,n+1 − (σ1(hn+1)σab − h ab
n+1 )Qbn

)
(3.9)

= −R̄ab
anQb,n+1 + R̄ab

a,n+1Qbn +
n− 2

n
〈ξ, σ1(hn)en+1 − σ1(hn+1)en〉

− 2σ2(hn)Qn,n+1 + 2σ2(hn+1)Qn,n+1

+Qbc(h
ab

n+1 h c
na − h ab

n h c
n+1,a)

=
n− 2

n
〈ξ, ~J〉 − 2(σ2(hn)− σ2(hn+1))Qn,n+1

− R̄ab
anQb,n+1 + R̄ab

a,n+1Qbn

−
(
R̄ab

n+1,n − (dζ)ab
)
Qab

The assertion follows by integrating over Σ.

If we consider the divergence quantity

∫
Σ

∇a

[ (
trχσab − χab

)
Q(L, ∂b)−

(
trχσab − χab

)
Q(L, ∂b)

]
,

we obtain the Minkowski formula expressed in null frames.

Theorem 3.4. Let Σ be a closed immersed oriented spacelike codimension-2 submanifold

in an (n + 1)-dimensional Lorentzian manifold V that possesses a conformal Killing-Yano

tensor Q. Then

2(n− 2)

n

∫
Σ

〈ξ, ~J〉dµ = −
∫

Σ

(
trχtrχ− χabχab

)
QLLdµ (3.10)

+

∫
Σ

(
R̄ a
b aLQLb − R̄ a

b aLQLb

)
dµ

+

∫
Σ

(
R̄ab

LL − 2(dζ)ab
)
Qabdµ
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3.1 Important special cases

3.1.1 Static spherically symmetric spacetime

We consider the case of static spherically symmetric spacetime and show how (3.3) recovers

a Minkowski formula proved by Brendle and Eichmair [7]. We start with the existence of

conformal Killing-Yano 2-forms on static spherically symmetric spacetimes.

Lemma 3.5. Let (V, ḡ) be an (n + 1)-dimensional static spherically symmetric spacetime

with the metric given by

ḡ = −f 2(r)dt2 +
1

f 2(r)
dr2 + r2gSn−1 . (3.11)

where gSn−1 is the standard metric on Sn−1. Then the two-form Q = rdr ∧ dt satisfies the

conformal Killing-Yano equation (3.1) with ξ = divQ = −n ∂
∂t
.

Proof. The first assertion is proved in appendix A. The second assertion is verified by direct

computation:

ξt = DrQrt +DaQat = nf 2

ξr = ξa = 0

Therefore, ξ = −n ∂
∂t

.

Consider the manifold M = I×Sn−1, where I is an interval, equipped with a Riemannian

metric of the form g = 1
f2(r)

dr2 + r2gSn−1 where gSn−1 is the standard metric on Sn−1. (M, g)

has a conformal Killing vector field X = rf ∂
∂r
. Let Σ be a hypersurface in M. Let en

denote the unit normal to Σ, and let σp denote the p-th elementary symmetric polynomial

in the principal curvatures of Σ. In [7, Proposition 8 and 9], Brendle and Eichmair derive a
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remarkable Minkowski formula

(n− 2)

∫
Σ

fσ1 = 2

∫
Σ

〈X, en〉σ2 +

∫
Σ

Ric(Xᵀ, en) (3.12)

where Xᵀ denotes the tangential component of X on Σ.

Remark 3.6. For the space forms Rn,Hn and Sn+, the upper hemisphere, f(r) = 1, cosh r

and cos r respectively. For a hypersurface Σ in the space forms, (3.12) recovers the second

Minkowski formula

(n− 2)

∫
Σ

fσ1 = 2

∫
Σ

σ2〈X, ν〉,

which can be found in [3].

In the rest of the section, we show that (3.3) recovers (3.12). More precisely, we consider

M as a time slice of the spacetime (V, ḡ) with the metric ḡ = −f 2(r)dt2 + 1
f2(r)

dr2 + r2gSn−1 .

Then Σ can be viewed as a codimension-2 submanifold in V. We show that (3.3) reduces to

(3.12).

It is clear that M is a totally geodesic slice in V and thus hn+1 = 0. Let en be the unit

normal of Σ in M .

First of all, note that the restriction of Q on a spherically symmetric hypersurface van-

ishes. Take X = rf ∂
∂r

, we claim that

Qn,n+1 = 〈X, en〉 and Qb,n+1 = 〈X, eb〉.

By direct computation Qn,n+1 = (rdr ∧ dt)(en, en+1) = 1
f
rdr(en). On the other hand

X = rf ∂
∂r

is dual to 1
f
rdr.

Taking Lemma 3.5 into account, (3.3) is reduced to

−(n− 2)

∫
Σ

〈 ∂
∂t
, ~J〉 = 2

∫
Σ

σ2(hn) +

∫
Σ

R̄ab
anQb,n+1.
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For the left hand side of (3.3), we have

− (n− 2)

∫
Σ

〈 ∂
∂t
, ~J〉 = (n− 2)

∫
Σ

fH.

For the right hand side, we compute

R̄ab
anQb,n+1 =

n−1∑
a,b=1

R̄(ea, eb, ea, en)〈eb, X〉

=
n−1∑
a=1

R̄(ea, X
ᵀ, ea, en)

= RicM(Xᵀ, en),

where the Gauss equation and hn+1 = 0 are used in the last equality.

Putting these together, we obtain

(n− 2)

∫
Σ

fH = 2

∫
Σ

σ2(hn)〈X, en〉+

∫
Σ

RicM(Xᵀ, en)

We thus recover (3.12).

For future reference, we write the Minkowski formula (3.3) on Schwarzschild spacetime

in terms of Q. In view of the curvature formula (B.1) on (n+ 1)-dimensional Schwarzschild

spacetime, we have

R̄ab
an = − nm

rn+2
QabQan −

n(n− 2)m

rn+2
Qb

n+1Qn,n+1,

R̄ab
a,n+1 = − nm

rn+2
QabQa,n+1 −

n(n− 2)m

rn+2
Qb

nQn,n+1,

R̄ab
n+1,n = −n(n− 1)m

rn+2

(
2

3
QabQn+1,n −

1

3
Qa

n+1Q
b
n −

1

3
Qa

nQ
b
n+1

)
.

Proposition 3.7. Let Σ be a closed immersed oriented spacelike codimension-2 submanifold

in the (n + 1)-dimensional Schwarzschild spacetime. Let Q = rdr ∧ dt be the conformal
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Killing-Yano 2-form. Then

n− 2

n

∫
Σ

〈ξ, ~J〉dµ (3.13)

= 2

∫
Σ

(
σ2(hn)− σ2(hn+1)

)
Qn,n+1dµ (3.14)

+

∫
Σ

(
2nm

rn+2
QabQanQb,n+1 +

n(n− 2)m

rn+2

(
−Qb

n+1Qb,n+1 +Qb
nQbn

))
dµ

−
∫

Σ

(
n(n− 1)m

rn+2

(
2

3
QabQn+1,n −

1

3
Qa

n+1Q
b
n −

1

3
Qa

nQ
b
n+1

)
+ (dζ)ab

)
Qabdµ.

3.1.2 The Kerr family

In Boyer-Lindquist coordinates, the metric is given by

ḡ =

(
−1 +

2mr

ρ2

)
dt2 − 2mra sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
dφ2

(3.15)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2mr + a2. In [31], Walker and Penrose discovered a

conformal Killing-Yano 2-form on the Kerr spacetime. In Boyer-Lindquist coordinates, it is

of the form ([19, page 2907-2908] our choice of Y differs from theirs by −1)

Y = r sin θdθ ∧ [adt− (r2 + a2)dφ]− a cos θdr ∧ (dt− a sin2 θdφ).

The dual tensor ∗Y is also a conformal Killing-Yano 2-form

∗Y = a cos θ sin θdθ ∧ [adt− (r2 + a2)dφ] + rdr ∧ (dt− a sin2 θdφ).

We have divY = 0 and div(∗Y ) = −3 ∂
∂t

[19, page 2908]. If we take Q = ∗Y in our Minkowski

formula, we obtain

Theorem 3.8. Let Σ be a spacelike 2-surface in Kerr spacetime. Let Q = a cos θ sin θdθ ∧
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[adt− (r2 + a2)dφ] + rdr ∧ (dt− a sin2 θdφ) be the conformal Killing-Yano 2-form. Then

−
∫

Σ

〈 ∂
∂t
, ~J〉dµ =

∫
Σ

(R + R̄3434)Q34dµ− 8πm (3.16)

−
∫

Σ

(
1

2
R̄ab

34 + (dζ)ab
)
Qabdµ

Proof. For our choice of Q, ξ = −3 ∂
∂t

. From the vacuum Einstein equation, we have

R̄µν
43Qµν = R̄ab

43Qab + 2R̄4b
43Q4b + 2R̄3b

43Q3b + 2R̄43
43Q43

= R̄ab
43Qab − 2R̄ab

a3Q4b − 2R̄ab
4aQ3b + 2R̄3434Q34

= R̄ab
43Qab + 2R̄ab

a3Qb4 − 2R̄ab
a4Qb3 + 2R̄3434Q34.

On the other hand, the Gauss equation implies

R = 2(σ2(hn)− σ2(hn+1))− 2R̄3434.

In view of these equations, the second term R̄ab
anQb,n+1− R̄ab

a,n+1Qbn in equation (3.3) can

be replaced by other terms to get

−
∫

Σ

〈 ∂
∂t
, ~J〉dµ =

∫
Σ

(R + R̄3434)Q34dµ+
1

2

∫
Σ

R̄µν
43Qµνdµ

−
∫

Σ

(
1

2
R̄ab

34 + (dζ)ab
)
Qabdµ

Consider the two-form η = R̄µν
αβQµνdx

αdxβ. The conformal Killing-Yano equation, together

with the vacuum Einstein equation and second Bianchi identity, imply dη = d ∗ η = 0 [19,

section 3.3]. Therefore, the integral
∫

Σ
R̄µν

43Qµνdµ is the same for any two 2-surface bounding

a 3-volume. The assertion follows by evaluating the integral on a sphere with t =constant

and r =constant [19, equation (53)].
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Remark 3.9. We may also arrange the terms to get

−
∫

Σ

〈 ∂
∂t
, ~J〉dµ =

∫
Σ

RQ34dµ− 16πm (3.17)

+

∫
Σ

(
R̄ab

a4Qb3 − R̄ab
a3Qb4

)
dµ−

∫
Σ

(dζ)abQabdµ

When there is no angular momentum, a = 0, Kerr spacetime reduces to Schwarzschild

spacetime. With the curvature formula (B.1), for a spacelike 2-surface Σ in 4-dimensional

Schwarzschild spacetime, we have

−
∫

Σ

〈 ∂
∂t
, ~J〉dµ = 2

∫
Σ

(
σ2(hn)− σ2(hn+1)

)
Qn,n+1dµ−

∫
Σ

(dζ)abQabdµ

+

∫
Σ

2m

r5
QabQa,n+1Qbndµ

+

∫
Σ

m

r5

(
− 3Qb

n+1Qb,n+1 + 3Qb
nQbn + 4QabQab

)
Qn,n+1dµ.

(3.18)
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Chapter 4

A Spacetime Alexandrov Theorem

4.1 A monotonicity formula

In this section, we assume that Σ is a spacelike codimension-2 submanifold with spacelike

mean curvature vector in a Lorentzian manifold V that possesses a conformal Killing-Yano

2-form Q. We fix the sign of Q by requiring ξ := divQ to be past-directed timelike. For

example, we choose Q = rdr ∧ dt on Schwarzschild spacetime. Let L be a future incoming

null normal and L be the null normal vector with 〈L,L〉 = −2. Let ζ(X) := 1
2
〈DXL,L〉 be

the connection one-form.

Define the functional

F(Σ, [L]) =
n− 1

n

∫
Σ

〈ξ, L〉
〈 ~H,L〉

dµ− 1

2

∫
Σ

Q(L,L)dµ. (4.1)

Note that F is well-defined in that it is invariant under the change L→ aL, L→ 1
a
L.

Let C0 denote the future incoming null hypersurface of Σ and extend L arbitrarily to a

future-directed null vector field along C0, still denoted by L. Consider the evolution of Σ
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along C0, F : Σ× [0, T )→ C0 
∂F
∂s

(x, s) = ϕ(x, s)L

F (x, 0) = F0(x).
(4.2)

for some positive function ϕ(x, t).

Proposition 4.1. Let F0 : Σ → V be an immersed oriented spacelike codimension-2 sub-

manifold in a Lorentzian manifold V that satisfies either one of the following assumption

1. V is vacuum (possibly with cosmological constant) and possesses a conformal Killing-

Yano 2-form Q such that ξ 6= 0, or

2. V is static, spherically symmetric and we choose the conformal Killing-Yano 2-form

obtained in Lemma 3.5. Moreover we assume V satisfies the null convergence condition,

that is,

Ric(L,L) ≥ 0 for any null vectorL. (4.3)

Suppose that 〈 ~H,L〉 > 0 on Σ for some future-directed incoming null normal vector field L.

Then F(F (Σ, s)) is monotone decreasing along the flow.

Proof. Suppose DLL = ωL for a function ω. Let χ
ab

= 〈DaL, ∂b〉 be the null second funda-

mental form with respect to L. The Raychadhuri equation [30, (9.2.32)] implies

∂

∂s
〈 ~H,L〉 = ϕ

(
|χ|2 + ω〈 ~H,L〉+Ric(L,L)

)
≥ ϕ

(
|χ|2 + ω〈 ~H,L〉

)
.

(4.4)

On the other hand,

∂

∂s
〈ξ, L〉 = ϕ (〈DLξ, L〉+ ω〈ξ, L〉)
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If V satisfies assumption (1), by [19, equation (19)], we have

〈DLξ, L〉 =
n

n− 1
RaLQ

a
L = 0.

If V satisfies assumption (2), 〈DLξ, L〉 also vanishes since ξ is a Killing vector. By the

Cauchy-Schwartz inequality,

∂

∂s

∫
Σ

〈ξ, L〉
〈 ~H,L〉

dµ = −
∫

Σ

ϕ

[
〈ξ, L〉
(trχ)2

|χ|2 − 〈ξ, L〉
]
dµ (4.5)

≤ − n

n− 1

∫
Σ

ϕ〈ξ, L〉dµ

The evolution of
∫

Σ
Q(L,L)dµ is given by

∂

∂s

∫
Σ

Q(L,L)dµ

=

∫
Σ

[
ϕ (DLQ) (L,L) +Q(D∂sL,L) +Q(L,D∂sL)− ϕQ(L,L)〈 ~H,L〉

]
dµ.

From the conformal Killing-Yano equation (3.1), we derive

(DLQ) (L,L) =
1

n
〈ξ, L〉〈L,L〉 = − 2

n
〈ξ, L〉.

On the other hand, we compute

〈D∂sL,L〉 = −〈L, ϕωL〉

〈D∂sL, ∂a〉 = −〈L,Da(ϕL)〉 = 2∇aϕ− ϕ〈L,DaL〉.
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Putting these calculations together yields

Q(D∂sL,L) +Q(L,D∂sL)− ϕQ(L,L)〈 ~H,L〉

= 2∇aϕQ(∂a, L) + 2ϕQ(∂a, (DaL)⊥) + 2ϕQ( ~H,L)

= 2∇a (ϕQ(∂a, L))− 2(n− 1)

n
ϕ〈ξ, L〉.

Consequently, we obtain

∂

∂s

∫
Σ

Q(L,L)dµ = −2

∫
Σ

〈ξ, L〉dµ. (4.6)

The assertion follows from (4.5) and (4.6).

4.2 A spacetime CMC condition

Hypersurfaces of constant mean curvature (CMC) provide models for soap bubbles, and

have been studied extensively for a long time. A common generalization of this condition

for higher codimension submanifolds is the parallel mean curvature condition. In general

relativity, the most relevant physical phenomenon is the divergence of light rays emanating

from a codimension-2 submanifold. This is called the null expansion in physics literature.

We thus impose constancy conditions on the null expansion of codimension-2 submanifolds.

Definition 4.2. A codimension-2 submanifold of a Lorentz manifold is said to have constant

normalized null curvature (CNNC) if there exists a future null normal vector field l such that

〈 ~H, l〉 is a constant and (Dl)⊥ = 0.

The CNNC condition can be written as a single equation on the connection one-form in

mean curvature gauge.

Proposition 4.3. Suppose the mean curvature vector field ~H of Σ is spacelike.
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1. If 〈 ~H,L〉 = c < 0 and (DL)⊥ = 0 for some future outward null normal L and some

negative constant c, then αH = −d log | ~H|.

2. If 〈 ~H,L〉 = c > 0 and (DL)⊥ = 0 for some future inward null normal L and some

positive constant c, then αH = d log | ~H|

Proof. Recall that the dual mean curvature vector ~J is future timelike. For (1), the condition

〈 ~H,L〉 = c < 0 is equivalent to

L =
−c
| ~H|

(
−

~H

| ~H|
+

~J

| ~H|

)
.

Choose L = | ~H|
−c

(
~H

| ~H|
+

~J

| ~H|

)
such that 〈L,L〉 = −2. Since (DL)⊥ = 0, we have

0 =
1

2
〈DaL,L〉 =

1

2
∂a

(
−c
| ~H|

)
| ~H|
−c

(−2) +

〈
Da

(
−

~H

| ~H|

)
,
~J

| ~H|

〉

= ∂a log | ~H|+

〈
Da

(
−

~H

| ~H|

)
,
~J

| ~H|

〉

Hence αH = −d log | ~H|. (2) is proved similarly.

When Σ lies in a totally geodesic time slice of a static spacetime, CNNC reduces to the

CMC condition.

4.3 A Heintze-Karcher type inequality

In this and the next sections, we study a class of static spacetimes in which the warped

product manifolds considered in [6] are embedded as totally geodesic slices.

Assumption 4.4. We assume V is a spacetime that satisfies the null convergence condition
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(4.3) and the metric ḡ on V = R×M is of the form

ḡ = −f 2(r)dt2 +
1

f 2(r)
dr2 + r2gN . (4.7)

where (N, gN) is a compact n-dimensional Riemannian manifold. We consider two cases.

(i) f : [0, r1)→ R with f(0) = 1, f ′(0) = 0, and f(r) > 0 in the domain.

(ii) f : [r0, r1)→ R with f(r0) = 0 and f(r) > 0 for r > r0.

Here r1 can be ∞.

In case (ii), V contains an event horizon H = {r = r0}.

Remark 4.5. Assumption 4.4 covers basic examples of static spherically spacetimes. Tak-

ing f 2 = 1 + κr2, we obtain the spacetimes with constant sectional curvature: Minkowski

spacetime (κ = 0), anti de-Sitter spacetime (κ > 0), and de-Sitter spacetime (κ < 0). Taking

f 2 = 1− 2m
rn−2 + q2

r2n−4 , we obtain Reissner-Nordstrom spacetime with mass m and charge q.

Lemma 4.6. Let (M, g) be a time slice in V . The null convergence condition of (V, ḡ)

implies that

(∆gf)g − Hessgf + fRic(g) ≥ 0 (4.8)

on M .

Proof. O’Neill’s formula in our case reduces to (see [13, Proposition 2.7])

Ric(ḡ)(v, w) = Ric(g)(v, w)− Hessgf(v, w)

f

Ric(ḡ)(v,
∂

∂t
) = 0

Ric(ḡ)(
∂

∂t
,
∂

∂t
) = −∆gf

f
ḡ(
∂

∂t
,
∂

∂t
)
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for any tangent vectors v and w on M . Given a unit tangent vector v on M , we form a null

vector L = 1
f
∂
∂t

+ v in the spacetime. Null convergence condition implies that

0 ≤ Ric(ḡ)(L,L)

=
∆gf

f
+ Ric(g)(v, v)− Hessgf(v, v)

f

as claimed.

As in section 3.2, we denote the conformal Killing vector field X on (M, g) by X = rf ∂
∂r

.

In [6], Brendle proves a Heintze-Karcher-type inequality for mean convex hypersurfaces in

(M, g). In our context, it is as the follows:

Theorem 4.7. [6] Let S be a smooth, closed, embedded, orientable hypersurface in a time

slice of a spacetime V that satisfies Assumption 4.4 . Suppose that S has positive mean

curvature H > 0 in the slice. Then

(n− 1)

∫
S

f

H
dµ ≥

∫
S

〈X, ν〉, (4.9)

where ν is the outward unit normal of S in the slice and X = rf ∂
∂r

is the conformal Killing

vector field on the slice. Moreover, if equality holds, then S is umbilical.

Proof. We first remark that since S is embedded and orientable, S is either null-homologous

or homologous to {r0}×N . Hence ∂Ω = S or ∂Ω = S −{r0}×N for some domain Ω ⊂M .

Inequality (4.9) is equivalent to the one in Theorem 3.5 and the one in Theorem 3.11 of

Brendle’s paper in the respective cases. For the reader’s convenience, we trace Brendle’s

argument leading to (4.9).

The assumptions on (M, g) are listed in page 248:

RicN ≥ (n− 2)ρgN (4.10)
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and (H1)-(H3) (note that condition (H4) is not used in the proof of (4.9)). While Brendle

writes the metric in geodesic coordinates

dr̄ ⊗ dr̄ + h2(r̄)gN ,

it is equivalent to ours by a change of variables r = h and f = dh
dr̄

. As explained in the

beginning of section 2 (page 252), (H1) and (H2) are equivalent to our assumptions (i) and

(ii) on f . In Proposition 2.1, (4.10) and (H3) together imply that (4.8) holds on (M, g).

The condition (4.8) turns out to be the only curvature assumption necessary to get (4.9).

More precisely, (4.8) is used to prove the key monotonicity formula, Proposition 3.2 (page

256). Inequality (4.9) is a direct consequence of Proposition 3.2 up to several technical

lemmata, Lemma 3.6 to Corollary 3.10, in which only assumptions (H1) and (H2) are used.

Finally, the inequalities appear in Theorem 3.5 and Theorem 3.11 are equivalent to (4.9)

by divergence theorem.

Before stating the spacetime Heintze-Karcher inequality, we define the notion of future

incoming null smoothness and shearfree null hypersurface.

Definition 4.8. A closed, spacelike codimension-2 submanifold Σ in a static spacetime

V is future(past) incoming null smooth if the future(past) incoming null hypersurface of

Σ intersects a totally geodesic time-slice MT = {t = T} ⊂ V at a smooth, embedded,

orientable hypersurface S.

Definition 4.9. An incoming null hypersurface C is shearfree if there exists a spacelike

hypersurface Σ ⊂ C such that the null second fundamental form χ
ab

= 〈DaL, ∂b〉 of Σ with

respect to some null normal L satisfies χ
ab

= ϕσab for some function ϕ.

Note that being shearfree is a property of the null hypersurface. See [27, page 47-48]

Theorem 4.10. Let V be a spacetime as in Assumption 4.4. Let Σ ⊂ V be a future incoming

null smooth closed spacelike codimension-2 submanifold with 〈 ~H,L〉 > 0 where L is a future
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incoming null normal. Then

−(n− 1)

∫
Σ

〈 ∂
∂t
, L〉

〈 ~H,L〉
dµ− 1

2

∫
Σ

Q(L,L)dµ ≥ 0, (4.11)

for a future outgoing null normal L with 〈L,L〉 = −2. Moreover, the equality holds if Σ lies

in a shearfree null hypersurface.

Proof. We could arrange ϕ in (4.2) such that ω ≥ 0 and that F (Σ, 1) = S, the smooth

hypersurface defined in the previous definition. We first claim that S ⊂ MT has positive

mean curvature, H > 0. Recall that Raychadhuri equation implies

∂

∂s
〈 ~H,L〉 = ϕ

(
|χ|2 + ω〈 ~H,L〉+Ric(L,L)

)
≥ ϕ

(
|χ|2 + ω〈 ~H,L〉

)
,

(4.12)

and hence 〈 ~H,L〉 > 0 on S. We choose L = 1
f
∂
∂t
− en on S, where en is the outward unit

normal of S with respect to Ω, and compute

〈
~H,

1

f

∂

∂t
− en

〉
= H.

The claim follows since the positivity of 〈 ~H,L〉 is independent of the scaling of L. Next we

choose L = 1
f
∂
∂t

+ en on S and compute

−
〈
∂

∂t
,

1

f

∂

∂t
− en

〉
= f

Q

(
1

f

∂

∂t
+ en,

1

f

∂

∂t
− en

)
= 2〈X, en〉.

Since (V, ḡ) is static and satisfies the null convergence condition, the monotonicity formula,
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Corollary 4.1, together with (4.9) imply

− (n− 1)

∫
Σ

〈 ∂
∂t
, L〉

〈 ~H,L〉
dµ− 1

2

∫
Σ

Q(L,L)dµ (4.13)

≥ −(n− 1)

∫
F (Σ,1)

〈 ∂
∂t
, L〉

〈 ~H,L〉
dµ− 1

2

∫
F (Σ,1)

Q(L,L)dµ

= (n− 1)

∫
S

f

H
dµ−

∫
S

〈X, en〉dµ

≥ 0.

Moreover, if the equality holds, then S is umbilical. Hence the future incoming null hyper-

surface from Σ is shearfree.

4.4 A Spacetime Alexandrov Theorem

We state our main result.

Theorem 4.11. Let V be a spherically symmetric spacetime as in Assumption 4.4 and Σ

be a future incoming null smooth, closed, embedded, spacelike codimension-2 submanifold in

V . Suppose Σ has CNNC with respect to L and 〈 ~H,L〉 > 0. Then Σ lies in a shearfree null

hypersurface.

Proof. Write ~H = −1
2
〈 ~H,L〉L − 1

2
〈 ~H,L〉L. From CNNC assumption, (DaL)⊥ = 0, the

spacetime Minkowski formula (3.2) becomes

−(n− 1)

∫
Σ

〈 ∂
∂t
, L〉dµ− 1

2

∫
Σ

〈 ~H,L〉Q(L,L) = 0

Again from CNNC assumption, 〈 ~H,L〉 is a positive constant function and we can divide

〈 ~H,L〉 on both sides to get

−(n− 1)

∫
Σ

〈 ∂
∂t
, L〉

〈 ~H,L〉
dµ− 1

2

∫
Σ

Q(L,L)〉dµ = 0.
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Hence the equality is achieved in the spacetime Heintze-Karcher inequality (4.11) and we

conclude that Σ lies in a shearfree null hypersurface.

An example of the spacetime satisfying Assumption 4.4 is the exterior Schwarzschild

spacetime for which the metric has the form

ḡ = −(1−mr2−n)dt2 +
1

1−mr2−ndr
2 + r2Sn−1.

Since the spheres of symmetry are the only closed umbilical hypersurfaces in the totally

geodesic time slice of Schwarzschild spacetimes [6, Corollary 1.2], we obtain

Theorem 4.12 (Theorem B). Let Σ be a future incoming null smooth closed embedded

spacelike codimension-2 submanifold in Schwarzschild spacetime. Suppose Σ is CNNC with

respect to L and 〈 ~H,L〉 > 0. Then Σ lies in a null hypersurface of symmetry.

Corollary 4.13. Let Σ be a closed embedded spacelike codimension-2 submanifold with par-

allel mean curvature vector in Schwarzschild spacetime. Suppose Σ is both future and past

incoming null smooth. Then Σ is a sphere of symmetry.

Proof. The condition of parallel mean curvature vector implies | ~H| is constant and αH van-

ishes. The previous theorem implies Σ is the intersection of one incoming and one outgoing

null hypersurface of symmetry. Therefore, Σ is a sphere of symmetry.
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Chapter 5

Rigidity Results

In this chapter, we prove various rigidity results. We consider (n + 1)-dimensional static

spherically symmetric spacetimes (V, ḡ) satisfying Assumption 4.4 and the null convergence

condition.

We first discuss the equivalence of null convergence condition and the differential inequal-

ity

f 2 − 1

r2
− ff ′

r
≤ 0. (5.1)

When the equality of (5.1) holds, we can solve the ODE to conclude that (V, ḡ) has

constant sectional curvature. See Remark 4.5.

Lemma 5.1. Assumption (5.1) is equivalent to null convergence condition.

Proof. We consider the inequality rn−1ff ′ + rn−2(1− f 2) ≥ 0, which is equivalent to (5.1).

Since we have rn−1ff ′ + rn−2(1 − f 2) ≥ 0 at r = 0 or r = r0, it suffices to check that the

quantity has nonnegative derivative.

Let e1 be a unit tangent vector on the sphere of symmetry. Null convergence condition



38

implies that

0 ≤ Ric

(
1

f

∂

∂t
+ e1,

1

f

∂

∂t
+ e1

)
= (n− 3)

ff ′

r
+

1

2
(f 2)′′ + (n− 2)

1

r2
(1− f 2).

On the other hand,

(
rn−1ff ′ + rn−2(1− f 2)

)′
= rn−1

[
(n− 3)

ff ′

r
+

1

2
(f 2)′′ + (n− 2)

1

r2
(1− f 2)

]
≥ 0,

This completes the proof.

Remark 5.2. Assumption (5.1) is equivalent to assumption (H4) in [6]. Indeed, for metric

g = 1
f2
dr2 + r2gS2 , one has Ric(ν, ν) = −(n−1)ff

′

r
and Ric(e1, e1) = (n−2)1−f2

r2
− ff ′

r
where

ν and e1 are unit normal and unit tangent vector of the sphere of symmetry with areal radius

r. Assumption (5.1) thus means that the Ricci curvature is smallest in the radial direction.

5.1 Infinitesimal Rigidity of CNNC surfaces

We first verify directly that surfaces in the standard null cone are CNNC surfaces and then

show that CNNC condition is infinitesimally rigid.

It is convenient to work in the Eddington-Finkelstein coordinates. Let r∗ =
∫

dr
f2

be the

tortoise coordinate and v = t+r∗, w = t−r∗ be the advanced and retarded time. The metric

in Eddington-Finkelstein coordinates is written as [15, page 153]

ḡ = −f 2dvdw + r2gSn−1 .

We compute the Christoffel symbols of ḡ:

Γbav =
1

r

∂r

∂v
δba

Γvvv =
∂ log f

∂v
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The outgoing standard null cones are defined by w = constant. For a spacelike hypersurface

in the standard null cone, we write it as a graph over the sphere of symmetry. That is, the

embedding of Σ is given by F (θa) = (v(θa), w = constant, θa) where θa are coordinates on

Sn−1. Since t = r∗+ constant on standard null cones, we can write r(x) = r(v(x)) for points

on standard null cones. From now on we view the restriction of coordinate functions v and

r on Σ as functions on Σ.

Lemma 5.3. Let Σ be a spacelike hypersurface in the outgoing standard null cone in (V, ḡ).

Then Σ has CNNC, i.e. αH = −d log | ~H|. In particular, the intersection of a standard light

one and a spacelike hypersurface has CNNC.

Proof. The tangent vectors are given by ∂F
∂θa

= ∂v
∂θa

∂
∂v

+ ∂
∂θa
. Let L = ϕ(v) ∂

∂v
be a null normal

of Σ where ϕ(v) = 2r
f2

. We have

D ∂F
∂θa
L = ϕ′

∂v

∂θa
∂

∂v
+ ϕ

(
∂v

∂θa
D ∂

∂v

∂

∂v
+D ∂

∂θa

∂

∂v

)
= ϕ′

∂v

∂θa
∂

∂v
+ ϕ

∂v

∂θa
∂ log f

∂v

∂

∂v
+ ϕ

f 2

2r

∂

∂θa

=

(
ϕ′ + ϕ

∂ log f

∂v

)
∂v

∂θa
∂

∂v
+

∂

∂θa

=

(
2 ∂r
∂v
f 2 − 2r ∂f

2

∂v

f 4
+

2r

f 2

∂ log f

∂v

)
∂v

∂θa
∂

∂v
+

∂

∂θa

=
2

f 2

∂r

∂v

∂v

∂θa
∂

∂v
+

∂

∂θa

=
∂F

∂θa
.

Hence 〈 ~H,L〉 = −2. Let L be the null normal complement to L such that 〈L,L〉 = −2. It is

straightforward to show that

L =
1

r

(
2
∂

∂w
+ f 2∇v − f 2

2
|∇v|2 ∂

∂v

)
. (5.2)
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Here ∇ denote the gradient on Σ. We have

~H = L+ ψL

~J = L− ψL

where | ~H|2 = −4ψ. The connection one-form is given by

(αH)a = 〈Da

(
−

~H

| ~H|

)
,
~J

| ~H|
〉

= − 1

| ~H|2
〈Da(L+ ψL), L− ψL〉

= −∂a log | ~H|.

This completes the proof of the lemma

Let Σ be a spacelike hypersurface in the standard null cone given by F (θa) = (v(θa), w =

constant, θa) with null normals

L =
2r

f 2

∂

∂v

L =
1

r

(
2
∂

∂w
+ f 2∇v − f 2

2
|∇v|2 ∂

∂v

)
.

Consider the incoming null hypersurface C(Σ) of Σ. Extend L and L to C(Σ) such that

DLL = 0 and 〈L,L〉 = −2. Since CNNC is preserved for variation of Σ in the standard

null cone, we focus on variations of Σ in C(Σ) when we discuss the infinitesimal rigidity of

CNNC. Let F (x, s) : Σ× [0, ε)→ C(Σ) be a variation of Σ. Let ∂
∂s

= ∂F
∂s

(x, 0) = u(x)L and

L(s) = ψ(x, s)L,L = 1
ψ
L be the null normals of F (Σ, s).
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Definition 5.4. We say F (x, s) is an infinitesimal CNNC variation if

∂

∂s

∣∣∣
s=0

∂atrχ = 0

∂

∂s

∣∣∣
s=0
〈DaL(s), L(s)〉 = 0.

(5.3)

We show that (5.3) can be written as a scalar equation of u. First of all, we compute the

variation of L.

〈D∂sL(s), ∂a〉
∣∣
s=0

= −〈L,Da(uL)〉 = 2∇au, (5.4)

〈D∂sL(s), L(s)〉
∣∣
s=0

= −〈L, ψ′L〉 = 2ψ′, (5.5)

where ψ′ = ∂ψ
∂s

(x, 0). We have

∂

∂s

∣∣∣
s=0

∂atrχ = ∂a
(
−utrχ+ 2∆u− 2ψ′ + uσabR̄(L, ∂a, ∂b, L)

)
(5.6)

∂

∂s

∣∣∣
s=0
〈DaL(s), L(s)〉 = 2χ

ab
∇bu+ uR̄(L, ∂a, L, L)− 2∇aψ

′ (5.7)

By (B.2), we have

σabR̄(L, ∂a, ∂b, L) = −2(n− 1)
ff ′

r
and R̄(L, ∂a, L, L) =

4

r
∇ar

(
−(ff ′)′ +

ff ′

r

)
.

Equation (5.3) is equivalent to

−∇a(utrχ)+2∇a∆u− 2(n− 1)∇a

(
ff ′

r
u

)
− (n− 1)χ

ab
∇bu− 2(n− 1)u

∇ar

r

(
(ff ′)′ − ff ′

r

)
= 0 (5.8)

When the lapse u is a constant multiple of r, it means that Σ is infinitesimally moved to

neighboring standard null cones. Therefore we have the following definition.

Definition 5.5. A surface in the (outgoing) standard null cone is said to be infinitesimally
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CNNC rigid if all the solutions of (5.8) are a constant multiple of r unless (V, ḡ) has constant

sectional curvature and the deformation comes from a boost.

Theorem 5.6. Let Σ be a spacelike hypersurface in the standard null cone of a static spher-

ically symmetric spacetime satisfying Assumption 4.4 and null convergence condition. Then

Σ is infinitesimally CNNC rigid.

Proof. It is straightforward to show that r is a solution of (5.8). We replace u by u · r in

(5.8) to get

−∇a(urtrχ)−2(n− 1)∇a

(
ff ′

r
ur

)
+ 2∇a(∆(ur))

+ 2(n− 1)u∇ar

(
(ff ′)′ − ff ′

r

)
− (n− 1)χ

ab
∇b(ur) = 0 (5.9)

It suffices to show that u = constant is the only solution of (5.9). On Σ, we have

χ
ab

= − 1

r2

(
(f 2 + |∇r|2)σab − 2r∇a∇br

)
, (5.10)

trχ =
1

r2

(
(n− 1)

(
f 2 + |∇r|2

)
− 2r∆r

)
. (5.11)

Combining (5.10) and (5.11) and the fact that r is a solution of (5.8), we have

0 =
n− 1

r
(f 2 + |∇r|2)∇au− 2(n− 1)ff ′∇au+ 2∇a(∆u · r + 2∇bu∇br)

+
n− 1

r

(
(f 2 + |∇r|2)σab − 2r∇a∇br

)
∇bu

= 2(n− 1)

(
f 2 + |∇r|2

r
− ff ′

)
∇au+ 2∇a(∆u · r) + 4∇a∇bu∇br

+ 4∇bu∇a∇br − 2(n− 1)∇a∇br∇bu.

Note that the induced metric of Σ is conformal to the standard metric on Sn−1: σ = r2σ̃.
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We rewrite the equation in terms of σ̃:

0 = (n− 1)

(
f 2

r
− ff ′

)
∇̃au+ ∇̃a

(
∆̃u

r

)
+ (n− 1)∇̃a∇̃bu

∇̃br

r2

Following the suggestion of Po-Ning Chen [9], we multiply the equation by rn−1∇̃au and

integrate over Σ to get

0 =

∫
Σ

[
(n− 1)rn−2(f 2 − rff ′)|∇̃u|2 + rn−2∇̃a∆̃u∇̃au− 1

n− 2
∆̃u∇̃a(r

n−2)∇̃au

+
n− 1

n− 2
∇̃a∇̃bu∇̃b(rn−2)∇̃au

]√
σ̃dx

=

∫
Σ

[
(n− 1)rn−2

(
f 2 − 1− rff ′

)
|∇̃u|2 − n− 1

n− 2
rn−2

(
|∇̃2u|2 − 1

n− 1
(∆̃u)2

)]√
σ̃dx.

Note that |∇̃2u|2 − 1
n−1

(∆̃u)2 =
∣∣∣∇̃2u− 1

n−1
(∆̃u)σ̃

∣∣∣2. Hence u = constant is the only so-

lution unless (V, ḡ) has constant sectional curvature and u = a + bx̃ where x̃ is some first

eigenfunction on (Sn−1, σ̃).

5.2 A Generalization of Liouville Theorem and Obata

Theorem

We first review the Liouville theorem in conformal geometry. The stereographic projection

identifies S2 ⊂ R3 and C

z =
x1 + ix2

1− x3

.

Fractional linear transformations

w =
az + b

cz + d
, ad− bc = 1
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on C provide a family of conformal transformations on S2. Liouville theorem says that all

conformal transformations on S2 arise in this way.

Under a conformal transformation, the canonical metric on S2 is changed by a conformal

factor

1

(1 + |w|2)2
|dw|2 =

1

(|cz + d|2 + |az + b|2)2
|dz|2 = r2 1

(1 + |z|2)2
|dz|2,

and the conformal factor satisfies

1

r
=
|cz + d|2 + |az + b|2

1 + |z|2

=
(|a|2 + |c|2)|z|2 + |b|2 + |d|2 +Re

(
z(ab̄+ cd̄)

)
1 + |z|2

= (|a|2 + |b|2 + |c|2 + |d|2) +Re(ab̄+ cd̄)x1 + Im(ab̄+ cd̄)x2 + (|a2|+ |c|2 − |b|2 − |d|2)x3.

On the other hand, we have equation of constant Gauss curvature equation on S2

∆̃w + Ee2w = 1 (5.12)

where E is a positive constant and ˜ denotes the operator with respect to the standard metric

on S2. Let r = ew and (5.12) becomes

1− ∆̃ ln r = Er2. (5.13)

From the above discussion Liouville theorem is equivalent to saying all solutions of (5.13)

are of the form a
1−ϕ where a is some constant and ϕ is some first eigenfunction of ∆̃.

We now present an analytical proof of this fact. Let u = 1
r
. The equation becomes

u2 + u∆̃u− |∇̃u|2 = E. (5.14)
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(5.14) is equivalent to

∆̃
(
u2 + u∆̃u− |∇̃u|2

)
= 0.

By the Bochner formula, we have

2u∆̃u+ (∆̃u)2 + u∆̃2u− 2|∇̃2u|2 = 0,

which is equivalent to

u · ∆̃(∆̃ + 2)u− (u11 − u22)2 = 0.

The maximum principle implies that (∆̃ + 2)u doesn’t have a local maximum unless it is a

constant function.

The constant Gauss curvature equation has an interpretation in the geometry of Minkowski

spacetime. Let Σ ⊂ R3,1 be a spacelike topological 2-sphere in the outgoing standard null

cone. Suppose Σ is given by the embedding F : S2 → R3,1, F (θ, φ) = (r(θ, φ), r(θ, φ), θ, φ).

Then the induced metric of Σ is r2σ̃ and the norm of the mean curvature vector of Σ is

given by | ~H|2 = 1
r2

(
1− ∆̃ ln r

)
. Hence having constant Gauss curvature is the same as hav-

ing constant mean curvature vector norm for surfaces in the standard null cone. Liouville

theorem says those surfaces can only arise as the intersection of the standard null cone and

hyperplanes.

We could generalize the Liouville theorem to Schwarzschild spacetime.

Theorem 5.7. Let Σ be a spacelike topological 2-sphere in the standard null cone in Schwarzschild

spacetime. Suppose the mean curvature vector of Σ has constant norm. Then Σ is a sphere

of symmetry.
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Proof. The equation becomes

(1− 2m

r
)− ∆̃ ln r = Er2 (5.15)

The same argument applying to u = 1
r

leads to

u · ∆̃(∆̃ + 2− 3mu)u− 6mu2|∇̃u|2 − (u11 − u22)2 = 0. (5.16)

Maximum principle implies that u is a constant function.

Po-Ning Chen [10] generalizes the above theorem to (n+1)-dimensional static spherically

symmetric spacetimes.

Theorem 5.8. Let Σ be a spacelike hypersurface in the standard null cone of a static spher-

ically symmetric spacetime (V, ḡ) satisfying Assumption 4.4 and null convergence condition.

Suppose the mean curvature vector of Σ has constant norm. Then Σ is a sphere of symmetry

unless (V, ḡ) has constant sectional curvature and Σ is the intersection of a totally geodesic

slice and standard null cone.

Proof. With our choice of L and L, trχ = n− 1. Since | ~H|2 = trχtrχ, the equation we want

to investigate is

E =
1

r2

(
(n− 1)(f 2 + |∇r|2)− 2r∆r

)
(5.17)

for some constant E. As in the proof of infinitesimal CNNC rigidity, we express the equation

with respect to the standard metric σ̃ on Sn−1 and let u = 1
r
. We obtain

E =
1

r2

(
(n− 1)

(
f 2 +

|∇̃r|2

r2

)
− 2r

(
∆̃r

r2
+ (n− 3)

|∇̃r|2

r3

))
= u2

(
(n− 1)f 2 − (n− 1)

|∇̃u|2

u2
+

2

u
∆̃u

)
.
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Taking ∆̃ and using the Bochner formulas we get

0 = ∆̃
(
(n− 1)f 2u2

)
− 2(n− 1)

(
|∇̃2u|2 − 1

n− 1
(∆̃u)2

)
− (2n− 6)∇̃∆̃u · ∇̃u

− 2(n− 1)(n− 2)|∇̃u|2 + 2u∆̃2u.

We multiply u2−n and integrate by parts over Σ to get

0 =

∫
Σ

[
(n− 1)(n− 2)

un−1
∇̃a

(
f 2u2

)
∇̃au− 2(n− 1)

un−2

(
|∇̃2u|2 − 1

n− 1
(∆̃u)2

)

− 2(n− 1)(n− 2)

un−2
|∇̃u|2

]
√
σ̃dx

=

∫
Σ

[
(n− 1)(n− 2)

un−1

(
−(f 2)′ +

2

r
(f 2 − 1)

)
|∇̃u|2

− 2(n− 1)

un−2

∣∣∣∣∇̃2u− 1

n− 1
(∆̃u)σ̃

∣∣∣∣2
]
√
σ̃dx

Hence u = constant is the only solution unless f2−1
r2
− ff ′

r
= 0 and u = a + bx̃ where x̃ is

some first eigenfunction on (Sn−1, σ̃).

We observe that the argument above gives a new proof of the Obata Theorem [23].

Theorem 5.9. Suppose (Σn, σ) is a closed Einstein manifold with dimension n ≥ 3. Let

σ̄ = r2σ be a conformal metric with constant scalar curvature, where r is a positive smooth

function. Then r must be constant unless (Σ, σ) is isometric to the standard sphere (Sn, σc)

and

r(x) = (c1 + c2x · a)−1

for some constants c1, c2 and point a ∈ Sn.

Proof. Suppose Ric(σ) = cσ. Let u = 1
r
. The scalar curvature under conformal transforma-
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tion satisfies [30, (D.9), page 446]

R̄ = u2

(
nc+ 2(n− 1)

(
∆u

u
− |∇u|

2

u2

)
− (n− 1)(n− 2)

|∇u|2

u2

)
.

Simplify the formula and we get

R̄

n− 1
=

nc

n− 1
u2 + 2u∆u− n|∇u|2.

By the assumption, R̄ = constant. Taking Laplacian to both sides and using the Bochner

formula, we get

0 =
nc

n− 1
(u∆u+ |∇u|2) + (∆u)2 + 2∇u · ∇∆u+ u∆2u− n(|∇2u|2 +∇u · ∇∆u+ c|∇u|2)

= −n(|∇2u|2 − 1

n
(∆u)2) + (2− n)∇u · ∇∆u+ u∆2u+

nc

n− 1
(u∆u+ (2− n)|∇u|2).

Mutiplying by u1−n and integrating by parts, we obtain

0 =

∫
Σ

− n

un−1

∣∣∣∣∇2u− 1

n
(∆u)σ

∣∣∣∣2 .
This completes the proof.

5.3 Codimension-2 Submanifolds with Vanishing Con-

nection 1-From

In [11], we show that a spacelike 2-surface with αH = 0 in 4-dimensional Minkowski spacetime

must lie on a totally geodesic slice. Using the integral formula, we generalize the result to

all dimension with additional starshaped assumption.

Theorem 5.10. Let Σn−1 ⊂ Rn,1 be a spacelike codimension-2 submanifold with spacelike

mean curvature vector. If αH = 0 and Q(eHn , e
H
n+1) > 0 on Σ, then Σ lies in a totally geodesic



49

slice.

Proof. We write en, en+1 for eHn , e
H
n+1. Consider the divergence quantity

∇a

[(
σ1(hn+1)σab − h ab

n+1

)
Qnb

]
By the assumption αH = 0 and the Codazzi equation,

∇a

(
σ1(hn+1)σab − h ab

n+1

)
= 0.

By the conformal Killing-Yano equation,

∇a(Q(en, ∂b)) = − (DaQ(∂b, en) + hn+1,abQn+1,n +Qbch
c

na )

= σab

〈
∂

∂t
, en

〉
− hn+1,abQn+1,n −Qbch

c
na

We have

Qbch
c

na h
ab

n+1 =
1

2
Qbc

(
h c
na h

ab
n+1 − h b

na h
ac

n+1

)
= 0

by the assumption αH = 0 and Ricci equation. Combining these facts together with

σ1(hn+1) = 0, we get

0 =

∫
Σ

∇a

[(
σ1(hn+1)σab − h ab

n+1

)
Qnb

]
dµ

=

∫
Σ

|hn+1|2Qn+1,ndµ.

Hence hn+1 = 0. The assertion follows from [33, Theorem 1, page 351].

The result holds for the static spherically symmetric spacetimes satisfying the null con-

vergence condition.

Theorem 5.11. Let Σn−1 be a spacelike codimension-2 submanifold with spacelike mean cur-
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vature vector in a static spherically symmetric spacetime satisfying Assumption 4.4 and null

convergence condition. If αH = 0 and Q(eHn , e
H
n+1) > 0 on Σ, then the second fundamental

form in eHn+1 vanishes.

Proof. We write en, en+1 for eHn , e
H
n+1. Consider the divergence quantity

∇a

[(
σ1(hn+1)σab − h ab

n+1

)
Qnb

]
By the assumption αH = 0, the Codazzi equation and the conformal Killing-Yano equa-

tion (3.1), we get

∇a

(
σ1(hn+1)σab − h ab

n+1

)
= −R̄ab

a,n+1,

and

∇a(Q(en, ∂b)) = σab

〈
∂

∂t
, en

〉
− hn+1,abQn+1,n −Qbch

c
na .

By the assumption αH = 0 and Ricci equation, we have

Qbch
c

na h
ab

n+1 =
1

2
QbaR̄

ab
n+1,n.

Using the curvature formula (B.2), we have

R̄ab
a,n+1 =

1

r2

(
(ff ′)′ − 2ff ′

r
− 1− f 2

r2

)
QabQa,n+1

− 1

r2
(n− 2)

(
ff ′

r
+

1− f 2

r2

)(
−Qab

a,n+1 +Qb
nQn,n+1

)
R̄ab

n+1,n =
1

r2

(
(ff ′)′ − 2ff ′

r
− 1− f 2

r2

)(
2

3
QabQn+1,n −

1

3
Qa

n+1Q
b
n −

1

3
Qa

nQ
b
n+1

)
,



51

and

− R̄ab
a,n+1Qnb +

1

2
R̄ab

n+1,nQba

=
1

r2

{(
2

3
QabQa,n+1Qbn +

1

3
QabQabQn,n+1

)(
(ff ′)′ − 2ff ′

r
− 1− f 2

r2

)

− (n− 2)

(
ff ′

r
+

1− f 2

r2

)(
−QabQa,n+1Qbn +Qb

nQbnQn,n+1

)}

= −n− 2

r2

(
ff ′

r
+

1− f 2

r2

)(
1

2
QabQabQn,n+1 +Qb

nQbnQn,n+1

)

where we use (B.3) in the last equality. Combining these facts together, we obtain

0 =

∫
Σ

∇a

[(
σ1(hn+1)σab − h ab

n+1

)
Qnb

]
dµ

= −
∫

Σ

(
|hn+1|2 +

n− 2

r2

(
ff ′

r
+

1− f 2

r2

)(
1

2
QabQab +Qb

nQbn

))
Qn,n+1dµ.

From the remark after Lemma 5.1, null convergence condition implies that ff ′

r
+ 1−f2

r2
≥ 0.

Hence hn+1 = 0. This completes the proof.

We note that when Σ lies in a standard null cone, αH = 0 is equivalent to | ~H| = constant.

Hence Σ lies in a time slice unless (V, ḡ) has constant sectional curvature and Σ lies in a

totally geodesic slice by Theorem 5.8.
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J. (2), 21:56–64, 1969.

[30] Robert M. Wald. General relativity. University of Chicago Press, Chicago, IL, 1984.

[31] Martin Walker and Roger Penrose. On quadratic first integrals of the geodesic equations
for type {22} spacetimes. Comm. Math. Phys., 18:265–274, 1970.

[32] Mu-Tao Wang and Shing-Tung Yau. Isometric embeddings into the Minkowski space
and new quasi-local mass. Comm. Math. Phys., 288(3):919–942, 2009.

[33] Shing Tung Yau. Submanifolds with constant mean curvature. I, II. Amer. J. Math.,
96:346–366; ibid. 97 (1975), 76–100, 1974.

Ye-Kai Wang, Department of Mathematics, Columbia University, New York, NY 10027

email: yw2293@math.columbia.edu



55

Appendices



56

Appendix A

The Existence of Conformal
Killing-Yano Forms

In this appendix, we show the existence of conformal Killing-Yano form for a class of warped
product manifold. We have the following equivalent definition of conformal Killing-Yano
p-forms using the twistor equation [28, Definition 2.1].

Definition A.1. A p−form Q on an n−dimensional pseudo-Riemannian manifold (V, g) is
said to be a conformal Killing-Yano form if Q satisfies the twistor equation

DXQ−
1

n+ 1
Xy dQ+

1

n− p+ 1
g(X) ∧ d∗Q = 0 (A.1)

for all tangent vector X.

The main result of the appendix is the following existence theorem.

Theorem A.2. Let U ⊂ Rn and V ⊂ Rm be two open sets. Let G be a warp-product metric
on U × V of the form

R2(y)σab(x)dxadxb + gij(y)dyidyj.

Then Q = Rn+1(y)
√

detσabdx
1 ∧ · · · ∧ dxn and ∗Q = R(y)

√
det gijdy

1 ∧ · · · ∧ dym are both
conformal Killing-Yano forms.

Proof. By [28, Lemma 2.3], the Hodge star-operator ∗ maps conformal Killing-Yano p−form
into conformal Killing-Yano (n+m−p)−form. It suffices to verify that Q satisfies the twistor
equation. Let ωα, α = 1, . . . , n+m be a local orthonormal coframe for G such that ω1, . . . , ωn

is an orthonormal coframe for R2(y)σab(x)dxadxb on each slice U ×{c1} and ωn+1, . . . , ωn+m

is an orthonormal coframe for gij(y)dyi ∧ dyj on each slice {c2} × V . Let Eα be the dual
frame to ωα. If we write Ω = ω1 ∧ · · · ∧ ωn, then Q = RΩ. From the structure equations

dωa = −ωab ∧ ωb − ωan+i ∧ ωn+i = dR ∧ σa −Rγab ∧ σb

dωn+i = −ωn+i
b ∧ ω

b − ωn+i
n+j ∧ ωn+j,
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we solve for the connection 1-forms

ωan+i =
En+i(R)

R
ωa, ωab = γab

where γab are the connection 1-forms with respect to the metric σab(x)dxadxb.
We compute each term in the twistor equation.

DXQ = X(R)Ω +R∇XΩ = X(R)Ω−
m∑
i=1

En+i(R)ωn+i ∧ (XyΩ).

Xy dΩ = Xy
m∑
i=1

(
−ω1

n+i ∧ ωn+i ∧ ω2 ∧ · · · ∧ ωn + ω1 ∧ ω2
i ∧ ωn+i ∧ · · · ∧ ωn − · · ·

)
= Xy

m∑
i=1

n

(
En+i(R)

R
ωn+i ∧ Ω

)
= n

m∑
i=1

En+i(R)

R
Xy (ωn+i ∧ Ω)

= n
m∑
i=1

En+i(R)

R

(
ωn+i(X)Ω− ωn+i ∧ (XyΩ)

)
This implies that

Xy dQ = Xy (dR ∧ Ω +RdΩ)

= X(R)Ω− dR ∧ (XyΩ) + n
m∑
i=1

En+i(R)
(
ωn+i(X)Ω− ωn+i ∧ (XyΩ)

)
.

On the other hand, d∗Q = 0 since R only depends on y. Putting these facts together, we
verify that Q satisfies the twistor equation

DXQ−
1

n+ 1
Xy dQ+

1

m+ 1
g(X) ∧ d∗Q

= X(R)Ω−
m∑
i=1

En+i(R)ωn+i ∧ (XyΩ)

− 1

n+ 1

(
X(R)Ω− dR ∧ (XyΩ)− n

m∑
i=1

En+i(R)
(
ωn+i(X)Ω− ωn+iXyΩ

) )
=

n

n+ 1
X(R)Ω− 1

n+ 1
En+i(R)ωn+i ∧ (XyΩ)

+
1

n+ 1
dR ∧ (XyΩ)− n

n+ 1
En+i(R)ωn+i(X)Ω

= 0.

We use the fact that R only depends on y in the last equality.
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We have the following existence result, generalizing the fact that rdr ∧ dt is a conformal
Killing-Yano 2-form on the Minkowski and Schwarzschild spacetime.

Corollary A.3. Let (V, g) be a warped product manifold with

g = gtt(t, r)dt
2 + 2gtr(t, r)dtdr + grr(t, r)dr

2 + r2(gN)abdx
adxb (A.2)

where (N, gN) is an (n− 1)−dimensional Riemannian manifold. Then the two-form

Q = r

√∣∣∣∣det

(
gtt gtr
grt grr

)∣∣∣∣ dr ∧ dt
is a conformal Killing-Yano 2-form on (V, g).
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Appendix B

Curvature tensors in terms of
Conformal Killing-Yano Tensor

We consider (n+ 1)-dimensional (exterior) Schwarzschild spacetime. The metric is given by

ḡ = −
(

1− 2m

rn−2

)
dt2 +

1

1− 2m
rn−2

dr2 + r2gSn−1

The spacetime admits a conformal Killing-Yano tensor

Q = rdr ∧ dt

Let Q2 be the symmetric 2-tensor given by

(Q2)αβ = Q γ
α Qγβ

Lemma B.1. The curvature tensor of Schwarzschild spacetime can be expressed as

R̄αβγδ =
2m

rn
(ḡαγ ḡβδ − ḡαδḡβγ)−

n(n− 1)m

rn+2

(
2

3
QαβQγδ −

1

3
QαγQδβ −

1

3
QαδQβγ

)
− nm

rn+2

(
ḡ ◦Q2

)
αβγδ

(B.1)

where (ḡ ◦Q2)αβγδ = ḡαγ(Q
2)βδ − ḡαδ(Q2)βγ + ḡβδ(Q

2)αγ − ḡβγ(Q2)αδ

Proof. Denote f 2 = 1 − 2m
rn−2 . Let E1, E2, . . . , En+1 be the orthonormal frames for ḡ with

En+1 = 1
f
∂
∂t
, En = f ∂

∂r
and Ei, i = 1, . . . , n− 1 tangent to the sphere of symmetry. We have

R̄(En+1, En, En+1, En) = −m(n− 1)(n− 2)

rn

R̄(En+1, Ei, En+1, Ej) =
m(n− 2)

rn
δij

R̄(En, Ei, En, Ej) = −m(n− 2)

rn
δij

R̄(Ei, Ej, Ek, El) =
2m

rn
(δikδjl − δilδjk)
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Except for the symmetries of the curvature tensors, the other components are zero.
On the other hand, we haveQ(En, En+1) = r, (Q2)(En+1, En+1) = −r2, and (Q2)(En, En) =

r2. Let b(Q) = 2
3
QαβQγδ − 1

3
QαγQδβ − 1

3
QαδQβγ. The following table lists the nonzero com-

ponents for the (0, 4)-tensors involved.

T ḡαγ ḡβδ − ḡαδḡβγ b(Q) (ḡ ◦Q2)αβγδ
T (En+1, En, En+1, En) −1 r2 −2r2

T (En+1, Ei, En+1, Ej) −δij 0 −r2δij
T (En, Ei, En, Ej) δij 0 r2δij
T (Ei, Ej, Ek, El) δikδjl − δilδjk 0 0

Suppose R̄αβγδ = Am
rn

(ḡαγ ḡβδ − ḡαδḡβγ)+B m
rn+2

(
2
3
QαβQγδ − 1

3
QαγQδβ − 1

3
QαδQβγ

)
+C m

rn+2 (ḡ◦
Q2)αβγδ. We can solve for A = 2, B = −n(n− 1), and C = −n.

The same proof applies to any (n+1)-dimensional static spherically symmetric spacetime
(V, ḡ) with the metric given by

ḡ = −f 2dt2 +
1

f 2
dr2 + r2gSn−1

The conformal Killing-Yano tensor has the same form

Q = rdr ∧ dt

As above, let E1, E2, . . . , En+1 be the orthonormal frames for ḡ with En+1 = 1
f
∂
∂t
, En = f ∂

∂r

and Ei, i = 1, . . . , n− 1 tangent to the sphere of symmetry. Denote df
dr

by f ′. We compute

R̄(En+1, En, En+1, En) = (ff ′)′

R̄(En+1, Ei, En+1, Ej) =
ff ′

r
δij

R̄(En, Ei, En, Ej) = −ff
′

r
δij

R̄(Ei, Ej, Ek, El) =
1− f 2

r2
(δikδjl − δilδjk)

Comparing with the table we obtain

Lemma B.2. The curvature tensor of (V, ḡ) can be expressed as

R̄αβγδ =
1

r2

(
(1− f 2) (ḡαγ ḡβδ − ḡαδḡβγ)

+

(
(ff ′)′ − 2ff ′

r
− 1− f 2

r2

)(
2

3
QαβQγδ −

1

3
QαγQδβ −

1

3
QαδQβγ

)
−
(
ff ′

r
+

1− f 2

r2

)(
ḡ ◦Q2

)
αβγδ

) (B.2)
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The following lemma is useful in simplifying R̄ab
a,n+1 and R̄ab

n,n+1.

Lemma B.3.

QabQa,n+1Qbn = −1

2
QabQabQn,n+1 (B.3)

Proof. Let E1, E2, . . . , En = f ∂
∂r
, En+1 = 1

f
∂
∂t

be the standard frame of (V, ḡ) where E1, . . . , En−1

are tangent to the sphere of symmetry. Let ω1, . . . , ωn be its dual coframe. Let

eα =
n+1∑
β=1

ΛαβEβ.

Since Q = rωn ∧ ωn+1 only sees the component in En and En+1 directions, we have

QabQa,n+1Qbn = r3Qab(ΛanΛn+1,n+1 − Λa,n+Λn+1,n)(ΛbnΛn,n+1 − Λb,n+1Λnn)

= r3Qab(−ΛanΛb,n+1Λn+1,n+1Λnn − Λa,n+1ΛbnΛn+1,nΛn,n+1)

where in the last equality we use the antisymmetry of a, b. On the other hand,

Qn,n+1 = r(ΛnnΛn+1,n+1 − Λn,n+1Λn+1,n), Qab = r(ΛanΛb,n+1 − Λa,n+1Λbn)

Using the antisymmetry of a, b again, we get

QabQa,n+1Qbn =
1

2
r3Qab

(
−ΛanΛb,n+1

(
1

r
Qn,n+1 + Λn,n+1Λn+1,n

)
− Λa,n+1ΛbnΛn+1,nΛn,n+1

)
+

1

2
r3Qab

(
−ΛanΛb,n+1Λn+1,n+1Λnn + Λa,n+1Λbn

(
1

r
Qn,n+1 − ΛnnΛn+1,n+1

))
= −r

2

2
Qab (ΛanΛb,n+1 − Λa,n+1Λbn)Qn,n+1

= −1

2
QabQabQn,n+1
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