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ABSTRACT 

Roles for Cytoplasmic Dynein and the Unconventional Kinesin, KIF1a, during 

Cortical Development 

 

Daniel Jun-Kit Hu  

 
 Radial glial progenitor (RGP) cells are neural stem cells that give rise to the majority of 

neurons, glia, and adult stem cells during cortical development.  These cells divide either 

symmetrically to form two daughter RGP cells or asymmetrically to form a daughter RGP cell or 

a daughter neuron/neuronal precursor.  In between divisions, the nuclei of RGP cells oscillate in 

coordination with the cell cycle in a form of behavior known as interkinetic nuclear migration 

(INM).  RGP nuclei migrate basally during G1, undergo S phase, and migrate apically during G2 

to the apical, ventricular surface (VS).  Mitosis only occurs when the nucleus reaches the VS.  

Two microtubule-associated motor proteins are required to drive nuclear movement: the 

unconventional kinesin, Kif1a, during G1-specific basal migration and cytoplasmic dynein 

during G2-specific apical migration.  The strict coordination of motor activity, migratory 

direction, and cell cycle phase is highly regulated and we find that a G2 cell cycle-dependent 

protein kinase activates two distinct G2-specific mechanisms to recruit dynein to nuclear pores.  

The activities of these pathways initiate apical nuclear migration and maintain nuclear movement 

throughout G2. 

 Originally identified in HeLa cells, we find the two G2-specific recruitment pathways 

(ñRanBP2-BicD2ò and ñNup133-CENP-Fò) are conserved in RGP cells.  Disrupting either 

pathway arrests apical nuclear migration but does not affect G1-dependent basal migration.  The 

ñRanBP2-BicD2ò pathway initiates early during G2 and is maintained throughout the cell cycle 

phase while the ñNup133-CENP-Fò pathway is activated later in G2.  Forced targeting of dynein 

to the nuclear envelope (NE) restores apical nuclear migration, with nuclei successfully reaching 



 
 

the VS.   We also find that the G2/M-specific Cdk1 serves as a master regulator of apical nuclear 

migration in RGP cells.  Pharmacological drug inhibitors of Cdk1 arrest apical migration without 

any effect on G1-dependent basal migration.  Conversely, overactivating Cdk1 causes premature, 

accelerated apical nuclear migration.  Specifically, Cdk1 drives apical nuclear migration through 

activation of both the ñRanBP2-BicD2ò and ñNup133-CENP-Fò pathways.  Cdk1 acts by 

phosphorylating RanBP2, priming it for BicD2 interaction.  Forced targeting of BicD2-dynein to 

the NE in a RanBP2-independent manner rescues apical nuclear migration in the presence of 

Cdk1 drug inhibition.  Additionally, Cdk1 seems to activate the ñNup133-CENP-Fò at the 

CENP-F level, phosphorylating the protein to trigger nuclear export. 

 INM plays an important role in proper cell cycle progression and we find that arresting 

nuclei away from the VS prevents mitotic entry, demonstrating that apical nuclear migration to 

the VS is not just a correlated with cell cycle progression, but is required.  When apical 

migration is restored by forced recruitment of dynein to the NE, mitotic entry is restored as well.  

In contrast, we find that arresting basal migration by Kif1a does not have a major influence on 

cell cycle progression.  RGP cells still enter S-phase despite remaining close to the VS, revealing 

that, unlike mitotic entry, S-phase entry is not coupled with nuclear positioning.  However, 

symmetric, proliferative divisions are favored over asymmetric, neurogenic divisions after 

inhibition of basal migration.           

 We further find that Kif1a and the proteins involved in the two recruitment pathways play 

additional role later in brain development.  After a neurogenic division, the newly-born neuron 

migrates past the RPG nuclei and they undergo a multipolar morphology.  After at least twenty-

four hours, the immature neuron then transitions to a bipolar, migratory morphology where it 

continues migrating towards its final destination along RGP fibers to the cortical plate.  We 



 
 

demonstrate that Kif1a and NE dynein recruitment proteins seem to be involved in the multipolar 

to bipolar transition and RNAi for these proteins prevent further migration by arresting the 

immature neurons in a multipolar morphology.  Kif1a RNAi, in particular, also induced 

comparable arrest in surrounding control neurons.  Further analysis reveal that the multipolar 

arrest in neurons is independent of the basal nuclear migration arrest in RGP cells.  These results 

identify the control mechanism for NE dynein recruitment in RGP cells to drive apical nuclear 

migration, the relationship of cell cycle phase progression with nuclear positioning, and the 

sequential, independent roles of these proteins, particularly Kif1a, in neuronal maturation.     
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CHAPTER 1 

 

INTRODUCTION TO CORTICAL DEVELOPMENT : FROM RADIAL GLIAL 

CELLS TO MICROTUBULE  MOTORS. 
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Summary 

 The architecture of the brain in higher mammals is characterized by a larger size and 

extensive gyrification, corresponding to an increased area within the neocortex and a greater 

number of cortical neurons.  Throughout development, neurons are produced by radial glial 

progenitor (RGP) cells.  RGP cells act as neural stem cells and can divide symmetrically to form 

two daughter RGP cells or asymmetrically to differentiate into a neuron.  RGP cells are highly 

elongated with processes spamming the apical to basal surface and their nuclei undergo 

oscillatory movements in a behavior known as interkinetic nuclear migration (INM).  During G1, 

nuclei migrate basally, undergo S phase, and then migrate apically to the apical surface during 

G2.  Mitosis then occurs once the nucleus reaches the apical surface.  In the rodent neocortex, the 

kinesin Kif1a drives basal movement while dynein drives apical nuclear migration. 

 The aim of this thesis is to determine the mechanism involved in the recruitment and 

regulation of dynein to the NE of RGP cells during G2.  In Chapter I, I give a background of the 

study ranging from a developmental scale to a protein scale.  The introduction starts with an 

overview of cortical development and the cell types involved, with emphasis on the RGP cells.  

The introduction will then follow with a more detailed summary of INM, as well as the other 

forms of nuclear movement within the neocortex.  The mechanisms involved in recruiting 

cytoskeleton components to the NE will then be introduced and Chapter I concludes with an 

overview of the microtubule-associated motors, dynein and kinesin.  In Chapter II, I discuss the 

involvement of two distinct G2-specific pathways (RanBP2-BicD2 and Nup133-CENP-F-NudE) 

in recruiting dynein to RGP cell nuclear pores to drive apical INM.  RNAi for these recruitment 

factors not only inhibit apical migration, but also prevent mitotic entry.  In Chapter III, I discuss 

the involvement of the protein kinase that activates these two G2-specific pathways, both in RGP 
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cells and in non-neuronal cell types.  The G2/M-specific kinase, Cdk1, phosphorylates RanBP2 

to recruit BicD2 and seems to also phosphorylate CENP-F to promote export from the nucleus.  

In Chapter IV, I explore the consequences of basal nuclear inhibition in RGP cells by Kif1a 

RNAi and examine the role of Kif1a in later neuronal development.  Finally, in Chapter V, I tie 

the data presented in Chapter II, III, and IV together and discuss the implications of these studies 

in relationship with one another and cortical development as a whole.    

Brief overview of neurogenesis and the different types of neuronal precursors. 

 The cerebral cortex is the largest structure of the human brain and plays a crucial role in 

sensory, motor, and, information processing functions (De Juan Romero and Borrell, 2015; Gao 

et al., 2013).  Evolution of the neocortex, the most developed of the cerebral tissues, has enabled 

higher cognitive function and in humans, the neocortex is associated with self-awareness, 

perception, and language.  Recent models of neocortical development have been largely based on 

studies of the mouse and rat (Florio and Huttner, 2014) and despite its limited size in the rodent, 

the rat neocortex shares many of the same characteristics as its human counterpart. 

 The neocortex is composed of six layers, with different populations of neurons in each 

layer.  The development of the neocortex occurs in an inside-out manner, with the youngest layer 

located within the most basal region (Angevine and Sidman, 1961; Gupta et al., 2002; Rakic, 

2007).  Therefore, newly-born neurons must migrate past the existing layers to reach their final 

destination.  The neocortex consists primarily of excitatory pyramidal neurons, the majority of 

which arise from neural stem cells within this structure.  Like all other substructures of the brain, 

the neocortex originates from the neural plate (Lui et al., 2011).  The ends of the neural plate 

eventually fold together to form the neural tube, shaping the neuroepithelium.   
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 The neuroepithelium originally consists of a single layer of neuroepithelial cells (Florio 

and Huttner, 2014).  These stem cells are highly polarized and their nuclei oscillate within the 

entire apical-basal axis as they progress through the cell cycle, creating a pseudostratified 

structure.  Tight junctions and adherens junctions are concentrated at the most apical end of the 

plasma membrane while receptors for basal lamina constituents, such as integrin Ŭ, are at the 

basal most plasma membrane (Aaku-Saraste et al., 1996; Gotz and Huttner, 2005; Manabe et al., 

2002).  Leading up to neurogenesis, the neuroepithelium is expanded as the neuroepithelial cells 

continue to divide and self-renewal.  On the onset of neurogenesis, the neuroepithelium begins to 

expand into multiple cell layers and form the nascent neocortex.  As neuroepithelial cells begin 

to generate neurons, they downregulate certain epithelial factors, such as the tight junctions, and 

begin to take on glial cell properties (Aaku-Saraste et al., 1997; Stoykova et al., 1997; Takahashi 

et al., 1990).  These cells transform into and are completely replaced by a distinct cell type 

known as the radial glial progenitor (RGP) cell. 

 RGP cells share many characteristics with astroglial, including expression of glial 

fibrillary acidic protein, astrocyte-specific glutamate transporter, and brain lipid-binding protein 

(Anthony et al., 2004; Levitt and Rakic, 1980; Malatesta et al., 2000; Mori et al., 2005).  

However, they still share certain epithelial properties with their predecessor.  Molecularly, both 

cell types express the intermediate-filament protein, nestin, and RGP cells still retain adherens 

junction (Chanas-Sacrè et al., 2000; Kriegstein and Alvarez-Buylla, 2009; Malatesta et al., 

2000).  Similar to neuroepithelial cells, RGP cells are bipolar in morphology, with a thin process 

spamming from the apical, ventricular surface (VS) to and basal, pial surface of the neocortex 

(Gotz and Huttner, 2005; Lui et al., 2011; Taverna and Huttner, 2010) (Figure 1-1).  The cell 

bodies remain tightly packed together and their nuclei continue to oscillate throughout the cell 
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cycle, retaining the tissueôs pseudostratified structure.  Unlike the neuroepithelial cell nucleus, 

the RGP nucleus stays within a specific region of the apical neocortex rather than the entirety of 

the apical-basal axis.  This region, the ventricular zone (VZ) is the most apical region of the 

cortex.  RGP cells, while more fate-restricted than their predecessors, still function as stem cells 

and give rise to the majority of neurons in the brain (Noctor et al., 2001; Noctor et al., 2004).  

RGP cells can either divide symmetrically to form two daughter RGP cells or asymmetrically to 

self-renewal and produce a neuron directly, or indirectly through a neuronal progenitor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Different cell types are located in different regions of the cortex. 

Radial glial progenitors (RGPs) exhibit a process spamming the entire cortex from the apical (ventricular) to basal 

(pial) surface.  Their nuclei, however, stay clustered in the most apical region of the cortex called the ventricular 

zone.  Intermediate progenitors (IPs), produced from RGP cells, migrate and reside in the subventricular zone.  An 

outer subventricular zone (not shown) is not distinctive in the rodent brain and the few outer radial glia (oRGs) that 

exist are located either in the upper subventricular zone or the intermediate zone.  Newly born-neurons migrate 

either from the ventricular zone (if given rise by RGP cells) or the subventricular zone (if given rise by IPs) and 

transition into a bipolar morphology, with a single leading process, in the intermediate zone where they than migrate 

radially to their final destination in the cortical plate.  Figure adapted from (Lui et al., 2011).     
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 Many signaling pathways, such as NOTCH, EGFR, and FGF have been implicated in 

controlling cell fate of RGP cells, determining whether the cell will divide symmetrically or 

asymmetrically (Dang et al., 2006; Gaiano et al., 2000; Patten et al., 2006; Schmid et al., 2003; 

Yoon et al., 2004).  The decision for an RGP cell to divide symmetrically vs asymmetrically has 

been traditional correlated with spindle pole orientation (Tan and Shi, 2013).  In Drosophila, the 

mitotic spindle ensures proper segregation of fate determinates such as NUMB and Prosper 

(Choksi et al., 2006; Spana et al., 1995).  A vertical cleavage plane (closer to a perpendicular 

orientation along the VS) leads to a symmetrically division while a horizontal cleavage plane 

(closer to a parallel orientation along the VS) leads to an asymmetric division.  However, recent 

evidence has suggested that this is not always the case in mammalian RGP cells and there are 

many other factors that influence cell fate of RGP cells.  On the onset of cytokinesis, the 

inheritance of either the apical or basal components of the mother RGP cell seems to contribute 

to the identity of the daughter cells. 

One such component is the plasma membrane within the apical surface itself.  Despite 

only containing a minimal percentage of the total plasma membrane (~1%), the asymmetric 

inheritance of the apical process seems to lead to an asymmetric division whereas bisecting the 

apically-bound plasma membrane seems to lead to a symmetric division (Kosodo et al., 2004).  

The exact importance of this small portion of plasma membrane is unknown and currently, the 

glycoprotein prominin 1 is the only molecular marker specific for this region (Corbeil et al., 

1999; Weigmann et al., 1997).  Among other important components located near the apical 

process include the centrosome and the primary cilium.  During an asymmetric division, the 

daughter cell that remains a RGP cell often inherits the mother centrosome whereas the newly-
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born neuron/neuronal progenitor inherits the daughter centrosome (Wang et al., 2009).  

Similarly, the daughter RGP cell tends to inherit the ciliary membrane (Paridaen et al., 2013).   

Not only does differential inheritance of the apical process correlate with cell fate, but the 

inheritance of the basal process is also linked to fate specification.  The exact inheritance is still 

controversial and the importance of maintaining the basal process as well as the associated 

signals within the process are not clear.  One hypothesis is that, during a symmetric division, the 

basal process is bisected and inherited by both RGP cells (Kosodo and Huttner, 2009).  However, 

it has been postulated that the basal process is inherited by only one of the daughter RGP cells 

during a symmetric division, requiring the other daughter RGP cell to form an entirely new basal 

process after division (Miyata et al., 2004; Noctor et al., 2004).  The study further reported that, 

during an asymmetric division, the daughter neuron inherits the basal process and the daughter 

RGP must grow a new basal process.  Other live imaging analyses, however, have shown the 

reverse, with the daughter RGP cell maintaining the basal process and the daughter neuron 

extending a new process (Shitamukai et al., 2011).  Further study is required to rectify these 

differences.  

 During neurogenesis, the different cell types are organized within the neocortex in 

distinct regions (Lui et al., 2011).  The nuclei of RGP cells congregate within the most apical 

region of the neocortex, next to the ventricle, in the ventricular zone (VZ).  After an asymmetric 

division, either a neuronal progenitor or a neuron is formed.  Both of these cell types migrate out 

of the VZ.  Neuronal progenitors, also known as an intermediate progenitor (IP), reside just 

above the VZ in a region called the subventricular zone (SVZ) (Haubensak et al., 2004; Noctor et 

al., 2004) (Figure 1-1).  IPs no longer have processes and downregulate the majority of RGP cell 

properties and express unique markers such as the transcription factor, Tbr2 (Englund et al., 
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2005).  IPs progress through the cell cycle before terminally dividing into two neurons.  Because 

IPs do not self-renewal, they are capable of producing neurons in great numbers.  Unlike RGP 

cells, the nuclei of IPs do not migrate during the cell cycle.  

 RGP cells also give rise to a third neuronal progenitor type called the outer radial glial 

cell (oRG) (Hansen et al., 2010).  oRGs were originally thought to be unique to higher mammals 

and a major contributor to the gyrencephalic brain in these animals, in contrast to the 

lissencephalic brain in rodents.  However, the presence of oRGs was later found in lissencephalic 

animals though at a far fewer abundance (Garcia-Moreno et al., 2012; Martinez-Cerdeno et al., 

2012).  oRGs reside in the upper SVZ, termed the outer SVZ (oSVZ) in higher mammals, and 

are basally located compared to IPs (Figure 1-1).  oRGs aare classified as radial glial cells 

because they express some markers specific to RGP cells, most notably the transcription factor 

Pax6.  However, they lack an epithelial, apical-basal polarity and do not express most apically 

localized membrane proteins such as CD133, Par3, and aPKC (Fietz et al., 2010).  Most oRGs 

are unipolar with either a basal process that can reach the basal surface or an apical process that 

extends towards but never reaches the VS.  However, two other classes of oRGs also exist with 

cells that contain both a basal and apical process and cells that transitioned between an apical, a 

basal, or both processes (Betizeau et al., 2013; Pilz et al., 2013).  Similar to RGP cells, oRGs can 

either self-renewal or differentiate to form neurons.  The morphology of the oRG is an indicator 

of cell fate of the dividing cell, correlating with spindle pole orientation during mitosis, the cell 

type of daughter cells, and the morphology of any daughter oRG cells (Betizeau et al., 2013; 

LaMonica et al., 2013).  The nucleus remains mostly static through most of the cell cycle, but 

just prior to mitosis, the nucleus migrates unidirectionally in the basal direction (upward to 70 

µm in the human neocortex) (Gertz et al., 2014; Ostrem et al., 2014).  It is likely that, because 
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oRGs do not have a restrictive area competent for cell division, as with RGP cells, a greater 

percentage of oRGs are capable of dividing within a given time period and thereby, generate 

neurons more effectively. 

Newly-born neurons, whether from RGP cells, IPs, or oRGs, migrate basally past the 

SVZ to the intermediate zone (IZ) (De Juan Romero and Borrell, 2015; Tan and Shi, 2013; 

Taverna et al., 2014).  Here, neurons undergo a multipolar morphology for over 24 hours where 

their neurites dynamically grow and retract (Noctor et al., 2004).  During this stage, one of the 

neurites grows and begins to develop into an axon while another neurite extends basally to form 

the leading, migratory process (Tsai et al., 2007).  The neuron takes on a bipolar morphology and 

migrates out of the IZ to its final destination within the neuronal layers of the CP (Figure 1-1).  

The basal processes of RGP cells act as scaffolds to guide the immature neuron as it migrates 

towards the pial surface (Lui et al., 2011). There are six neuronal layers upon the completion of 

neurogenesis, which make up the final, most basal region of the neocortex, the cortical plate 

(CP).  As neurogenesis completes, the RGP cell delaminates, retracting their apical and basal 

process.  These cells then mature and become astrocytes, ependymocytes, and oligodendrocytes 

in the brain (Gao et al., 2014; Kriegstein and Alvarez-Buylla, 2009; Rakic, 2007).  A subset of 

these RGP cells retain their stem cell characteristics, and reside as adult stem cells within the 

adult SVZ.            

Interkinetic nuclear migration.  

 RGP cells act as stem cells and give rise to the neurons within the neocortex, and 

regulation of RGP cell behavior is crucial for proper development of the neocortex (Taverna and 

Huttner, 2010).  One of the hallmark behaviors of RGP cells, known as interkinetic nuclear 

migration (INM), is the oscillation of its nucleus in coordination with the cell cycle (Kosodo, 
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2012; Lee and Norden, 2013; Spear and Erickson, 2012b) (Figure 1-2).  During G1, RGP cell 

nuclei migrate basally until the outer region of the VZ, 30-50 µm from the ventricular surface 

(VS).  They remain at this site throughout S phase and then migrate apically back to the VS 

during G2.  The RGP cell only enters mitosis once the nucleus reaches the VS and the nuclei of  

daughter RGP cells then continue this cycle.  INM is not just restricted in the cortex, and the 

behavior is conserved in the development of various tissues throughout multiple species.  INM 

has also been observed in the development of the Drosophila imaginal disc, zebrafish retina and 

neocortex, and the mammalian retina and midgut (Bort et al., 2006; Del Bene et al., 2008; Leung 

et al., 2011; Meyer et al., 2011; Yamada et al., 2013; Yu et al., 2011).  While INM was first 

observed around eighty years ago in 1935, many fundamental principles of this behavior have 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Radial glial cells nuclei undergo interkinetic nuclear migration . 

The nuclei of radial glial progenitors (RGPs) in the mammalian neocortex oscillate in coordination with the cell 

cycle.  Nuclei migrate basally during G1, undergo S phase, and then migrate apically during G2.  RGP cells enter 

mitosis at the ventricular/apical surface.  The centrosome is retained at the ventricular surface throughout interphase 

and microtubules are uniformly oriented with their minus ends directed towards the centrosome and their plus ends 

directed basally.  Consistent with the polarity of the microtubule network, we find that apical migration is driven by 

dynein and basal migration is driven by Kif1a.    
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only been studied within the past decade (Sauer and Walker, 1959).  Until recently, the 

mechanisms driving and regulating INM, its relationship with cell cycle progression, the basis 

for spatial control of mitosis, and the developmental purpose of this behavior was unknown. 

 In the mammalian neocortex, microtubule motors have been reported to drive INM 

(Figure 1-3).  During G1, S, and G2 phase of RGP cells, the centrosomes remain sequestered 

near the ventricular end of the apical process (Tsai et al., 2010).  Because the centrosomes act as 

the microtubule organization center, the minus ends of microtubules are oriented towards the 

centrosomes at the VS while the plus ends are oriented basally.  Various centrosomal and 

microtubule associated proteins, including TACC, Cep120, Hook3, PCM1, and Dock7 have been 

found to play a role in the early stages of neocortical development (Ge et al., 2010; Xie et al., 

2007; Yang et al., 2012).  Consistent with the unidirectional microtubule arrangement in RGP 

cells, cytoplasmic dynein and its regulator, LIS1 and NudC, have been found to be specifically 

involved in G2 apical nuclear migration (Cappello et al., 2011; Tsai et al., 2005) (Figure 1-3).  

RNAi against these proteins inhibited apical migration with no effect on basal nuclear migration 

during G1.  In contrast, KIF1A, a member of the plus-end directed Kinesin-3 family, is involved 

in basal migration, with no major role driving apical movement (Tsai et al., 2010).  However, 

other mechanisms have also been reported to drive basal migration in the mammalian neocortex.  

One study reported the role of myosin II in driving basal migration while another reported that 

basal movement of the nucleus occurs passively in a somewhat óstochasticô form (Kosodo et al., 

2011; Schenk et al., 2009).  In this passive mechanism, G1/S phase cells are displaced basally 

towards the outer region of the VZ as the nearby nuclei of G2 RGP cells push past them towards 

the VS.  Although RNAi against KIF1A blocks basal movement, this does not completely rule 

out displacement as a contributor towards basal nuclear migration.   
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In the mammalian retina, retinal progenitors also undergo INM.  However, the 

mechanisms responsible for INM in this organ is not as thoroughly investigated as in the 

neocortex, with evidence suggesting the role of KIF5b, a plus end direction member of the 

Kinesin-1 family, driving basal migration and dynein driving apical migration (Yu et al., 2011).  

Outside of the neuroepithelium, INM has also been observed in the developing mammalian liver 

bud, midgut epithelium, and ureteric epithelium (Bort et al., 2006; Yamada et al., 2013).  The 

epithelial sheets of these tissues resemble the VZ of the brain, with a ventricle-like apical surface 

and an outer basal lumen.  Using mitotic markers and/or BrDU pulse-chase experiments, the 

epithelial cells are found to enter mitosis at the apical surface and enter S-phase at the most basal 

distance travelled by the nucleus.  Progressively longer BrDU pulse-chase results in BrDU+ 

nuclei closer to the apical surface.  Though the cells in these tissues undergo INM similar to RGP 

cells in the brain, the mechanism driving this movement has not been characterized.     

 INM also takes place during invertebrate and non-mammalian vertebrate development 

(Figure 1-3).  In invertebrates, the stem cells in the Drosophila wing disc and in the Nematostella 

vectensis larval ectoderm undergo INM (Meyer et al., 2011).  Just like in mammals, zebrafish 

neuronal progenitors undergo this behavior in the retina and neocortex, and chick neural stem 

cells in the neural tube.  While INM in invertebrates and non-mammalian vertebrates is 

synchronized with the cell cycle stage in the same manner as in mammals, apical nuclear 

movement has mostly been reported to be driven by myosin II rather than dynein (Leung et al., 

2011; Norden et al., 2009).  However, there have been several studies with different findings.  

One study has provided evidence in the zebrafish retina that the dynein cofactor, dynactin, plays 

a role in apical migration (Del Bene et al., 2008).  Inhibition of dynactin not only interferes with 

apical movement, but also stimulates basal nuclear migration.  Another study found that 
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depolymerizing microtubules in the chick neural tube with colcemid blocked apical nuclear 

migration, suggesting that this part of INM is microtubule-dependent (Spear and Erickson, 

2012a).  In contrast, the mechanism driving basal migration has not been studied as thoroughly 

in these systems.  No mechanism has been provided for invertebrates or chick but in zebrafish, 

basal migration has been reported to be driven passively by neighboring apically migrating 

nuclei displacing the nucleus (Leung et al., 2011).  While the basis for the potentially divergent 

mechanisms driving INM between mammals and non-mammals remains unclear, it is likely that 

the evolution of a more complex mammalian neocortex required the co-evolution of different 

molecular forces for INM.  Specifically, the narrower process and greater oscillatory distance of 

INM in the mammalian RGP cell may require forces driven by microtubule-associated motors.         

While the motor proteins that transport the nucleus during mammalian INM may be 

identified, it is only recently that the specific recruitment mechanism of these proteins has begun 

to be unveiled (Figure 1-3).  Furthermore, the participation of cell cycle specific protein kinases 

in this recruitment has also only recently been examined.  The Linker of Nucleoskeleton and 

Cytoskeleton (LINC) complex involving the inner nuclear membrane protein, SUN, and the 

outer nuclear membrane, Nesprin, spans the nuclear envelope (NE) and interacts with the 

cytoskeleton, including microtubule motors (Gundersen and Worman, 2013; Luxton and Starr, 

2014).  Knocking out Nesprin-1 and -2 seem to inhibit apical and basal migration, though 

expressing a dominant negative form of the Nesprins does not have an effect on INM (Yu et al., 

2011; Zhang et al., 2009) (Chapter II). Two G2-specific nuclear pore-mediated NE dynein 

recruitment pathways (involving the nuclear pore proteins RanBP2 and Nup133, and the dynein 

adaptor proteins BicD2 and CENP-F respectively) were also found to recruit dynein to the NE 

and drive apical INM in mammalian RGP cells (Chapter II).  To activate these pathways, Cdk1  
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Figure 1-3: Multiple mechanisms driving interkinetic nuclear migration are observed across different species. 

Interkinetic nuclear migration (INM) is a behavior conserved in epithelial cells of many tissues across multiple 

species.  Conflicting observations of the mechanism driving this behavior however, have been made even within the 

same species.  While further study is required to resolve these discrepancies, it is likely that vertebrate and non-

vertebrate organisms utilize different mechanisms.  In vertebrates, the general model (underlined in the table above) 

is that dynein drives apical nuclear migration while a combination of Kif1a and/or passive displacement drives basal 

nuclear migration.  In invertebrates, the general model (underlined in the table above) is that myosin II drives apical 

migration while passive displacement drives basal nuclear migration.  The dependency of cell cycle progression 

with nuclear position is also controversial.  While cell cycle progression still seems to occur in invertebrates if nuclei 

are arrested away from the apical surface, mixed observations have been reported in mammals.  Whereas disrupting 

centrosomal proteins seem to have no effect on mitotic entry, inhibiting apical migration by disrupting dynein 

recruitement or associated proteins also inhibits mitotic entry. 

 

 

 

 

Animal System Cell Type Apical INM MechanismProteins Examined Mitosis after Pertubation Basal INM Mechanism

Mammalian Neocortex Radial Glial  Cells Dynein/Microtubule Dynein Heavy Chainnot directly tested Kif1a/Microtubule

LIS1 N Passive Displacement

NudC N Myosin II/Actin

RanBP2 N

BicD2 N

Nup133 N

CENP-F N

SUN not directly tested

Nesprins not directly tested

TACC Y

Cep120 Y

Hook3 Y

PCM1 not directly tested

Dock7 not directly tested

Tpx2 not directly tested

Mammalin Retina Retinal Progenitor CellsDynein/Microtubule SUN not directly tested not directly tested

Nesprins not directly tested

Mammalian Liver Hepatoblasts not directly tested n/a n/a not directly tested

Mammalian Midgut Midgut Epithelial Cells not directly tested n/a n/a not directly tested

Mammalian Ureter Ureteric Epithelial cellsnot directly tested n/a n/a not directly tested

Zebrafish Neocortex Neuroepithelial Cells Myosin II/Actin Myosin II Y Passive Displacement

Zebrafish Retina Retina Epithelial Cells Myosin II/Actin Myosin II Y Passive Displacement

Dynein/Microtubule Dynactin Y

Chick NeuroepitheliumNeuroepithelial Cells Microtubule Microtubule not directly tested not directly tested

Drosophila Wingdisc Imaginal Disc Cells Myosin II/Actin Myosin II Y not directly tested

Actin Network Y
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was shown to phosphorylate components within the pathway to recruit various dynein-associated 

proteins, and thereby dynein, to the NE (Chapter III). 

 The close coordination of INM to the cell cycle, prompts the question whether inhibiting 

either INM or cell cycle progression would inhibit progression of the other.  Multiple studies in 

the mammalian neocortex and zebrafish retina have shown that INM is dependent on the cell 

cycle phase.  Arresting RGP cells in G1 phase by overexpressing p18
ink4c

, an inhibitor of the G1-

specific Cdk4/6 kinase, blocks basal migration and causes an accumulation of nuclei at the VS 

(Kosodo et al., 2011).  In RGP cells located in the telencephalon, drug inhibition of S phase 

progression by 5-azacytidine accumulated nuclei away from the VS while drug inhibition of 

G2/M by cyclophosphamide arrested nuclei close to the VS, as determined by the location of 

BrDU+ nuclei after a short BrDU pulse (Ueno et al., 2006).  Tpx2, a microtubule-associated 

protein, was reported to be enriched in the apical process of RGP cells during G2 and 

knockdown of this protein reduced apical migration rates (Kosodo et al., 2011).  Finally, 

inhibitors against the G2-specific kinase, Cdk1, blocked apical migration of retinal progenitors in 

zebrafish (Chapter III).      

 Normally, mitosis only occurs at the VS but it remains unclear whether arresting nuclei 

away from the VS would cause ectopic, basal mitosis (Figure 1-3).  Initial, early data in 

mammals supported a cell cycle independency after INM inhibition but later studies provided 

evidence that inhibiting INM also prevents cell cycle progression.  Studies have claimed that 

disrupting the microtubule network with nocodazole treatment in the mammalian neocortex 

blocked INM and increased the number of basal mitotic events.  Depleting RGP cells of the 

centrosomal proteins, Cep120 and Hook3, as well as the microtubule-associated protein, 

TACC3, were also claimed to cause ectopic mitosis as a result of blocked INM (Ge et al., 2010; 



15 

 

Xie et al., 2007; Yang et al., 2012).  In zebrafish, it was reported that blocking INM by 

disrupting actin with cytochalasin B or disrupting myosin II with blebbistatin did not disrupt cell 

cycle progression (Strzyz et al., 2015).  Similar effects of cytochalasin B was seen in Drosophila 

(Meyer et al., 2011).  However, depleting dynein specifically or many of its interacting or 

recruitment partners (LIS1, RanBP2, BicD2, Nup133, and CENP-F) inhibited both apical 

migration and mitosis in mammalian RGP cells (Tsai et al., 2005) (Chapter II and III).               

Determining the effects of INM inhibition on cell cycle progression is complicated by 

several factors and these factors may contribute to the discrepancy in the above findings.  Firstly, 

because different mechanisms driving INM have been reported even within the same system, the 

reliability of a strategy blocking INM may be called in question.  Secondly, because RGP cells 

are not the only progenitor cell in the brain, it is important to distinguish basal mitotic events 

from IPs and not all of the above studies examined mitosis specifically in RGP cells.  Thirdly, 

the form of disrupting INM may have secondary effects that may rescue a potential cell cycle 

block.  The existence of a specific site within the VZ compotent for mitosis suggests that there 

may be sequestration of mitotic entry signals.  Nuclei that fail to make it to the VS may not 

receive these signals to enter mitosis.  Therefore, disrupting INM by disrupting polarity, the 

centrosome, or junctions, may release signals sequestered to the VS and cause premature mitosis 

independent of INM.  For these reasons, addressing the effects of INM inhibition on cell cycle is 

best done using strategies that minimize perturbations of other cellular functions.  It should be 

noted going forward that, similarly to migration mechanism, the dependency of cell cycle 

progression on INM may also be different between non-mammals and mammals.      

Because the centrosome remains tethered to the VS throughout cell cycle, any 

manipulation that detaches the centrosome would likely detach other apically sequestered 
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proteins or molecules.  The centrosome itself may be among the triggers for mitotic entry in 

mammalian RGP cells because of its role in mitosis, specifically nuclear envelope breakdown 

(NEB) and the spindle pole (Beaudouin et al., 2002; Raaijmakers et al., 2012; Salina et al., 2002; 

Tanenbaum and Medema, 2010).  In the rodent neocortex, the chick neural tube, and zebrafish 

retina, the centrosome has been observed to depart from the VS just prior to mitosis (Spear and 

Erickson, 2012a; Strzyz et al., 2015) (Chapter III).  The centrosome then meets with the nucleus 

as it finishes apical migration, where this behavior has been correlated with NEB.  The role of 

the centrosome was shown to be unessential, however, in zebrafish retina as laser ablating the 

centrosome did not prevent mitotic entry (Strzyz et al., 2015).  The advantages of sequestering 

mitosis to the VS is not clear but because the factors that seem to control asymmetric vs 

symmetric divisions are also sequestered to the VS, controlling inheritance of apically-bound 

organelles is likely facilitated when mitosis occurs at the VS (Florio and Huttner, 2014; Tan and 

Shi, 2013).  This is evident in the zebrafish retina where forced ectopic mitosis away from the 

VS caused the more basal daughter cell to integrate improperly into the epithelium (Strzyz et al., 

2015).               

 The exact function and significance of INM remains largely unclear though several 

studies have examined this further.  Because mitosis occurs only at the VS, this severely limits 

the surface area that is competent for cell division.  Furthermore, a mitotic RGP cell takes 

approximately twice as much space as an interphase cell (Lee and Norden, 2013).  Therefore, 

INM has been hypothesized to clear out nuclei from this site after mitosis.  Space is then made 

available for other nuclei and the neurogenic output can be maximized.  This also allows a much 

greater number of RGP cells to reside within the VZ, without the need of an overly extended VS.  

Inhibiting basal migration by disrupting the basal process through TAG-1 depletion forced an 
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accumulation of nuclei at the VS (Okamoto et al., 2013).  As a result, mechanical strain was 

placed on the neocortex and slightly deformed the brain structure, presumably caused by the 

excess of nuclei at the VS.  Given a severe and long enough defect in basal migration, the 

ventricle may even buckle and invaginate from the number of nuclei that accumulate at the VS.  

Alternatively, given a crowded enough space, any RGP cell nuclei away from the VS may not 

even have enough force generated at the nucleus to apically push past nuclei at the VS and 

therefore, are unable to enter mitosis. 

 Another function of INM may be to regulate cell fate.  Given the highly polarized nature 

of RGP cells, the environment between the VS and the out region of VZ may be different.  

Specifically, it has been proposed that there may be signals that promote symmetric, proliferative 

divisions accumulated at the VS and/or signals that promote asymmetric, neurogenic divisions 

away from the VS (Baye and Link, 2008).  Therefore, the time the nucleus spends at a given 

location within the VZ during the cell cycle may influence its cell fate.  A Notch signaling 

gradient was identified in the zebrafish retina, with a higher concentration localized to the apical 

side of the neuroepithelium (Del Bene et al., 2008).  Slowing apical migration caused these cells 

to exit the cell cycle prematurely and differentiate into neurons.  In addition, increased distance 

of basal migration increased the likelihood that the stem cell differentiated.  The distance 

travelled and the time the nucleus takes to travel this distance is variable from RGP cell to RGP 

cell, and how this is regulated, its potential effects on fate, and whether the signaling is intrinsic 

or extrinsic remains to be further explored.      

Nuclear migration in other neuronal cell types. 

 Bipolar cortical neurons travel the span of the neocortex through the IZ and CP as they 

progress to maturity.  The leading, bipolar basal process of the neuron first advances and is 
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followed by the nucleus/soma in a series of staggered, discontinuous movements (Vallee et al., 

2009b) (Figure 1-4).  Throughout migration, óswellingsô form within the neuron and may act as a 

form of adhesion to adjacent RGP cells (Bellion et al., 2005; Schaar and McConnell, 2005).  

Centrosome movement also occurs during neuronal migration but the movement is staggered 

from nuclear movement (Solecki et al., 2004; Tsai et al., 2007).  The centrosome in neurons 

moves independently of the nucleus and the centrosome often migrates basally of the nucleus, 

upwards to 20 µm in the developing rat neocortex.  Centrosome movement may be dependent on 

the swellings as the centrosome is normally located apically from this formation and is observed 

to migrate towards the swelling.  In the rare scenarios where the centrosome reaches the 

swelling, the movement halts until another swelling appears basally along the process.  The 

sequential movement of the centrosome followed by the nucleus suggests the involvement of the 

centrosome in directing nuclear movement though instances have been reported where the 

nucleus overtakes the centrosome (Sakakibara et al., 2014).  The general discontinuous 

movement between the cell body and the leading process is not limited to cortical neurons and 

the behavior is also conserved in other neuronal types in other brain regions including the 

interneurons from the ganglionic eminence and the granule cells from the cerebellum, as well as 

glial precursors and even glioma cells (Bellion et al., 2005; Farin et al., 2006; McManus et al., 

2004; Solecki et al., 2004).  However, the centrosome-nucleus behavior is not always maintained 

in other forms of neuronal migration (Umeshima et al., 2007).    

Nuclear movement during neuronal migration is driven by the dual involvement of 

myosin II and cytoplasmic (Bellion et al., 2005; Schaar and McConnell, 2005; Solecki et al., 

2004; Solecki et al., 2009; Tsai et al., 2007) (Figure 1-4).  Myosin II is found to be concentrated 

at the rear of the nucleus, suggesting the motor contracts the sides of the cortical neuron behind 
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the nucleus to push it forward.  The microtubule network branch out from the centrosome and 

wrap around the nucleus in a cage-like manner, and dynein force are likely to pull the nucleus 

towards the minus-ends of the microtubules emitting from the basally located centrosome (Rivas 

and Hatten, 1995; Solecki et al., 2004).  RNAi against dynein or LIS1 does not affect extension 

of the leading process despite arresting the nucleus and results in an over-elongated process (Tsai 

et al., 2007).  Furthermore, dynein or LIS1 depletion blocks centrosome movement in addition to 

nuclear movement, and the centrosome remains close to the arrested nucleus.  This block in 

centrosome movement is not observed after myosin II inhibition and in this case, the centrosome 

trails far away from the arrest nucleus.  However, another study found that centrosome 

movement correlated with actin flow and acute inhibition of myosin II affected centrosome 

movement (Solecki et al., 2009).   Because of the involvement of dynein in centrosome 

movement, it is likely that there are dynein forces generated from the swellings in the leading 

process to pull on microtubules extending from the centrosome and thereby transporting the 

microtubule network and the centrosome forward.  Myosin II may also cooperate with dynein for 

proper centrosome positioning.  After centrosome movement, the nucleus is then transported by 

myosin II forces pushing at the back of nucleus as well as potential dynein forces acting from the 

NE to pull the nucleus forward.  Consistent with this model, mechanisms that recruit dynein to 

the NE facilitate this movement, specifically the LINC complex. (Yu et al., 2011; Zhang et al., 

2009).  Disrupting the complex by mice knockout models or dominant negative expression 

abolishes nuclear movement.  Unsurprisingly, disrupting the dynein forces specifically at the 

nucleus does not seem to affect the potential dynein forces at the swelling and the centrosome is 

still capable of basal movement. As a result, the centrosome is found to trail away from the 

arrested nucleus after disruption of the LINC complex.           
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Figure 1-4: Nuclear movement during neuronal migration is a two-stroke process requiring dynein and 

myosin II.  

During neuronal migration the somata moves by sequential, coordinated migration of the centrosome and the 

nucleus.  A swelling forms in the leading process of the neuron (A), basally oriented to the centrosome and nucleus.  

Dynein forces generated at the swelling pulls the centrosome forward (B and C).  Myosin II may also act in this 

process to position the centrosome.  Following centrosome movement, the nucleus migrates towards the centrosome 

(D).  Dynein acts at the nuclear envelope to pull the nucleus while myosin II localizes at the apical end of the 

nucleus to push the nucleus forward.  A swelling then forms further basally along the leading process and the 

process repeats (E).  Figure adapted from (Cooper, 2012)     
 

 

oRGs also undergo nuclear migration but the movement occurs only once, just prior to 

mitosis (Gertz et al., 2014; Ostrem et al., 2014).  This process, termed mitotic somal 

translocation (MST), is a rapid, long-distance migration of the nucleus along the basal fiber, 

towards the CP.  MST was observed to be myosin II-dependent, as blebbistatin abolished this 

movement.  This behavior does not seem to be driven by microtubule-based motors because 

depolymerizing microtubules with nocodazole increased the distance of nuclear migration during 
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MST rather than abolishing it (up to three-fold, over 200 µm in higher mammals) (Ostrem et al., 

2014).  In addition, the centrosome remains at the nucleus throughout this movement.  Myosin II 

activation during MST was shown to be dependent on the Rho effector, ROCK.  In turn, Cdk1 

has been shown to phosphorylate RhoA and the spike of Cdk1 activity that occurs just prior to 

mitosis may be the trigger for MST.  The function of MST, however, is currently unknown.      

Recruitment of dynein to the NE in non-neuronal systems. 

 Nuclear movement is seen in many different cell types during development, ranging from 

C. elegans hypodermal cells to mammalian myotubes to neuronal migration (Fridolfsson and 

Starr, 2010; Wilson and Holzbaur, 2012, 2015; Zhang et al., 2009).  Nuclei positioning plays 

particularly important roles in influencing cellular organization, polarity, and signaling pathways 

(Gundersen and Worman, 2013).  The nuclei move by either attaching to the cytoskeleton or to 

one of its corresponding motor proteins (myosin II, dynein, or kinesin).  Among the most 

common mediator between the NE and the cytoskeleton is the LINC complex, which consist of 

the inner nuclear membrane SUN protein and the outer nuclear membrane Nesprin protein (Cain 

and Starr, 2015) (Figure 1-5).  There are five genes that code the SUN proteins though only two 

of which (Syne-1 and Syne-2) are widely expressed in mammals (Starr and Fridolfsson, 2010).  

These proteins contain a SUN domain, located within the perinuclear space, and the N-terminus 

binds to nuclear lamins at the intranuclear side of the NE, which serves as an anchor.  The 

Nesprin proteins, of which there are four isoforms, contain a KASH domain in the C-terminus 

that interacts with the SUN proteins.  The N-terminus end is exposed to the cytoplasm and 

interacts with actin through TAN lines as well as the microtubule motors, dynein and Kinesin-1 

(Fridolfsson and Starr, 2010; Kutscheidt et al., 2014; Luxton et al., 2010; Ostlund et al., 2009; 

Wilson and Holzbaur, 2015; Yu et al., 2011). 
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Figure 1-5: Dynein is recruited to the nuclear envelope by three pathways. 

Dynein can be recruited by nesprins, which are anchored across the nuclear membrane by its interaction with SUN 

proteins.  Dynein can also interacts with nuclear pores through G2-specific recruitment mechanisms.  The nuclear 

pore RanBP2 recruits BicD2, which forms a complex with dynein and dynactin.  The formation of this complex is 

facilitated by LIS1.  Additionally, the nuclear pore Nup133 recruits CENP-F and NudE, which in turn, recruits 

dynein.  Figure adapted from (Vallee et al., 2012a).   

 

 

    The recruitment of microtubule motors to the NE is also involved in roles outside of 

nuclear movement.  The centrosome in HeLa and U2OS cells is located at variable distance from 

the nucleus during G1 and S phase, but is closely tethered near the NE during G2 (Bolhy et al., 

2011; Splinter et al., 2010).  This change in behavior is likely to keep the centrosome close to the 

nucleus as the cell prepares to enter mitosis promptly and precisely because of the centrosomeôs 

role in NEB and chromosome capture.  Because the minus ends of the microtubules are oriented 

towards the centrosome as the acting microtubule organization center (MTOC), dynein is the 

primary motor involved in maintaining the proximity of the nucleus and centrosome.  Rather 

than using the LINC complex to recruit dynein, these cells employ G2-specific pathways that 

recruit the microtubule motor to the NE through the nuclear pores (Bolhy et al., 2011; Splinter et 

al., 2010) (Figure 1-5).  Because centrosomes are only retained near the nucleus during G2, it is 

likely that pathways active during this specific cell cycle phase are preferred over the cell cycle 

independent LINC complex. 
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 Nup133 and RanBP2 (also known as Nup358) are components of the nuclear pore 

complex that are oriented towards the cytoplasmic side of the NPC and therefore, provide a link 

between the cytoskeleton and the NE (Berke et al., 2004; Pemberton et al., 1995; Wu et al., 

1995; Yokoyama et al., 1995).  The two nucleoporins, however, play different roles within the 

nuclear pore complex.  Nup133 is part of the Nup107-160 subcomplex, consisting of eight other 

subunits, and plays a role in post-mitotic NPC reassembly (Doucet et al., 2010; Wozniak et al., 

2010).  A knockout model of Nup133 survives until E9 with gross development defects and 

Nup133, among other functions, seems to play a role in directing differentiation events (Lupu et 

al., 2008).  Only the C-terminal domain of Nup133 (amino acid 545-1156) seems to play a role 

in nuclear pore assembly but the N-terminal half is required for dynein recruitment to the NE 

(Bolhy et al., 2011).  This domain directly interacts with CENP-F, which recruits the dynein 

regulator NudE and, in turn, recruits dynein.  CENP-F expression increases through the cell 

cycle progresses and accumulates within the nucleus throughout most of G2.  During late G2, 

CENP-F is then farnesylated and exported outside the nucleus for recruitment (Hussein and 

Taylor, 2002).  The CENP-F-NudE recruitment pathway is also active during mitosis, where it 

recruits dynein to the kinetochore (Vergnolle and Taylor, 2007; Zuccolo et al., 2007).     

 RanBP2 interacts tightly with the Ran GTP-activation protein RanGAP1, targeting the 

complex to the nuclear pore complex (Mahajan et al., 1997).  RanBP2 plays a role in 

nucleocytoplasmic transport by acting as a docking factor, but the nuclear pore component is 

also an E3 ligase and acts in conjunction with the ubiquitin-like protein SUMO1 for 

posttranslational modifications (Gorlich and Kutay, 1999; Pichler et al., 2002).  The C-terminal 

end of RanBP2 (amino acids 2142-2293) recruits the dynein adaptor BicD2 during G2, but it can 

also independently recruit kinesin-1 to the NE through a direct interaction (Splinter et al., 2010).  
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The C-terminal end of BicD2 binds to RanBP2 and the N-terminal portion interacts with dynein 

directly for recruitment.  Unlike CENP-F, which mainly plays roles during G2 and mitosis, 

BicD2 is expressed abundantly during G1, where it interacts with the small GTPase Rab6 and 

recruits dynein to the Rab6+ vesicles for transport from the Golgi apparatus (Hoogenraad et al., 

2001; Hoogenraad et al., 2003; Matanis et al., 2002).  During G2, BicD2 no longer associates 

with vesicles and is recruited to the NE instead (Splinter et al., 2010).  BicD2-dependent 

recruitment of dynein to both vesicles and the NE is facilitated with the interaction of dynein and 

its regulatory protein dynactin to ultimately form a BicD2-dynein-dynactin complex (Splinter et 

al., 2012).  In turn, BicD2 also promotes a stable interaction between dynein and dynactin.  LIS1 

also plays a role in stabilizing this recruitment though the means in which it accomplishes this is 

not entirely clear.                   

Dynein and its associated proteins.  

Cytoplasmic dynein is a minus-end directed microtubule motor protein, consisting of 

multiple subunits: heavy chain, light intermediate chain, intermediate chain, and light chain 

(Vallee et al., 2012b).  Two of these complexes dimerize to form a processive, high force motor 

that walks along microtubule in the retrograde direction.  Dynein plays a dominant role in 

retrograde transport but also plays important roles in chromosome dynamics, mitotic spindle 

assembly and orientation, NEB, and growth cone protrusions (Bader and Vaughan, 2010; 

Beaudouin et al., 2002; Bolhy et al., 2011; Caviston and Holzbaur, 2006; Hebbar et al., 2008; 

Jodoin et al., 2012; Raaijmakers et al., 2012; Salina et al., 2002; Splinter et al., 2010; Vallee et 

al., 2009a).  Vesicles and organelles are transported by dynein and in the case of nuclear 

migration or nucleokinesis, the nucleus can act as a cargo for dynein, requiring the concerted 

effort of many dynein molecules to travel along the microtubule network (Fridolfsson and Starr, 
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2010; Lam et al., 2010; Tan et al., 2011; Tsai et al., 2007; Tsai et al., 2010; Wilson and 

Holzbaur, 2012; Yi et al., 2011; Zhang et al., 2010).  These functions are driven by the major 

form of dynein, dynein 1.  A second form of dynein, dynein 2, drives retrograde transport within 

cilia and flagella.          

The heavy chain of dynein is the largest of the subunits (530 kDa) and is comprised of a 

ótailô region at the N-terminal end and the motor domain at the C-terminal end, with a linker 

region connecting the two domains (Carter, 2013).  Binding and movement along the 

microtubule is powered by the motor domain, which is organized in similar fashion to the AAA 

family of ATPases, and exhibits a ring-like structure of six catalytic units.  The motor domain 

runs through a mechanochemical cycle, powered by ATP hydrolysis, and alternates between a 

high-affinity microtubule-binding state and a ópower strokeô that propels the heavy chain forward 

(Kon et al., 2009; Kon et al., 2005).  The coordination of these steps allows the dynein to ówalkô 

along microtubules, moving one of the heavy chains at a time.  The microtubule binding portion 

of the motor domain is located between the fourth and fifth catalytic unit in a region defined as 

the óstalkô (Carter et al., 2008).  The tail region of the heavy chain is involved in dimerization 

and binding to the other subunits of dynein.  These accessory chains mediate cargo binding.   

The light and light immediate chains also help stabilize the dynein complex while the immediate 

chain is often the binding region of the various dynein-associated proteins regulating the motor 

proteinôs processivity (Allan, 2011). 

The movement of dynein along microtubules is heavily influenced by a variety of dynein-

associated proteins.  Several of these proteins play an important role in cargo recruitment and the 

majority of vesicles and organelle transported by dynein is facilitated by adaptor.  Different 

dynein-associated recruitment proteins are involved in the different functions of dynein.  CENP-
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F and BicD2 recruit dynein to the NE during the G2 cell cycle phase while BicD2 also recruits 

dynein to Rab6 vesicles during G1 and S phase (Bolhy et al., 2011; Hoogenraad et al., 2001; 

Matanis et al., 2002; Splinter et al., 2010).  ZW10, a kinetochore protein during mitosis, is 

involved in targeting dynein to mitotic kinetochores but has also been implicated in dynein 

recruitment to the Golgi apparatus for vesicle trafficking (Varma et al., 2006; Yang et al., 2007).  

Many of dyneinôs functions within the cell are also regulated by a combination of three main 

regulators of dynein activity: dynactin, LIS1, and NudE (Vallee et al., 2012b).   

  Dynactin is a large, multi-subunit complex involved in most aspects of dynein function.  

The working subunit of dynactin, p150
Glued

, is comprised of a CAP-Gly domain that binds to 

microtubules and a pair of coiled-coil domains, with the first coiled-coil region interacting with 

dynein (Ayloo et al., 2014; Culver-Hanlon et al., 2006; Kardon et al., 2009; King and Schroer, 

2000; McKenney et al., 2014; Moughamian and Holzbaur, 2012; Tripathy et al., 2014; 

Urnavicius et al., 2015).  The interaction of dynactin with dynein and microtubules increases 

dynein processivity along microtubules.  LIS1 and NudE often act in concert to promote dynein 

activity and have been shown in vitro to act in a complex to induce dynein to a persistent-force 

state under high loads (McKenney et al., 2010; Torisawa et al., 2011).  Such a state is likely 

required for transportation of larger cargo, such as the nucleus.  NudE contains a globular C-

terminal domain that associates with the intermediate chain of dynein and a coiled-coil domain 

that recruits LIS1 (Feng et al., 2000; Niethammer et al., 2000; Sasaki et al., 2000; Stehman et al., 

2007; Tai et al., 2002; Tarricone et al., 2004).  LIS1 then binds within the catalytic ring (between 

the third and fourth unit) of the dynein motor domain (Huang et al., 2012).  The separate role of 

each protein individually, however, has different effects and in the absence of LIS1, NudE 

inhibits dynein binding to the microtubule despite no clear interaction with the motor domain 
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(McKenney et al., 2010).  LIS1, in the absence of NudE, remains bound to the motor domain of 

dynein and promotes microtubule binding of dynein.  Because NudE facilitates LIS1 and dynein 

binding, LIS1 alone acts at a lower efficiency than in combination with NudE.  However, a later 

study reported that while LIS1 without NudE promotes microtubule binding, it also prevents 

dynein from detaching from microtubules (Huang et al., 2012).         

The Kinesin families and KIF1a. 

 While dynein is divided into only two classes, dynein I (predominantly cytoplasmic) and 

dynein II (axonemal), there are fifteen kinesin families with multiple kinesins within each family 

(Hirokawa and Tanaka, 2015; Vallee et al., 2012a).  Most kinesins serve a similar function as 

dynein in vesicle or organelle transport along the microtubule network, but transport cargo in the 

opposite plus-end direction (Hirokawa et al., 2009b).  These kinesins (Kinesin-1, -2, and -3) 

generally act as a dimer, with an N-terminal motor domain that drives ATP hydrolysis and 

microtubule binding (Verhey et al., 2011).  ATP hydrolysis facilitates movement in a óhand over 

handô manner where the motor domain of one subunit binds to the microtubule and the motor 

domain of the other subunit releases and extends forward along the microtubule (Asbury et al., 

2003; Kaseda et al., 2003; Yildiz et al., 2004).  The C-terminal end of plus-end directed kinesins 

contain the cargo-binding site but, in some kinesin families such as Kinesin-1, the region also 

exhibits autoinhibitory function and folds on itself to prevent microtubule binding (Coy et al., 

1999; Friedman and Vale, 1999; Verhey and Hammond, 2009).  In other kinesin families, such 

as Kinesin-3, the óstalkô region just downstream of the motor domain plays autoinhibitory as well 

as dimerization roles (Hirokawa et al., 2009a; Huo et al., 2012; Lee et al., 2004).  Unlike dynein, 

where a host of associated proteins have been identified to facilitate efficient cargo transport, less 

is understood about the regulation of kinesin activity, largely because associated molecules are 
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often specific even within members of a given kinesin family.  Various Rab GTPases and protein 

kinases have been identified to play a role in regulating motor-cargo interaction while post-

translational modification along the microtubule track itself influences the affinity of kinesin 

binding (Bulinski, 2007; Hirokawa and Tanaka, 2015; Verhey and Rapoport, 2001).  Different 

MAPs along the microtubule have also been suggested to positively and negatively influence the 

binding of various kinesins to the microtubule (Cai et al., 2009).  Finally JNK-interacting 

proteins, JIPs, are scaffolding proteins that facilitate kinesin-dependent transport of cargo by 

responding to signaling pathways within the cell (Inomata et al., 2003; Koushika, 2008; Sun et 

al., 2011; Verhey et al., 2001).             

In contrast to dynein, which has more universal roles among cell types, the diversity 

among kinesins leads towards specialization of the kinesin families (Hirokawa et al., 2009b; 

Verhey and Hammond, 2009).  A small subset of kinesins are minus-end directed along the 

microtubules (Kinesin-13) while others play a role in depolymerizing microtubules (Kinesin-14) 

(Gupta et al., 2006; Tulu et al., 2006; Varga et al., 2006).  The location of the motor domain 

differs in these kinesins with the motor domain at the C-terminal end in minus-end directed 

kinesins and the motor domain towards the middle of the microtubule-depolymerizing kinesins.  

Finally, certain kinesin families function specifically during mitosis, playing roles in 

chromosome positioning (Kinesin-4 and -10) and spindle pole orientation/separation (Kinesin-5, 

-6, and -12), with minimal roles in vesicle transport during interphase (Verhey and Hammond, 

2009).  Regulation of these kinesins largely occurs by controlling differences in protein levels, 

sequestration, and activation by Ran GTPases. 

 KIF1a, a member of the Kinesin-3 family, is a 191 kDa plus-ended microtubule directed 

kinesin that plays a dominant role in transporting synaptic vesicle precursors such as 
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synaptophysin, synaptotagmin, and Rab3a GTPase in neurons (Hall and Hedgecock, 1991; Niwa 

et al., 2008; Okada et al., 1995; Yonekawa et al., 1998).  However, KIF1a has been implicated in 

other roles including other types of vesicle transport in neural and non-neural cell types: BDNF 

in neurons, p75 in non-polarized MDCK cells, and nucleus transport in RGP cells (Lo et al., 

2011; Tsai et al., 2010; Xue et al., 2010).  Originally identified as a monomer with weak 

transport capabilities, later studies have shown that KIF1a dimerizes in vivo to greatly increase 

processive movement (Huo et al., 2012; Nitta et al., 2004; Okada and Hirokawa, 1999, 2000; 

Tomishige et al., 2002; Yue et al., 2013).  As a monomer, KIF1a moves along the microtubules 

by alternative electrostatic interaction between positively charged K-loop among its motor 

domain and the negatively charged E-hook of the C-terminal end of the microtubule.  This 

interaction causes KIF1a to never fully detach from the microtubule and diffusional forces bias 

movement towards the next binding site in the plus-end direction.  In its more dominant form as 

a dimer, KIF1a hydrolyzes ATP in its motor domain to drive motion in a classic óhand over 

handô manner.   

Unlike the conventional Kinsein-1 family, which consists of a heavy and a light chain, 

each KIF1a monomer consists of a single subunit (Nitta et al., 2004; Nitta et al., 2008) (Figure 1-

6).  Like other plus-ended directed kinesins, the motor domain of KIF1a is located at the N-

terminus.  A short coiled-coil domain called the neck coil is just downstream of the motor 

domain and initiates dimerization.  A series of three short non-continuous coiled-coil domains 

(CC1, CC2, and CC3) follows this initial neck coil and plays a dominant role in regulating KIF1a 

activity (Al -Bassam et al., 2003; Hammond et al., 2009; Huo et al., 2012; Yue et al., 2013).  A 

forkheaded-assocation (FHA) domain is located between CC1 and CC2 and is part of the motor 

regulatory region.  CC1 directly sequesters the neck coil to prevent dimerization whereas the 
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FHA domain facilitates dimerization by interacting with CC1 and preventing CC1 from further 

interacting with the neck coil.  Finally, CC2 supports CC1 activity by interfering with FHA 

function.  The role of CC3 is largely uncharacterized but there is evidence suggesting its role in 

facilitating cargo binding.  The cargo binding domain is at the C-terminal end of the protein and 

the large region between CC3 and the cargo binding domain, an area consisting of over half of 

the protein, is uncharacterized.  The cargo binding area is made up of the Pleckstrin homology 

domain (PH), a 120 amino acid sequence that recognizes phosphatidylinositols (Klopfenstein and 

Vale, 2004; Xue et al., 2010).  These lipids line many of the membranes in cells, including 

vesicles, and the PH domain of KIF1a has been show to interact directly with its cargo in this 

way.  Because KIF1a has been shown to facilitate nuclear movement, presumably by directly 

transporting the nucleus as the cargo, this suggests that there are phosphatidylinositols associated 

with the nuclear membrane.  The exact role of the PH domain in basal INM in RGP cells, 

however, has yet to be explored.      

 

 

 

Figure 1-6: Kif1a is a homodimer that consists of multiple domains to regulate motor activity . 

Like other kinesins, the motor domain of Kif1a is involved in microtubule binding and ATP hydrolysis to drive 

transport.  Though Kif1a has been found to function as a monomer, dimerization greatly increases Kif1a 

processivity.  The neck linker initiates dimerization and is regulated by a series of downstream domains.  CC1 

activity prevents dimerization and is inactivated by the forkhead-association (FHA) domain.  CC2 promotes CC1 

activity by sequestering the FHA domain.  The Pleckstrin homology (PH) domain is the cargo binding portion of 

Kif1a, which is facilitated by CC3. 
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CHAPTER 2 

 

DYNEIN RECRUITMENT TO NUCLEAR PORES  ACTIVATES APICAL 

NUCLEAR MIGRATION AND  MITOTIC ENTRY IN BRAIN PROGENITOR 

CELLS. 
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Summary 

Radial glial progenitors (RGPs) are elongated epithelial cells which give rise to neurons, glia, 

and adult stem cells during brain development.  RGP nuclei migrate basally during G1, apically 

using cytoplasmic dynein during G2, and undergo mitosis at the ventricular surface.  By live 

imaging of in utero electroporated rat brain, we find that two distinct G2-specific mechanisms 

for dynein nuclear pore recruitment are essential for apical nuclear migration.  The ñRanBP2-

BicD2ò and ñNup133-CENP-Fò pathways act sequentially, with Nup133 or CENP-F RNAi 

arresting nuclei close to the ventricular surface in a pre-mitotic state.  Forced targeting of dynein 

to the nuclear envelope rescues nuclear migration and cell cycle progression, demonstrating that 

apical nuclear migration is not simply correlated with cell cycle progression from G2 to mitosis, 

but rather, is a required event.  These results reveal that cell cycle control of apical nuclear 

migration occurs by motor recruitment, and identify a role for nucleus- and centrosome-

associated forces in mitotic entry.  
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Introduction  

Radial glial progenitor (RGP) cells are precursors for the majority of neurons and glia in 

the vertebrate neocortex, as well as for adult stem cells (Götz and Huttner, 2005; Kriegstein and 

Alvarez-Buylla, 2009).  RGPs are elongated epithelial cells which span the neural tube and 

developing cortex from the ventricular to the pial surface.  They are highly proliferative (Noctor 

et al., 2001), but also serve as tracks for the migration of postmitotic neurons (Rakic, 1988).  For 

these reasons, these cells play a uniquely important role in the development of the nervous 

system.   

RGP cells also exhibit a distinctive and, until recently, largely mysterious form of cell-

cycle dependent oscillatory nuclear movement known as interkinetic nuclear migration (INM) 

(Kosodo, 2012; Lee and Norden, 2012; Sauer, 1935; Spear and Erickson, 2012a; Taverna and 

Huttner, 2010).  Mitotic divisions of RGP cells occur at the apical end of the cell, close to the 

ventricular surface of the developing neocortex (Figure 3A).  The nuclei of RGP cells then 

ascend ñbasallyò during G1, undergo S phase, and return apically to the ventricular surface 

during G2, where they again undergo mitosis.  INM is a conserved form of behavior observed in 

multiple species and in the development of various tissues (Kishimoto et al., 2013), including 

mammalian and zebrafish neocortex and retina (Leung et al., 2011) and Drosophila imaginal 

disc (Meyer et al., 2011). The developmental purpose of this behavior is unknown, though it has 

been suggested that it contributes to cell fate regulation (Del Bene et al., 2008) or to maximize 

the packing density of proliferating cells (Kosodo, 2012).   

The underlying mechanisms responsible for INM, its relationship to cell cycle 

progression, and the basis for spatial control of mitosis remained largely unaddressed until 

recently.  We previously reported roles for microtubule motor proteins in INM (Tsai et al., 2005; 
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2010).  By live imaging of the rat brain, we observed that centrosomes of RGP cells remain at 

the ventricular terminus throughout INM (Tsai et al., 2010).  Microtubules were almost 

uniformly oriented with their minus ends directed toward the ventricular surface and their plus 

ends oriented basally.  Consistent with this arrangement, we found that RNAi for the microtubule 

plus end-directed kinesin, KIF1A, specifically inhibited basal nuclear migration, whereas RNAi 

for cytoplasmic dynein and its regulator LIS1 specifically inhibited apical nuclear migration 

(Tsai et al., 2010).  Another study found that inhibition of the dynein-cofactor dynactin interferes 

with apical, but stimulates basal nuclear migration in zebrafish retinal neuroepithelial cells (Del 

Bene et al., 2008).  Roles for myosin II in INM in that system (Norden et al., 2009) and in basal 

nuclear migration in the embryonic mouse neocortex have also been reported (Schenk et al., 

2009).  No such role was detected in our own rat brain studies (Tsai et al., 2010), and the basis 

for the divergent results remains uncertain.  A role for microtubules in the early stages of 

vertebrate brain development has also been supported by RNAi for diverse centrosomal and 

microtubule associated proteins (Ge et al., 2010; Kosodo et al., 2011; Yang et al., 2012).    

Although centrosomes remain associated with nuclei during migration in a wide range of 

cell types, the centrosome-independent nuclear migration we have observed in rat brain RGP 

cells (Tsai et al., 2010) suggests that motors might act locally from the nuclear surface.  Such a 

mechanism has been implicated in the transport of nuclei within mammalian myotubes (Cadot et 

al., 2012; Wilson and Holzbaur, 2012) and C. elegans hypodermal cells (Fridolfsson and Starr, 

2010).  In the latter case, cytoplasmic dynein is recruited to the nuclear envelope (NE) by a 

combination of nesprin and SUN proteins (the ñLINCò complex), which together span the outer 

and inner NE (Fridolfsson et al., 2010; Starr and Fridolfsson, 2010).  Members of these gene 
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families have also been implicated in neuronal migration in the developing mouse brain using 

genetic and RNAi approaches (Zhang et al., 2009). 

Additional mechanisms for dynein recruitment to the NE have been identified in G2 

phase HeLa and U2OS cells.  NE dynein has been reported to facilitate NE breakdown (NEB) 

(Beaudouin et al., 2002; Hebbar et al., 2008; Salina et al., 2002) and tether the nascent mitotic 

spindle to the NE for pole separation (Raaijmakers et al., 2012) and efficient chromosome 

capture  (Bolhy et al., 2011; Jodoin et al., 2012; Splinter et al., 2010).  Dynein is linked to the NE 

via interactions originating from two distinct nuclear pore components (Figure 2-1A-2-1B).  The 

nucleoporin RanBP2 recruits BicD2, which, in turn, recruits both cytoplasmic dynein and its 

regulatory complex dynactin to the nuclear surface (Splinter et al., 2012; 2010).  Nup133, 

another nucleoporin, independently recruits CENP-F (Bolhy et al., 2011).  CENP-F, in turn, 

recruits NudE and NudEL, each of which bind directly to cytoplasmic dynein and its regulator 

LIS1 (Mckenney et al., 2010; Niethammer et al., 2000; Sasaki et al., 2000).  This latter 

mechanism for dynein recruitment becomes active in late G2-prophase (Bolhy et al., 2011), 

though the extent of temporal overlap with the BicD2 pathway is uncertain.   

   We reasoned that, because apical INM is dynein-dependent and occurs during G2, related 

mechanisms might play a role in INM in the developing brain.  The mer mouse, which has a 

missense mutation in Nup133, in fact, shows defects in early embryonic brain development, 

though the underlying mechanism was not explored (Lupu et al., 2008). We report here that 

interference with each of the G2-specific dynein recruitment pathways specifically inhibits 

apical, but not basal nuclear migration, providing evidence that these pathways are important in 

brain development and supporting a role for NE dynein in INM.  Inhibition of the BicD2 and 

Nup133 pathways arrests nuclei early vs. late in apical migration, respectively, and in each case, 
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in a premitotic state.  Forced recruitment of dynein to the NE rescues apical migration and 

provides experimental evidence for spatial control of mitotic entry.  These results provide insight 

into the role of microtubule motor proteins in INM, and the first clues into the mechanism for its 

cell cycle control. 
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Results 

Relative roles of NE dynein recruitment factors in non-neural cells in vitro.  

 As a basis for interpreting the relative roles of the three NE dynein recruitment 

mechanisms (Figure 2-1A) in vivo, we examined their temporal interrelationship further.  The 

RanBP2-BicD2 and Nup133-CENP-F pathways (hereafter termed the ñBicD2ò and ñNup133ò 

pathways, referring to the most upstream component targeted in this study) have each been 

implicated in G2-mediated force generation between the centrosome-centered microtubule array 

and the NE (Beaudouin et al., 2002; Bolhy et al., 2011; Salina et al., 2002; Splinter et al., 2010).  

The participation of Nup133 and RanBP2 in the two pathways suggested that dynein might 

directly localize to nuclear pores, rather than to the entire NE surface.  Using 3D-structured 

illumination microscopy (3D-SIM), we found that dynein, dynactin, and BicD2 appeared as 

discrete puncta along the NE (Figure 2-1C).  The puncta were significantly associated with the 

nuclear pores in G2 HeLa cells, supporting specific nuclear pore associations underlying dynein 

linkage to the NE.     

We observed that CENP-F localization to the NE was restricted to prophase cells, 

identified by phosphohistone H3 (PH3) staining and DNA condensation, whereas BicD2 was 

observed at the NE in nearly all cyclin B1+ cells (not shown).  This suggests that the BicD2 

pathway becomes active prior to the Nup133 pathway.  As a test of this possibility, we double-

labeled HeLa cells with anti-CENP-F and anti-BicD2 antibodies (Figure 2-1D).  We found only 

21.4% ±5.7 of BicD2-positive nuclei to react with anti-CENP-F (n=107), whereas 100% of 

CENP-F-positive nuclei reacted with anti-BicD2 (n=64).  These data support early G2 activation 

of the BicD2 pathway, and an additive role for the two pathways late in G2-prophase.   
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Figure 2-1: Mechanisms for cytoplasmic dynein recruitment to the nuclear envelope.  

A. Diagram representing G2-specific NE dynein recruitment mechanisms via nucleoporins Nup133 and RanBP2.   

Dynein is also shown linked to the NE by SUN-nesprin complexes, a mechanism not known to be cell cycle 

regulated.  B. Triple staining with anti-dynein, anti-Cyclin B1, and DAPI (DNA) showing NE dynein localization 

specifically in cyclin B1 expressing HeLa cells.  C. 3D-Structured Illumination Microscopy (3D-SIM) revealing the 

association of BicD2, dynein, and dynactin with HeLa cell nuclear pores, marked using Mab414 and anti-RanGap1.  

D. HeLa cells were double-labeled with anti-BicD2 and anti-CENP-F antibodies to test for temporal overlap 

between the two cell cycle-dependent NE dynein recruitment mechanisms.  All cells exhibiting CENP-F-positive 

NEs were also positive for BicD2, but only a fraction of BicD2-positive cells showed NE CENP-F staining. 

 

We also evaluated the distribution and function of nesprin-SUN complexes in 

nonneuronal cells.  As judged by immunostaining, Nesprin-1 and -2 were present at the HeLa 

cell NE throughout the cell cycle (Figure 2-2A).  Expression of a dominant negative KASH 

domain construct, RFP-KASH (Luxton et al., 2010), which interferes broadly with nesprin-SUN 

interactions, displaced Nesprin-1 and -2 from the NE, but had no detectable effect on dynein 

localization (Figure 2-2B-2-2C).  These results support a primary role for the Nup133 and BicD2 

mechanisms in dynein NE recruitment in HeLa cells. 
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Figure 2-2: Nesprins are not required for dynein recruitment to the HeLa NE during G2.  

A. Immunostaining of Nesprin 1 and 2 in HeLa cells revealed NE localization in cyclin B1-positive as well as cyclin 

B1-negative cells.  B. Overexpressed KASH-RFP dominant negative clearly decorated the NE in most cells, and 

displaced both Nesprin 1 and 2 (n=394 and 399 cells, respectively).  C. Overexpression of the KASH-RFP dominant 

negative causes minimal displacement of dynein from the NE of G2 cells identified by cyclin B1 staining (n=163 

control cells and 179 transfected cells).  ***P<0.001; N.S., Not Significant; Error bars = S.D.  
 

NE dynein recruitment in rat brain development. 

 We also tested whether dynein could be detected at the NE in RGP cells in situ by 

immunostaining.  The high levels of soluble and vesicular dynein in cytoplasm have historically 

made its localization difficult even in flat, non-neuronal cells.  Using minimal fixation, however, 

we detected clear dynein staining at the nuclear rim in some, but not all, RPG cells in the 

ventricular zone of the E20 rat neocortex (Figure 2-3).  We also observed double-labeling of 

nuclei with anti-dynein and anti-BicD2 antibodies, supporting a potential role for the 

nonneuronal dynein recruitment mechanisms in RPG cells.   
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Figure 2-3: Dynein and BicD2 localizes to the nuclear envelope in RGP cells.  

A. NE labeling in the ventricular zone (VZ) in E19 rat brain sections.  Top row, NE dynein staining was seen in a 

subset of RGP cells (yellow arrowhead), but absent in others (blue asterisks).  RGP cells were identified by Pax6 

immunostaining.  Bottom, dynein and BicD2 colocalize at the NE, with many BicD2-positive cells also positive for 

dynein.  Confocal microscopy was used throughout unless otherwise stated.  B. As negative controls, secondary 

antibodies produced no detectable signal at the NE of RGP cells in rat brain sections. 

 

To test this possibility more directly, we expressed shRNAs for the NE dynein 

recruitment genes using in utero electroporation in E16 rat brain, each of which were found to 

reduce target expression levels in Rat2 cells (Figure 2-4).  In E20 control rat brain, we observed 

extensive distribution of neurons throughout the outer regions of the developing neocortex, the 

intermediate zone (IZ) and cortical plate (CP; Figure 2-5A-2-5B).  In contrast, cells expressing 

shRNAs for BicD2, Nup133, and CENP-F exhibited severe impairment in neuronal distribution, 

evidenced by an almost complete absence of cells in the IZ and CP regions.  This effect was 

similar to that previously observed for LIS1 and dynein RNAi (Figure 2-5A) (Shu et al., 2004; 

Tsai et al., 2005), consistent with a role for the recruitment genes in dynein regulation.  Triple 

mutant shRNAs for BicD2 and Nup133 had no effect on neuronal distribution (Figure 2-6A).  

RNAi targeting of BicD1, a BicD2 paralogue that participates in targeting of dynein to the Golgi  
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Figure 2-4: shRNA knockdown of Nup133, CENP-F and BicD2. 

A. Relative mRNA levels in Rat2 cells, 48 hour post-transfection with Nup133, CENP-F or BicD2 shRNA plasmids 

measured by quantitative Real Time PCR (qRT-PCR).  Levels were normalized against ɓ-actin.  B. BicD2 protein 

knockdown in Rat2 cells expressing BicD2 shRNA plasmid for 3 days.  C. GFP3X-mNup133 knockdown by 

coexpression of Nup133 shRNA or triple mutant Nup133 shRNA plasmids in HeLa cells.  Error bars = S.D.   

 

apparatus, but has no role at the NE (Splinter et al., 2010), produced no effect on neuronal 

distribution (Figure 2-5A).   

BicD2, Nup133, and CENP-F RNAi each caused a reduction in the number of 

postmitotic neurons as judged using the neuronal marker, NeuN (Figure 2-5C).  Of the NeuN-

positive cells, most were located in the SVZ and had a multipolar morphology, though a few 

bipolar cells could also be detected in the lower IZ in the case of BicD2 and CENP-F RNAi 

(Figure 2-5D).  Together, these results suggested that passage through the stages of neurogenesis 

and migration, including the multipolar-to-bipolar transition, was inhibited.  RNAi for BicD2, 

Nup133, and CENP-F each caused an increase in the percentage of RGP cells as determined by 

Pax6, a marker specific for RGP cells (Figure 2-5C).  These observations suggested a failure in 

the initial stages of neurogenesis.  
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Figure 2-5: Inhibition of dynein NE recruitment mechanisms affects overall neuronal migration in embryonic 

rat brain.  

A. E16 rat embryonic brains were subjected to in utero electroporation with the pRNAT vector expressing shRNAs 

corresponding to the genes noted along with a fluorescent reporter, or with an RFP-KASH construct (n=3 brains per 

condition).  Brain tissue was fixed and sectioned at E20.  Expression of BicD2, Nup133, or CENP-F shRNAs 

resulted in a marked reduction in distribution of electroporated cells throughout the intermediate zone (IZ) and 

cortical plate (CP), comparable to the effects of LIS1 shRNA.  KASH expression resulted in an intermediate cell 

redistribution phenotype.  No clear effect was observed for BicD1.  Scale bar = 50 µm.  B. Quantification of 

transfected cells within the VZ, subventricular zone (SVZ), and IZ+CP show an increase in Nup133, CENP-F, and 

BicD2 shRNA-expressing cells in the SVZ, and a decrease in the IZ+CP.  C. Quantification of Pax6+ (RGP) and 

NeuN+ (neuronal) cells in brain electroporated with BicD2, Nup133, or CENP-F shRNA shows an increase in RPG 

cells and a decrease in neurons.  D. Quantification of NeuN+ neurons that exhibited a migratory, bipolar 

morphology supports a loss in migrating neurons.  *P<0.05; **P<0.01; ***P<0.001; N.S., Not Significant; Error 

bars = S.D. 
 

 

 

 

 


