2010 Reports
Automatic Identification of Errors in Arabic Handwriting Recognition
Arabic handwriting recognition (HR) is a challenging problem due to Arabic's connected letter forms, consonantal diacritics and rich morphology. In this paper we isolate the task of identification of erroneous words in HR from the task of producing corrections for these words. We consider a variety of linguistic (morphological and syntactic) and non-linguistic features to automatically identify these errors. We also consider a learning curve varying in two dimensions: number of segments and number of n-best hypotheses to train on. We additionally evaluate the performance on different test sets with different degrees of errors in them. Our best approach achieves a roughly ~20% absolute increase in F-score over a simple but reasonable baseline. A detailed error analysis shows that linguistic features, such as lemma models, help improve HR-error detection precisely where we expect them to: semantically inconsistent error words.
Subjects
Files
- CCLS-10-02.pdf application/pdf 368 KB Download File
More About This Work
- Academic Units
- Center for Computational Learning Systems
- Publisher
- Center for Computational Learning Systems, Columbia University
- Series
- CCLS Technical Report, CCLS-10-02
- Published Here
- December 20, 2010