Electron-Ion Recombination of Mg6 + Forming Mg5 + and Of Mg7 + Forming Mg6 +: Laboratory Measurements and Theoretical Calculations

Lestinsky, M.; Badnell, N. R.; Bernhardt, D.; Grieser, M.; Bing, D.; Hahn, Michael; Hoffman, J.; Jordon-Thaden, B.; Krantz, C.; Novotny, Oldrich; Orlov, D. A.; Repnow, R.; Shornikov, A.; Muller, A.; Schippers, S.; Wolf, A.; Savin, Daniel Wolf

We have measured electron-ion recombination for C-like Mg6 + forming Mg5 +, and for B-like Mg7 + forming Mg6 +. These studies were performed using a merged electron-ion beam arrangement at the TSR heavy ion storage ring located in Heidelberg, Germany. Both primary ions have metastable levels with significant lifetimes. Using a simple cascade model we estimate the population fractions in these metastable levels. For the Mg6 + results, we find that the majority of the stored ions are in a metastable level, while for Mg7 + the metastable fraction is insignificant. We present the Mg6 + merged beams recombination rate coefficient for DR via N = 2 → N' = 2 core electron excitations (ΔN = 0 DR) and for Mg7 + via 2 → 2 and 2 → 3 core excitations. Taking the estimated metastable populations into account, we compare our results to state-of-the-art multiconfiguration Breit-Pauli theoretical calculations. Significant differences are found at low energies where theory is known to be unreliable. Moreover, for both ions we observe a discrepancy between experiment and theory for ΔN = 0 DR involving capture into high-n Rydberg levels and where the stabilization is primarily due to a radiative transition of the excited core electron. This is consistent with previous DR experiments on M-shell iron ions which were performed at TSR. The large metastable content of the Mg6 + ion beam precludes generating a plasma recombination rate coefficient (PRRC). However, this is not an issue for Mg7 + and we present an experimentally derived Mg7 + PRRC for plasma temperatures from 400 K to 107 K with an estimated uncertainty of less than 27% at a 90% confidence level. We also provide a fit to our experimentally derived PRRC for use in plasma modeling codes.


  • thumnail for Lestinsky2012ApJ758_40.pdf Lestinsky2012ApJ758_40.pdf application/pdf 822 KB Download File

Also Published In

The Astrophysical Journal

More About This Work

Academic Units
Astronomy and Astrophysics
Published Here
March 22, 2013