On the Subtropical Edge of the Stratospheric Surf Zone

Polvani, Lorenzo M.; Waugh, D. W.; Plumb, R. Alan

The formation of a subtropical “transport barrier” in the wintertime stratosphere is investigated in the context of a high-resolution shallow-water model in which Rossby waves are topographically forced on a zonally symmetric basic state. Two sets of experiments are performed: in the first “adiabatic” set, no dissipation or forcing of the mean state is imposed; in the second set, the layer thickness is relaxed to an equilibrium state taken to be representative of middle stratospheric radiative equilibrium temperatures. It is found that in the adiabatic case only a very weak subtropical barrier forms for forcing amplitudes that generate realistically steep potential vorticity gradients at the edge of the polar vortex; the vigorous wave breaking in the surf zone generates secondary waves that spread and, in turn, break well into the summer hemisphere. In contrast, the inclusion of relaxation to a realistic thermal equilibrium leads to the formation of a subtropical region of steep PV gradients. The strong subtropical shear induced by die diabatic relaxation is shown to be an important factor for the formation of the subtropical edge of the surf zone. Furthermore, the authors demonstrate that a simple one-layer shallow-water model can capture the full process of the formation of a surf zone with both polar and tropical edges starting from conditions typical of the early fall–that is, with a flow in which the polar vortex is not initially present. Finally, the authors quantify the mixing of polar and subtropical air into the midlatitude surf zone with the help of the contour advection technique. Although the quantitative estimates depend sensitively on how the edges of the surf zone are defined, our results indicate that more tropical than polar air is entrained into the surf zone.


  • thumnail for 1520-0469_1995_052_1288_OTSEOT_2.0.pdf 1520-0469_1995_052_1288_OTSEOT_2.0.pdf application/pdf 2.04 MB Download File

Also Published In

Journal of the Atmospheric Sciences

More About This Work