Strain Engineering,Quantum Transportand Synthesis of

Atomically-thin Two -dimensional Materials

Abdolah (Al) MotmaenDadgar

Submitted in partial fufillment of the
requirements for the degree of
Doctor of Phiosophy

in the Graduate School Afts and Sciences

COLUMBIA UNIVERSITY
2017



©2017
Abdollah (Al) Motmaen Dadgar
Al rights reserved



Abstract:
Strain Engineering,Quantum Transportand Synthesis of
Atomically-thin Two-dimensional Materials

Abdollah (Al) Motmaen Dadgar

Two-Dimensional (2D) mat&ls such as graphenelransiton Metal Dibalcogenides
(TMDs) and Metal Monochalcogenides (MMaje the next generation of smakvicesbecause
of their outstanding novel propertieslonolayer (one molecule thick.) ¢&dmous TMDssuch as
MoSz, MoSe, WS and WSe exhibit thenomenal physical proges including but not imited to
low-energy direct bandgap andarge piezoelectric response Thesehave made them potential
candidats for cuttingedge electronic and mechanicalevices such asovel transistors and RN
junctions, on-chip energy ®rage and piezoelectric devices which could applied in smart
sensorsand actuatorstechnologies Additionally, reversible structural phase transition in these
materials from semiconductinghase(pO to metallic phase(p”Y) as a function of straimprovide
conpeling physics which facilitates new era of sophisticated flexoelectric deviogsl switches
anda giant leap in new regime of transistors.

One iconic characteristics of monolayer 2D materials is their incredible stretchability which
alows themto be subjected to several percent sir@iefore yielding In this thesisl provide facile
technique based on polymer encapsulation to apply several percent (@&Stplable, non
destructive andeproducible strasm This is the highest reproduciblérasn reported so farrhen |
show our experimental techniques and object detection algorithm to verify the amount of strain.
These folowed up by device fabrication techniques as welldspthpolarized and unpolarized

Raman spectroscopyrhen, | show interesting physics of monolayer and biayer TMOxder



strain and how their photoluminescence behavidiange under tensie and compressive strains.
Monolayers of TMDs and MMexhibit 1-10 larger piezoelectric coefficients comparing to bulk
piezo materis. These surprising characteristics together with being able to &g/ range

strains, opens a new avenue of piezoelectricity with enormous magnitudes higher than those
commercially avaiable. Further on 2D materidlsshow our transport experimentsn doped and

pristine graphene micro devices and unveil the discoveries of magneto conductance behaviors. To
complete, we present our computerized techsigard experimental platfosnto make these 2D

materials.
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Preface

This thesis is dividednto four parts. Part A which covers chapter8 firovides basic science
to understand 2D miosystems. Part B, chapters64s the main body of this thesis which gives
experimental and theoretical dies of mechanical deformation and str@nmicrosystens. Part
C - chapter 7 and &laborates quantum transport of 2D devices focused on pristine-dooed
graphene. Part D covers the experimental methods of manufacturing these materials; graphene and
TMDs presented in chapter 9 andr&8pectively.

In Pat AT chapters 1, 2 and Bprovide some briefphysics of 2D systems which is crucial
to understand the rest of the thesis. Starting with principles of quantum mechanics, we present the
foundations of 2D devices with their exceptional physical propeiés.then introduce famous
materials such as graphene and TMDs focusing on their structural characteristics such as
polymorphism, electronic and phonon structures, Van der Waals interactions, etc.

Part B consting chapters 4, 5, @onvey the main messagé this thesis: strairengineering
of two-dimensional microsystems. In chapter 4, we first discuss different types of strains
applicable to 2D microsystems: uniaxial stress, uniaxial strain, plane $tredsfor thin
membranes and plane strain for thickdevices. Then we introduce al possible methods for
applying strain. At the end of this chapter, we introduce our novel technique to apply
groundbreaking and controllable straivoreover, chapter 5 is dedicated some sthtihe-art
fabrication techniges which are crucial to understand device requirements for this dissertation.
Finally, chapter 6 are main experimental results which is divided into chapteR&rtan Signals
Processing and 6i2Photoluminescence Signals Processing.

Part C comprises chters?7 and 8 It presents interesting results of transport measureme nts
of pristihne and fdoped graphene. In these measurements we explain how magneto resistance is

diferent in two different types of graphene micro devices. We use advanced data analysis

Vi



techniques to discover the giant temperature dependence and inherent oscillation of conductivity
of ndoped graphene in differerdarrier densities with various magnetic fields, which do not exist
in pristine graphene devices.

Part D at the end of this tis, provides detailed technology of growing graphene and how
to dope it with nitrogen. Then, we explain the Chemical Vapor Deposition (CVD) techniques to
grow single layer TMDs in the fully computerized furnace setup we made for this purpose. We
represeniour results on MoSewvhich we successfully made it for the first tiresince there was

no report at that time (2013).

vii



PART A
PHYSICS OF TWO DIMENSIONAL MICRISYSTEMS




CHAPTER 1

An Introduction to Two Dimensional Materials



1.1Physics in Two Dimengonal Limits

Two dimensional (2D) or layered materials which exhibit stronglane covalent bounds
and weak van der Waals enkplane forces have attracted incredible attention because of their
unusual astonishing phenomenbhese properties eattributed to modulation of band structure

and quantum limitations of density of states while moving from butkitoandsingle layers.

Graphene

Grapheneis the most famous 2D material andist well known for its novel optical,
electroni@al and mechanical propertiesn 2004 Novoselov and Geim demonstrated novel
technique of single layer exfoliation of graphene revealing its interesting physical properties.
These properties are the reasons of linear energy dispersion of single layenegrapKegpoint.
Those properties directed researchesew field of FermiDirac physics. Figure 1:1 shows a

single layer graphene aiicallotropes in Carbon Nano Tubes (CNTSs) and carbon balls[1] [2]

Figure 1.1-1- Various allotropes of gghene formed in honeycomb lattice. Top left: single layer graphene, top right:
how stacks of monolayers are formed; bottomleft: carbon nano tube (CNT) which is considered as rolled monolayer
graphehe; bottomright: C60, a monolayer graphene in spharioa[2]



Graphene unit cell and lattice vectors

Figure 1.1-2- WignerSeitz unit cell and lattice vectors of graphene in real space. A and B show different sublattices

in honeycomb structure of graphene

In order to understand the plysiof solds we need to understand the atomic structure and the
unit cell which presents the repeating structure of solids. The unit cell simplifies the structure.
WignerSeitz cell is the locus of points in tleeystal that are the closet to the latticeinfs.
These points represent theidatt vectors as shown in Fig. 12tfor graphene structure:
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Once we have the lattice vectors in Wigsitz unit cell in real space, we can produce the

reciprocal lattie (RL) which presents the momentum space. The primitive cell for momentum



space is called Brilouin Zone (BZyhich is a WigneiSeitz cell of reciprocal latticeAccording
to the quantum mechanics and the free electron model, for periodic lattice, thi@pdelso
periodic. According tanBltoomdssotluéeooem,oft IBehr w
(SE), when the potential is periodig fer two dimensional lattice

o Q20 ahw

Wheref oftoi s the steady state sol utouldbewierfasShr odin

° 2T 4 o
& oo [ [
This equation is called time i ndeRlatonsg it Schr

lattice vector, Qs wave or momentum vectas,is Dirac constant(x is the massis potential

andOis constant.

In order the wave equatioto be periodic, théQ © part oftheBl ochds t heorem s
periodic tlen we simply have:
Q¢ po @
Now we wil use this relation to produce th@mentum space or BZ in graphene. In three
dimensional space, we can write reciprocal vectors as following:
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Then for graphene which is in two dimensional space, we wil have:
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As stown below, these two vectors represent the first BZ in the momentum space:
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Figure 1.1-3- WignerSeitz unit cellof Reciprocal Lattice of graphene which is the first Brilouin Zone

Which provides two different energy dispersions corresponding to ifilecedt sublattices A
and B, shown in Fig. 1:2. In order to compute energy dispersion in graphene, we first focus on
tight binding model.

In tight binding (TB) model, a sold is assed to have periodic potential. Any electron is
bounded to the neigbb electrons. Then the wave function of any electron is simplified to be
considered of being fatted by neighboring electrons. We write SE for steady state situation

or Or
g o -0
Since Hamitonian matriXQ, is Hemitian, then all its diagonal elements arand elements on

top of diagonal and under should ®élhese wil lead us the wave equation as following:
roras®
Q O T

Then, we wil have the relation rfigperiodic energy stat®i the energy dispersion relation:
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Fig. 1.24 shows the lattice vectors of graphene in real spEee.Hanonian for the center

lattice pair which is thathelement in the latticé without considering the TB model, wil be:

o_

With considering the TB model to the neighboring sublattices, we wil have:

Figure 1.1-4- The lattice vectors of graphene in real space in a tight binding model

The dispersion relation wil the eigenvalues of Hamitonian which wil be:
QNQQe U WO 68Q%
Now we would like to calculatesQsin order to derive dispersion radat for graphene. Before

that, lets simplify lattice vectors as folowing:
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Considering the Taylorés expansion for

WéE WéEpPp
wé iép I
and after doing algebra and simplifications:
0O - 0™ 0 - &g - 0se

This gives a cone shape dispersion relation with a famous Dirac point in the origin:

vl
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Figure 1.1-5- The energy dispersion relation of graphene showing the Dirac point in the origin.
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Doping effects

Graphene doping which is the substitution of some of carbon atoms with another gtom
used to control and engineer the physical properties of pristine graphene. This technique and
related transport measurements wil be discussquhihC of this disserian. Depending on the
type of dopingi n or p, we can increase or decrease Fermi level. One famous methatbmihg
is replacing some of carbon atoms with nitrogen atdhag introduce 1 excesslectron per
replaced nitrogen atom because of the atomimber discrepancy between carbon and nitrogen.
Instead, in order to-plope graphene lattice, we cafor example use boron atoms replacing some
of carbon atoms. This wil cause lack of one electron per boron atom replaced with carbon atoms.
Since nRdoping introduce more electrons to the lattice, it shits Fermi level whigoping plays

opposite role.



1.2 Transition Metal Dichalcogenides

1.2.1Basics

Transition Metal Dichalcogenides (TMDs) are one category of 2D materials with chemical
formula MX; where M is a transitionmetal and X is a chalcogen atom. These materials
demonstrate unique optical and electronical propef@ed]. In single layers of these materials, a
hexagonallyordered M atoms are sandwiched between two endtbxagoally-ordered X atmos.
Figure 1.21and 1.22 show atomic arrangement of these materials in 2H and 43egh]. About
40 compounds of these materials are assumed to be layered miggrBifferent stacking order
of monolayers caes different buk typed7]; whie monolayers could exist in metallic,

semconductor or semi metallic phase

10



Figure 1.2-1- Transition metal dichaogenides (TMDs) in theofm of MX2 semiconductor (2H) phasépper right:
single molecule; upper left: side view of chain of molecules; bottom: outline view in which metallic plane sandwiched

between two chalcogen planes
N 4 Xam
y 4
._J ‘J' "

Figure 1.2-2 - Transition metal dichalcogerdad (TMDs) in the formof MX2 in 1T phase. Upper right: single
molecule; upper left: side view of chain of molecules; bottom: outline view in which metallic plane sandwched
between two chalcogen planékhis phase could be assumed aplahes glided withaspect to Mplane and each
other.

MoS;, MoSe, WS, WSe are the most common TMDs. Mol@VTe are another examples.
Al of these materials are semiconductor at 2H atomic arrangements and metallic at 1 T[8Ltline
Some TMDs such as PtSéemonstrate metalic characteristics in 2H phase insteadd are
semicondictor at 1T atomic arrangemeni8] [10]. More information about phasésindicated in
the next section.

One interesting aspect ahonolayer TMDs istheir direct bandgap because differe nt
bandstructure comparing to bulk forfaigure 1.23 shows how an indirect bandgap changes to a
direct bandgap with eliminating phonon effects monolayer TMDs, electrons and holes have the

11



same momentum in condian and valence bands. These causes an electron directy emit a
photon. In muttilayer or buk TMDs, the momentum of electrons and holes are different in
conduction and valence bands, then an electron should pass through an intermediate state and
transferits momentum to the crystal lattice. This causes an indirect photon radiation which is called

indirect bandgap.

Conduction band

Conduction band

Energy

Momentum
N
Direct bandgap

Indirect bandgap |

Valence band Valence band

Figure 1.2-3- direct and indirect bandgap of semiconductor (2H) phase TNJDlke to monolayer TMDs ni bulk
or multilayer forms, the photoemission is phonon assisted

12



1.22 Polymorphism

Unlike graphene in which the electronic properties is the cause of hybridizatisdaat g6
orbitals, in TMDs, electronic structure depends da orbitals of metalic atoms becauspd
orbitds are located much lower than Fermi leveingle layer TMDs are found in thrgmlytypes
1H(2H), 1T aThelunitlc@léof 2p Andld ghasess trigonal prismatic which is 42
point group- honeycomb motif. On the other hand, dfiases havectahedral unit celi D3sqpoint
groupi centered honeycomb motiThe international structural symbol, space group number and
Schonflies symbols for 2H phases apél ¢, 187 andO respectively. The same nomenclature
for 1T phase iSYod , 166 ad O respectively.Since 1T phase is not stable, the newly formed 1T
phase distorts to Ileflic ppabdal3. Eigurey h.b andh 1.Bussateaheset ab | e
definitions. In general,group 6 transition mais Cr, Mo, Wdemonstrate semiconducting behavior
(1H phase) because of their Hiled 6 d6 or bit al s. Their bandgap
number of correlated chalcogens. For instanite bandgap of monolayer WSe2 §5.eV) is
smaller than the bagdp of monolayer WS2 (2.05 eV) since the atomic number of by is

much smaller than the atomic number of selenid#) {.

1 These bandgaps are measured on polymer staoét on SiO2 substrates. Detail will be discusisetie Results
section.
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Figure 1.2-4- Two main polytypesof single layer TMDsRight 1H phase with trigonal prism in which the top and
bottom ché&cogen atoms are aligned and form an equilateral triahgfe. 1T phase which is trigonal antiprisintop

and bottom trianguldy-formed chalcogen are now rotated by 60°. This phaseis not stable and eventually distorts to
1T6 pOemends.onthe badimimages show the primitive cells for each phase.

I n 1H phase, 6dd or bit alzozsdeyspanddyy:,whietinolT 3 deg:
phase, 06d6é orbitals spliyx.yzxHamdido.x.2ZTheoratidaly, ehese n t de
phasesarereversibly alterable to each other by structural deformd@dnThey eventually deform
to a distorted version 1dTr 6 i rmpwhearssei owmhi b @t wese nan
chalcogen atoms and 6doé orbitals of met al ato
are possible boundary structures revealing that the crystal structures on the edges and boundaries
are complex{12]. For any different glide in metalic or cbafjen planes we might have differe nt

phase transitions as table2 1. shows this.

14



2H

A

1T
1T’

Figure 1.2-5- Three mainpolytypeso f singl e | ayer TMDs. 2H or 1H phase is
are metallic phases. 1T phaseis not stdidauponforma i o n , changes to 1Td phase whic
version of 1T phase. Blue spheres represent metal atoms and yellow spheres represent chalcogen atoms.

- Q ~ Q
o] 9 @& O O 1T=2> 1T’

o ~ o ~ o

Figure 1.2-6- Threedifferent possible glides of atomic planes that might generate vapimys/pes
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Table 1.21- possible boundary structures for various glides. Boundaries and edges undergo complex structural
changes underanyatomicdgle s . These compl ex at omi c~[R]t This literalyrmeasis ar e kn
that phase change is not a uniform prodesdges do not undergo the same structural change as it is expected n the
middle regions.

Folowing table shows space group symmetry and metal coordinaton D&TM 1T and 2H

phases:
Phase Spacegroup symmetry Metal coordination
1T, 1T6 |P3m Octahedral
2H P6mM2 Trigonal prismatic
3R Rsm Trigonal prismatic

Table 1.22- space group symmetry of different phases on TMDs

16



1.23 Principal Structural Directions

2H phase TMDs have honeycomb lattice structurdluagated in previous figures. Figure
1.8 shows two main lattice directions named zigzag and armchair. Later we wil see that these

principal directions are very important in characterizing thesipaly properties.

Zigzag direction Armchair direction

Figure 1.2-7-Two principal directions zigzag and armchair are shown in perspective view of 2H phase TMDs

Determination of zigzag and armchair directions in graphene

In graphene, both G and 2D peaks undergo redshift by strain. Gpigsknto two different peaks
caled as Gand G. These peaks are not only linearly polarized, but they have also orthogonal
polarization [13]. Polarization dependence of scattering intensitiO% $Q 'YQ S where'Q and

‘Q are the unit vectors of the polarizations of incident and emitted §dHdts The intengy of the
scattered Raman spectrum df &d G modes wil be as follows{13]

09 QQEN . o—
09 Qi Ry - o—

Where d is the ampltude of vibration in Raman tensors—asdhe angle between arbitrary

(unknown) axis of strain andaxis of zigzag direction as shown in the followinguifg13] :

17



Fig 1.2.9- Schematic diagram of unknown direction of appliechistwith the unit vectors of incident and emitted
lights for graphene

In order to realize the direction of crystal in the sample, there is a need to apply about 2% uniaxial
strain in any arbitrary direction to make sure splitting in G peak occurs. The abbof equation

reveal thafO is maximized when? ¢ o0—is minimized. In Renishaw Raman setup, the
incident light is always linearly polarized inaxis when x is lefto-right direction whie looking

into the microscope. The polarization bbe rotated by applying a hatlave plate in the path of
incident light (a rotation of j ¢ wil rotate the polarization by in which the scattered light
intensity is proportionatoi "Q€). Meanwhile, the emitted light is always set to bédmizontal

(x) direction in order to be able to acquire maximum possible intensity by the grating. As a
conclusion, once we rotate the polarization of incident light, when its direction overlaps the strain
directon ¢ 71T, then the intensity becomes mawimn. On the other hand, the intensity ‘©Of

wil be minimized because of the orthogonality of these split peaks.

Determination of zigzag and armchair directions in TMO'sCVD grown single layers
For CVD grown samples with triangular shapes, thectime of structures are shown Ifgure
1.2.10. Nucleation happens in equilateral triangles by nature in which the sizetnslable by

process parameterBroofs are indicated in the next sections.

18



Fig 1.2.10 Atomic arrangement of molecular CVD growriangular shape flakes. Orthogonal to one edge is armchair
directioni while parallel is zigzag direction

Determination of zigzag and armchair directions in TMDsstraining method

In the cases that there @amanpeaks split into two orthogonal paiations such as the G peak

in graphene, the polarization dependent Raman spectroscopy could also be applied to realize the
crystal orientation. For instanc& peakin MoS splits into two orthogonal peak®( andO )

under stin15] [16]. Similar to graphene, when the intensity@f mode is maximized then the
related angle of polarization on the substrate reveals the direction of the crystihgh the

sample could be rotated to align the desired crystal direction in the direction of the strain.

Determination of zigzagaind armchair directionsin TMDs SHG method

In addition, the direction of crystal in triangular CVD grown structures may be determined by
second harmonic generation (SHG) analysis. These results were verified by atomic resolution
scanning Transmission detron Microscopy (TEM)[17]. SHG is a nonlinear optical process in

which photons interact with a crystal and generate secondary photon with twice frequency.

19
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Fig 1.2.1% Second Harmonic Generation analysis used to identify crystal orientation. As the polar plot reveals, the
intensity of second harmonic is maxmized when the polarization direction of the incident laser is aligned with

armchair directiorfl17]

Determination of zigzag and armchair directions in TMOSTEM and STM assisted

As the structure of TMDs exhibit strong anisotropy response for RamanrisgattRaman
intensity polar plot also could be compared with the real atomic resoluton image out of TEM or
STM to observe the effect of polarization direction on the intensity of each Raman mode. Then

the acquired polar plot could be referred as the biasbitration of the crystal orientatiofi8]

: Fig 1.2.12 Anisotropic response of
CRE NI POB NI S I ReS2 together with TEM atomic
resolution images used to generate
polar plotand compare the intensity
of the modes wth the polarization
angle of the incidentlaser light
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1.2.4Electronic Characteristics

The physical properties of TMDs are strongly dependent on the coordination of metal and
chalcogen atoms and degeneracy o fety ofdodssbter bi t al

electronic behaviors to TMDs. These prdjesr are summarized in table 1.219]

Group | M X Properties
4 Ti, Hf, Zr | S, Se, Te | Semiconductor: Eg=0-2.0 eV
Diamagnetic
5 V,Na,Ta | S,Se,Te [Narrow band“*gmem)aler (] ~10

Semimetals. Superconducting. Charge density W
(CDW).

Paramagnetic, antiferromagnetic, or dianet@

6 Mo, W S, Se, Te | Sulfides and selenides are semiconducting (Eg1185
evV).
Tellurides ar e3qssemi.met al
Diamagnetic

7 Tc S, Se, Te | Small gap semiconductors. Diamagnetic

10 Pd, Pt S, Se, Te | Sulfides and selenides are semiconductiag~(.4eV) and

diamagnetic. Telurides are metalic and paramagng

PdTe2 is superconducting. PtSe2 is semicondu

(Eg~1.2 eV)

Table 1.23- General physical properties of TMPEI]

21



CHAPTER 2

Phonon Structure and Raman Spectroscopy
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2.1lIntroduction to the Physics of Raman

Raman spectroscopy is a light scattering technique to pimtagional modes of materials
which was discovered b8ir C.V.Ramanin 1928, he observed frequerskifted lnes in the
spectrum of scattered laser light. He uleer light to shoot machromatic photons to a sample
and discovered the relative shift mimary photons corresponded to the vibrational and rotational
frequencies of the scattering molecules. At the time, this process had been theoretically predicted
by Smekalin 1925. Ramancaled it Raman effect and became the fundamental of Raman

Spectrosopy.

The interaction of photons and the material (phonons) could be elastic or indfagti2.
lillustrates different scattering techniques when laser light interacts with a makdasiic or
Rayleigh scattering causes no shift in neither phétonsf r e quenci es nor wave
inelastic scattering of monochromatic light involves with some frequency or wavelength shifts.
The quality and quantity of these correspondisigits represent the vibratiolngphysics of

molecules or atomgL4] [20].

Raman spectroscopy
based on inelastic scatterin

f f

excited 7'y
states
a2 a
4
3
phonon 2
states — 1
[V Yy
Rayleigh Stokes  Anti-Stokes
elastic Raman Raman

Scattering Scattering Scattering

Figure 2.1-1- Different types of scattering. Basics of Raman Scattering is based on inelastic Stokes &t ldersti
scattering.
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Stokes inelastic scattering happens when the energy of the scattered ghoémneased.
On the other hand, arfitokes ineldk scattering happens when the energy of photons increases
(redshifts). The amount of frequency shi independent of the initial frequency of incident light

and therefore, is a unique property of atom.

In order to observe Raman spectrum, we need higittisl resolutioni less than 1 crh
When light interacts with matter, an electric dipole mofétgeneratedvhich emits radiation
The induced diploe momenP which is a measure of the systems polari/,the product of

polarizability or RamantensorYand i ncident |l as@&r |ight s el ect
® YO

Ramanor polarizability tensor 2 which is a second rantensor, exhibits the effect fincident
light 6s electric field on the generated dipole
can distort the electric field of the incident lighth general, we mawvrite the following equation

in the matrix format;

0 Y Y Y O
0 Y Y Y O
0 Y Y Y ©

Recall that electric field of incoming light has sinusoidal oscilation: O AT ©0 0 where
O is the amiiude andy is the frequency dthe incident lightandois time. This results dipole
moment to b&d YO AT €0 0 8As aconclusion an oscilating monochromatic lighd with
coherent frequency , generates an oscillating dipaloment 0 with the frequency that might be

affected with the correspondinfaman or polarizability tensoY. Polarizability of a molecule

2 Electric dipole momen® /'® where q is coulomb charges with d as displacement vector, is the result of
polarizability of polar molecules as a function of nuclear coordinates.
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changes a function of distanceof vibrating atoms. Therefore, Raman tensor could be expanded

by Tayl oionbirspowers of mtersuclear distance

—a

Y Y 'ﬁT WiE i QQi i

where'Y is static polarizabilityand! "¥T lis the contribution of vibrational modulationSince,
molecular vibrations are timgependent, ssuming that he fr equency of 't he
is L then, the vibrational coordinates could be written as:

i T AT QL O
Concretely, the applied dipole moment could be expressed as:

5 YOAI @0 o STT—iT'oA'l'c:bo b Ai®D0 b

The first termY O AT © 0 0 is Rayleigh orlastic scattering term that the frequency of light
is reserved. Meanwhile, second term redshifts the frequency whicHe® Sabkes Raman
scattering. On the other hand, third term blueshifts (increases) the frequency of incoming light

which is called AntiStokes Raman scattering.

Considering that the Raman tensor is symmetric, it could be diagonalized by transferring

to a rew coordinate systemid@Bzich that:

Yp, T T
Y m Yp, T
m T Yoy,

The Raman Polarizability Elipsoid thendefined as:

Yoz Ypgbz Y Dz p
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that crossesbaxis atpj Y p,ubdis atpj Y anddBmis atpj Y p,When the shape of this
Raman Elipsoid changes after scattering the light, then there woualtlldast oneibrational
mode in the related material which is Raman adtitkat is, changes the frequency of the

incident light.
2.2Polarized and Unpolarized Raman Spectroscopy

In normal Raman spectroscopy, the incident light is normally monochromatic linearly
polarized light The direction of polarizatiori t h a t is the direction of i
field could be rotated by halfave plateand in addition, its polarization could be altered to

circularly polarized light by the means of a quar@ve plate[21].

Here we focus to use hatfave plate to be able to rotate the direction of incoming
inearlypo |l ari zed l i ght S i -patadzedwight. Ifwtoen 6 laxasitisdebasedi r c ul a
in the direction of light, then the outgoing light wil remain at the same direction. However, if we

rotate the halfvave plate by--then the direction of electric field wil be rotated &y

Once the laser light with the electric field in the controlled direction is shined into the
sample, the scattered light could contain all polarization directions. The Raman Spectroscopy
Setp, should contain an analyzer which acts as a polarizer and trapwitsns to CCD
detector as shown in the Fig. 212This figure shows the Renisha® Raman setup that we used

for this dissertation.
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Notch Diffraction
Filter Grating
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= = \\:1
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polarization polarization

Figure 2.2-1- Renishaw Raman Microscope gptfor unpolarized Raman Spectroscopy. The lineaalarized light
is always from left to right but the scattered light could comprise all directions.

As | will describe later in this chégr for 2D materials, we need to probe polarized Raman
spectroscp y . For this purpose, after controlling
scattered light to the analyzer in paralel or orthogonal to the direction of incident lght. As
described, analyzer acts as a polarizer. Then it is sensitive tt@nsmission axis. Understanding
this axis is crucial for polarized Raman spectroscopy. Once the axis is defined, we can investigate

the scattered light in desired/polarized directions.

First of all, we have to add optical elements to our unpolarizetiaRaetup as shown in
Fig. 2.22. We use haffvave plate to rotate the direction of incident light into the desired axis and
a linear polarizer on a rotatable mount before analyzer to rotate the scattered light in a desired
direction. The first goal is teealize the direction of analyzer so we would be able to send scattered

light parallel or perpendicular to the axis of analyZéor this purpose we need a material that does
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scattered Linear polarizer on a rotatable moun
light (for Polarized Raman Spectroscopy)
Focusing optics >
Entrance slit
Microscope Notch filter ;

1 e a0

\6
&
'g Imaging Setup
o
% ?
: -1 Entrance

MJL' 1~ mirror
Mirror —\Line filter Beam shafing
B \ | -
sample incident | Half-wave plate
light (to rotate polarization if needed)

Figure 2.2-2- Renishaw Raman Microscope setup for unpolarized RaBpectroscopy, modified for polarized
Raman spectroscopy by adding two optical elements:weale plate and a linear polarizer on a rotatable mount.

not change the direction of scattered light. O@dlecule is a famous material for this purpose
which ha a symmetric phonon mode at 460'cfamous a$p mode. Then the direction of
polarization remains unchanged for this mode. See Fig3fr ilustration of the molecule and
modes. By inserting a rotatable linear polarizer before analyzer whie keeping the incident
polarization direction fixed, weoeld play with different polarization direction of scattered light

to realize which direction is paralel to the incident light which is orthogonal. The intensiip of
mode for paralel polarization is maximum whie it is diminished almost to zero @sscr
polarization. When incident light and probed scattered light are paralel it is qeaeadlel-
polarized spectroscopy. Meanwhile, when the probed scattered light is orthogonal to the incident
l i ght 6 s di r erosspolarigedspectroscanyWe aseR cerdt o 6 s toNhow thesei 0 n
terminologies. In the case of paraflarization we us@ & @dor @ @ i @ indicates the

direction of the incident light andfshows the direction of scattered light which in this case, is
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along thew direction. @@ or & wreveals that the direction of polarization of incident and
scatteed light are parallel. Furthermore, in the case of epmdarization we used & OJor

@ & dthat indicates the direction of incoming light and scattered light are perpendicular.

=y _

/1 tn YE“
N

f www.chemtube3d.com

Figure 22-3- Symmetric molecule of CCl4 with symmetridbvation modesp

By now, we know the direction of the analyzer. By rotating the direction of inear polarizer before
analyzer, we can measure crosand parallepolarized Raman. The ratio between the

perpendicular component and the paralel comporgentlieddepolarization ratid’ :

Where O and ‘O are the intensitiesof modesin cross and paralepolarization setup. For a
symmetric vibrational mode, depolarization ratio is very small. For higher valies af& vthe
mode is calledhighly depolarized bandMeanwhile, for’ 1@ vthe phonon mode is considered
polarized and symmetric such @s mode in CCi. Higher the depolarization ratio isthe more

asymmetric the vibration mode wil be.

29



Fig 22-4shows the unpatized Raman spectrum of CCK with 532nm of excitation laser
energy at different incident angles. As you notice, with unpolarized $etwen by rotation of

i ncident l' ight 6s polarization direction, we w

CCl4 - Polarization Dependency of Raman Spectroscopy
250 . T . : :

) ‘460 cm |
218 em”! 315 cm

Ay

200

Intensity [a.u.]
2

-
=
=]

50

0
150

_JL——JL !?=D:
200 250 300 350

Raman Shift (cm ")

400 450 500 550

Figure 2.2-4- Unpolarized Raman spectroscopy of COiith unpolarized Raman, it is not possible to observe the
symmetric effect ofdop mode.

Then, we have to switch to polarized Raman spectroscopy to use the characterspcsiode

to determine t he a B-8shgws éhe pdarized iRanarc scatterng of this g 2
molecule. Dwviding the intensities of modes in croaal paralelpolarization setups, computes

the depolarization ratio. The calculated rdtio 181 cshows a totalypolarized and symmetric

phonon mode at 460 chras we expectedzor measuring crosgolarized Raman scattering of a
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Figure 2.2-5- Symmetric molecule of CCl4 with symmetric vibration modgs With the help of polarized Raman
spectroscopy, the angle corresponding to the lowest intensity recorded which is the angle of analyzer.

material, we change the setup to the cioaarization or orthogonal state in which the incident
light and probed scattered light are perpendicular to each other. This is opposite for paralel setup

in which the incident and probed scattered lights are parallel.

Fig. 22-6is schematic diagram of polarizedaiRan setup for measuring Raman spectrum
of TMDs. More descriptive analgsiis provided in Experimental Resulis section. The incident

light
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Figure 22-6- Schematic diagram of polarized Raman setup for measuring paatidl cross polarized Raman
spectra offTMDs

could be rotated for a desired crystal directiom.this case, for any crystal directidnsubject of
experiment, we should change the Ilinear pol ar

direction 1 perpendicular for @sspolarized Raman and vice versa.
2.3Phonon Specifications

Raman active modes for odd number of layers (ONL) and even number of layers dENMLDS

are as folow, which shows the phonon modes point.;
3 ™ol p o O mdyol p o ©O
3 pal o O o 0
Where N is number of layers. Therefore, for single layer TMDs:
3 qs) 0 ¢O ©
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in which only 6 , 'O andO are Raman active modes. Meanwhile, is acoustic and infrared
active mode, ant®® modei other than Raman active, is also acoustic, and infrared active mode.
Fig. 2.31 shows phonon modes of two layer (2L) and monolaijdr) TMDs. For 2L TMDs,

phonon modes atwil be:
3 ad ao d0 do
In general, for buk TMDs:
3 0 co co o} (0] cO cO (0]

In the buk form, onlyd0 ,'O andO are Raman active modes.

’ ’g '3 g‘ - - L sl > ? 2\ - -
& . % o -0 o o o ¢' &, o -o
Bulk N o ? ? o+ <0 0> <0 ? 3 0> <O
; 9 9.0 © o o © , o -0 -0
t ¢ g
C o -0 <+ 0 -0 f -« -
Ay By Ay Elg  Ew Ezu Exg B‘E(LB) Ap(ZA)  E35(C) Eyy(LA|TA)
Bulk (snem: (R)  (silent) (R) R (R}  (Silent) (R}  (Silent) (IR) (R) (IR)
ZL All) A?u A?H Al Fl Eu EH Ej Ai‘q(LB) A?u(ZA) Fyl((") ﬁu(LA”'A)
(R) (R} (R) (R) ® () (R)  (R) (R) {IR) (R) (IR)
4
1) 3 «0 o> e 6 0
1L ? (] (933 (] 3 .
g o - - -
v A E' E" AY(ZA) E'(LA|TA)
un) (R) (IR+R) (R) (IR) (R)

Figure 2.3-1- Phonon modes dfulk, 2L and 1L TMDs

Fig. 2.32[20] shows pbnon dispersion graph of monolayer MoS2. Optical actve modes could
be outof-plane mode (ZO), longitudinal optical mode (LO) or transverse optical modes (TO).
There are also three acoustic mods in longitudinal, transverse awodpame modes (LA, TA

ard ZA respectively)
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Figure 2.3-2- Phonon modes of monolayer Mo&2)].

For different modes in samples we Inighave different Raman or polarizability tensors. For
example, for bulk TMDs with orthorhombic crystal systemshe Raman actve modes have the

following Raman tensorgl4] [20]:

o
o
=]
A €24
g4 4

For even number of layers of TMDsSENL, the Raman tensor for Raman active modes are:

W T T
6 dm omh
T T ®
O nm T on Q Q
Odn QQh Q nm =
nm Q m Q 7

For odd number of layers of TMOSONL, the Raman tensor for Raman active modes are:
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c'bttrtv

6dm o mh

mT T W
n’an'an
OdQ m mhmn Qm
T T T T T T
T[T[T[vT[T['Q
OdnmnnmQhn m
mT Q 1 Qmn 1

The Raman tensor for monolayer TMDs is discussed in the next section.
2.4 Strength of Raman Signals

The magnitude of the Raman tenS6represents the inteihg or strength of Ramasignal.

Depending on the direction of scattered signal, we can calculate the corresponding signal via:

~

Wi €8 aai "PYOw SHRSREU

Nnoi Ood G 00 HBEREU
where(u s t he uni't vector in the di®™enkvectawaongf i nc
the scatt er e dperpendgllar é she indident dightt Intensity of Raman signal along

these directions could be probby choosing parallel or crogslarization setups. Figure 421

shows these directions for two dimensional-2tése Transition Metal Dichalcogenides.
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/' polarized spectrum
xR

Figure 24-17 Directions of incident and scattered light withe s p e c t t o si@ancoprdirtate $yétems-@madr t e
y-directions represent zigzag and armchair directions respectiMedyscattered light is set to the crgedarization
geometry with a unit vector perpendicular to the incide

Corresponding unit vectsrof incident and scattered lights could be represented as follows:
X AT-@v | Qadr—

‘U [ Qéw— wé fo—
or in matrix format:
A —
W i QE —
11t
i Qe —
W wéi —
T
Now, | elate6tise Raman sigoal far mode in cross spectroscopy setbpst we right the

equation of intensity in crogsolarization setup:

O m T OEl —
O i Qwei = T o1 i Q —
T T I
" P -
(@] ;(o W i Qe—
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This means that for orthorhombic crystal systems, if we shine the laser light in the direction of
crystal lattice, that is— Tmor—  Tthe intensity of crospolarized Raman signal far mode

wil be zero. This interestingphysics can be used to determine the crystallographic direction of
single layer orthorhombic TMDs in creg®larized setup. | wil explain this in detail in

Experimental Results section.

The intensity o6 mode in paralepolarized setup could aldme written as follows:

O nm O wéi—
O WET Qe T w1 | QE —
T T W s

(O] G0é — d Q&
Which is always nonzero. Then we expect to obseérvmode in paralelpolarizaton all the time.

Furthermore, we would like to calculate the intensityOComode in both crossand paralel

spectrums. Considering the Raman tensor for orthorhombic crystal systems, we can write:

TQOmn OEi — 0 n on WéEi —
0 i QEeéti &= Qnm [ Q¢ — i MVewwéei = M Qmn (| Q8 —
mT T ® T mT T ® T

0 Qp ¢ V- Qi Qx—
And, in paralelpolarized Raman spectrum for this mode, we shoale:h

OEi — QO nmomn i —

T Q 7
O WET Qe Q mmm | QE — WET+H—QeEm T Qmn [ Q¢ —
mTmnow m mT T ® m

O Qp ¢ R Qi Qx—
As a conclusn, the intensity of Raman spectrum Brmode is the same for cressnd paralel

polarized Raman spectroscopy:
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We wil use this important physics in extracting Raman data for single layer TMDs.

Meanwhile, larger teains could change the lattice orientation to a triclinic system in

which the corresponding Raman tensor is adiagonal and nescalar matrix:

W W T
0d o w m
m m Q
Then the Raman intensity ofmode is always nonzero independent afc i de n't l'ight 6s
) @ O m wEi—
0 iQEetiw OOm | Q —
m 1 Q T
0 s OOEiI —i @ =

Concretely, intensity od mode at crosgolarization setup could be usedirgestigate the
crystallographic orientation of TMDs at rest or zero strain. When the strain is applied it is not
guaranteed that the modeds intensity remains
This is the reason that we obsetvénode at lghly-strained WSsamples only. Subsequently,

for WSe, there might be possible contributions dofnode at higher strains but we could not

observe because and Omodes are accidentallgiegeneraten this material.
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CHAPTER 3

Bandstructure, Excitons and Photoluminescence Spectroscopy
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Basics
Spinvalley Coupling

As indicated in the previous chapter, metal and chalcogen planes of TMDs make honeycomb
lattice similar to graphenél eading to gener ate t wospacalhdseys : K
points are the touch points of conduction and valence bands in semimetal graphene while there is
clear distance between these points in 2H phase TkID#itio study of the band structure of 2D
MoS2reveals a direct bandgap atpgoint [22]. The broken symmetryof TMDs because of lack
of inversion symmetryin parallel with spirorbit coupling leads to interesting spwalley physics
which facilitates spin and valley control in these matefid®]. Fig. 3.1shows first Brilouin zoe

which contains two valleys in momentum sp§24).

K

Fig 3.1-FirstBril uoin zone and K, K6 valRdys which have orthogon

As indicated in chaptet, the degeneracy level fd 6 or bi t al of the met
physical propertes of TMD® d 6 or bi t al s @B) oft2H phasg mdnelayecsms b a n d
strong spin orbit (SO) coupling. This together with the lack of symmeayses strong spin
splitting at VB which is as strong as 1486 meV for group VI TMD425]. Fig. 3.2shows the
selection rules for valey polarization.. Then any excitation frequdsngert h a gbut smaller
t h a awil ®xcite the upper valence hkdnLack of inversion symmetry causes rzaro Berry

phases and curvatures in K and K6 valleys. A
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magnetic field with differ entpolarszedgexstation taserK and
creates excita in only one valley (K for instance); whie the opposite polarization creates

excitations on the adjacent wvalley (K6 for in:

-K
Y /
Py b @
(l)“ h' o oa '
o F @
S | o- o = 3
O 8‘
S5 g T a > t
> .
‘D

Fig 3.2- Spinvalley coupling and selection rules for group VI TMDs. There is giant spin splittingléneeband,
while it isignorable in conduction barja3]

Electronic Band Structure

As indicated in the previous chapter, one of the most significance of TMDs is their direct
bandgap of monolayers at Kpoint. Fig. 3.3shows the change of bandstructure of MoS2 moving
from buk to monolayer. As you can see, at one layer MoS2, conduction band and valence band

get closed at Kpoint causing a direct optical transition at this pitg]
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Fig. 3.3- Calculated bandstructure of Mo$2lifference from bulk to monolayg26]

K T

Electronic band structuref famous monolayer TMDs i M0S2, MoSe2, WS2 and WSe2 are

shown in figure 3.4~ully relativistic firstprinciple calculations based on density functional theory

are used to calculate these energy b§2ls
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Fig 3.4- Electronic bandstructure of group VI TMDslculated using firsprinciples based on densityrfctional
theory.Dotted lines showthe inclusion of spambit interaction and its effects on bandstruct[#g].
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The main player of the electronic properties of TMDs is the degenerdcy odtbtiaB of
metal atoms. Fig. 3.8howsthe contrilution of different orbital degeneracies to the bandstructure.
This reveals that for monolayer TMDs which have direct bandgap-@aif€, p, py, tky and gz
are the main contributors for this bandgap. Instead, at thicker layers or bakygence band

also takes don for the optical transitiorj27].

d orbitals of metal p orbitals of chalcogen

0O

N

b)

e,

Ex [oV]
¥
W

Eg |eV]

Fig. 3.5 contribution of d (p) orbitals of metal (chalcogen) atoms in the evolution of bandstr{&ture

Excitons

Any bound state beteenanelectron and a hole is caled an exciton. Eleetiole pair is a
guasiparticlewith a coulomb interaction which has neutral chargeotal Any photon with energy
more than the bandgap of a semiconductor can move an electron from valence coadddtion
This procesgenerates a hole in the valence bare strength of the coulomb interaction of this
0 e x c that coud béds mach asdundeedseaof rgey .6

electronhole pari s cal |l ed
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PART B
STRAIN ENGINEERING
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CHAPTER 4

Strain Engineering of Two Dimensional Materials
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4.1 Introduction

2D materials are capable of undergoing large range strains up to their yield [A8jitsReports

reveal huge alteration of their mechanical, electrical, optoelectonical and magnetic properties
under strain[29, 30] It is also predicted and experimentally observed that tensile strain at room
temperature may induce direickindirect bandgap transitiofi8] [31] [32]. In addiion, tensile

strain enhances the mobility because of scattering of intrinsic phono modes; while compressive
strain reduces mobility33, 34] Other effect of strain Beversible semiconductdo- metal phase
change in which those materials undertake structural phase transition from semiconductor to metal
and vice versdb, 31, 35, 36]

Dynamical control of optical and electricaproperties by modifying atomic structure is
technologically important for information storage and tailoring the physical properties of smart
materials [37]. This empowerslectrical and optoelectronical flexible nanodevices with potential
stretchability [38]. Furthermore, large mechanical stretchability of-tad@ér TMDs and absence

of inversion symmetry in paralel to their high piezoelectric coefficients, made them novel
materials for pirezoelectric devic¢39].

The main effect of the strain on 2D materials is the modulation of electronic band structure and
also affecting the phonon modes and lattice vibrations as well as magregtierties. The detailed

effect of strain on various 2D materials depends on how the applied strain changes anharmonicity
of atomic potentials, effective masses and phonon frequencies. Thesea photes could be

measured by Raman spectrosc¢pg].
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Hookebs Law for

Considering an isotropicjnéar and elastic material, Hoak s

| sotropi c,

described in the following set of equations:

I n

Stiffness

T n L‘)u

For mat
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T 0
T 0

For a uniaxial loading in which the strain and stress are applied in @a¢iodii as shown in

Figure 4.1, theHoads | aw simplifies to the following sc¢
- - ” Cl‘)”
- - p v, U, (L:Lateral)
- - F]’ ” F]’ ” ” F‘T T T T[
)
<U = ;‘/j v p = —b .-
uniaxial tensile loading P
|
- / ) -
uniaxial compressive loading 7
| /_./

Figure 4.1- illustration of uniaxial tensile and compressive loading
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4.2 1D or Uniaxial Stress(thin membranes)

For thin membranes where the thickness is much smaller than the other dimensions, the uniaxial
loading simplifies as fowing set ofequations In the case of uniaxial stress, the out plane stress

is zero(, ), then for an isotropic material, constitutive relations or Kook s Wik e

reduced to:

» T (Condition of plane stress)

uniaxial tensile stress

4.31D o Uniaxial Strain (thick parts)

If the thickness of the pait or the dimension orthogonal to the axis of loading is comparable to

the dimensions in other directions, Hedks | aw reduces to a very diff
- T (Condition of plane strain)
- T

uniaxial tensile strain
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4.4 2D or Plane Stress(thin membranes)

2D stressis defined to be a state of stress in which the normal stEessnd t he shear st
a n g in the direction perpendicular to theyplane are assume® be zero.This is the case of

thin plates in which the stressiggorable in the direction of the plate thickness.

For isotropic materials:

" T t 1 (normal and shear stresses)
I [ T (shear strainsn normal directiong

,h FRRA R/ T

or

wheries 3Poissonés Yoangds amaddil us of elasticity

Special case: biaxial planstress
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When the two iplane stresses are equal in the cagdaoe stress, then biaxial plane stress

OCCuUrs.

. — - — o) QG RO & O

In this case, if we apply a upifm strain in direction normal to the plate thicknessthen the

relation between in plane strain - - and - wil be:
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4.5 2D or Plane Srain (thick parts)
2D strain is defined to b&tatesof stran in which the normal straift, and the shear strainsx; and
- yzin the direction perpendicular to theyxplane are assumed to be z€fbis is the case of thick
plates where the dimension indzection is comparable to the other directions and loads ar
applied in x and ydirections only.
For isotropic materials:

-0 I 1 (normal and shear strains)

t T T (shear stresses in normal directions)

., hhRAAMAE =

- =,
- =,
I -7 0o —
or
T 0
Where
0 — and 0 —

For large defor mati ons -stesstrelasionsadaplcable. inatead ®or, Gr e
large deformations together with largeasts, Hencky or logarthmic stresgrain formulas could

be applied.
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4.6 Methods of applying uniaxial stress
The main purpose of uniaxiatresss to investigate the physical properties of materials in specific
directions. Then tt is crucial to develop accurate platform to apply adjustable incremental strains
on 2D materials. There are potentially 5 uniaxial metheash having its pros and cons.

- Horizontal clamped stretching

- Cantilever bending

- AFM tip bending

-  Extraneutral axis bending horizontal pushing method

- Extraneutral axis bending vertical pushing
Here | am going to introduce all. | wil expand and explain in detail the last méthiacktra-
neutral axis bending v e r t i ¢ a in wipcli suhplatfoigndis developed on.
Horizontal clamped getchingmethod
The following picture shows this method. Perhaps it is the simpiethod that come mind

when thinking of applying straiii just puling:

Clamp length

Tensde Strain

< —>

N
[ ]

Horizontal Clamped Stretching
Very large strains, not very accurate
clamping issues, only tensile strain

Figure 4.2-lllustration othorizontal clamped stretching method
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In this setup, the thin mémane is fixed to clamps by means of some vertical loading screws.

Strain could be applied as much as the material breaks. Accuracy depends on how accurate the
motion is designed to move the jaws apart. One downside of this mechanism is the requirement
of high clamping force that smashes the substrates on the clamp areas. Another downside is the

clamp length is not

c2.- Subslra&eOCovoflng Film - Annealed, 155C3760 min

* applied stran |

- " red srEn

Linear Displacement (um)

C2 - Clamp Length Correction Factor{(CLC)

—
K
55T O
CLC=0.78 found to match two lines X:183.5
meaning: .-AIC=3.2!D.TE1-=4.‘1DZ mm Y:4.48

4.5 u

<5 Example: apply 183.5 pm |
25t % of clamp motion to gain ¢=4.5%

0 25 50 75 100 125 150 175 200 225 250
Linear Displacement (y:m)

Figure 4.3-Clamp length correction (CLC) factor calculation in horizontal clamp stretching method
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always exactly as it is measured befapplying strain. Figure 4.3 shows the difference of applied
strain and the real strain measured by optical microscope. As you notice on the top picture, there
is a discrepancy between real strain and measured strain. The measured ¥irhion ghere &

is the ¢l amp6s Yagsrthe mgpied displaeemgrt. At eachn step, the real strain is
also calculated. The difference reveals that the meat different than we measured before
applying strain. The bottom imagon this figure is mathematical correction of the real strain in
order to find a coefficienfor difference. We call thisclamp length correction (CLC) factor which

in this case is 0.78. This tells us that the real clamping length was 3.2/0.78=4.1G2ead iof
3.2mm. Realizing CLC is important prior to any experiment.

Cantilever bending method

In this method, athin plate is cantievered in one end. Vertical displacement of another end causes

stretching or tensile strain on top of this plate as depintddgure 4.4.

y

Cantilever Bending

Inaccuracy, limited strain
Hugely position dependence

Figure 4 4-lllustration of cantilever bending method for applying strain

Since the bending moment is a function of the distance from the verticaltheadclosed to the
wall, the strain is highest and any slight change of locatiomgelsahe strain value drastically.

This is the most prominent downside of this methblle amount of strain could be calculated in
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two ways. One can consider the beam a circle to calculate the deformation of the beam at the top
approximately Instead Eule-Ber noul | i 6s met hod <could be applice
f o Extraéneutral axisbendingv er t i ¢ a methpds Sidce thisgr@thod has the fundame ntal
problem of positiordependency, this accurate calculation isexglained here.

AFM tip bending

The tip of atomic force microscope (AFM) could be used to apply high amount of [&iBjiAn

this method, the sample is usually suspended over a cavity. AMF tip approaches the cavity to apply

force and deflection under controlled conditon. Figdt&is schematic picture of this method.

AFM Tip

AFT tip bending
Local or point-spot strain application
Complicated strain, not accurate, biaxial
Destructive strain application

Stress concentration and notch effect problems
Not applied engineering method

Figure 4.5 lllustration of AFM tip bending method for applying strain

The main advantage of this method is being able to apply strain locally on a desired spot. The spot
should be suspended on a cavity as it is shown. For exfolated samples, this method seems the most
functional [36]. The reason wil be discussed in chaptérd6St r ain device fabrica
enables of applying large strains up to the yield limit. Because of the nature of cavity and
suspension, strain is complicat e dhe mostadclrate e d ge
strain value is on the center only. The strain is biaxial. Asmo#fuvantageof using tip is being

capable of calculating amount of force at each strain values. This gives opportunities to investigate

the mechanical properties of 2D materifls].
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Extra-neutral axis bending horizontal pushing method

This is one of the most common methods of applying uniaxial strains. In this method, atthin pl

is pushed from both sides towards the middle as shown in Figure 4.6. Deformation of the beam
generates tensile strain on the top and compressive strain on the bottom.

|

Tensde strain on the top

v
Compressive strain on the bottom

Extra Neutral Axis Bending — Horizontal Pushing
Approximate, limited strain

Figure 4.6lllustration of extra neutral axis bendiindorizontal pushing methofdr applying strain

For simplicity, It is assumed tfhiamdgulart he ar c

symmetry, thegoverning equations wil be written as following:

Where t is the thickness of thenthi p | at e, R is the radius of ¢
measured. Strain is limited in this method. In paralel, increasing strain kils the strain accuracy
because of its fundamental assumptions.

Electrostatic Pultin Mechanism
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Using voltagedriven paralelplate electrostatic actuator, we can exploit important behavior
called pullin mechanism[40]. According to Figured.7, any applied voltage to the parallel plates
with a didectric material between, can cause puling force between opposite Pladeset drce

is the equilibrium between electrostatic and the spring force.

TMD

/1 Top Contact

dielectric

Insulating Clamp

o~

Dielectric Gap Bottom Contact

Fixed Support

i % Spring k

Figure 4.7- Electrostatic pulin mechanism. Proposed architecture for 2D materials (topdreaiodeling diagram
of the same architecture (bottom)

The net force applied to 2D material once a DC voltage applied

- T® 0o
CQ

where"Q is the initial gap with no voltage and no spring force aridl the cr@s sectional area of

the material. This net force vari@gth small perturbation of gap:

10

T"91 Q

170

o ® 9 0
—
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For a static equiibrium condition, the clamp spring constant should be snoogh to

overcome the electrostatic force:

o ! )
o

The gap is a function of applied voltage spring constantQand initial gap'Q which could be
analytically achieved fronthe folowing equation

COO cCQ T ™ T
Each gap represents a center deformation which is directly dependent to the applied stress.
However, vith increasingapplied voltage between two poles, the gap decreases until the
equiibrium is lost. This is called the pill voltage, @ 8At this condition, the net force is zero
and the gap wil be reduced ™ which is called pulin gap:

o ! @
o

Plugging this equation t® relation, we wil have:
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Pressurized Thin Membranes (biaxial)
For suspended devices as shown in Fig. 4.8, any internal pressure would apply biaxial strain on

thin flm membranes. The strain is a function of applied pressure.

TMD

1 [ ]
Pt

Figure 4.8 Pressurized thin membrane methodapply biaxial strain.
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4.7 Groundbreaking Reproducible Strain

Extra-neutral axis bending vertical pushing method

The last but not the least, is the same straining phenomenon eheutral axis bending but not

with the circular or limited anglesaumptions. Irthis methodl aim to benda flexible substrate

that applies tensile strain on the top and compressive strain on the bottom of neutral axis. Figure
4.7 is the schematic diagram of this method.

Tensile strain on the top

Compressive strain on the bottom

Extra Neutral Axis Bending - Vertical Pushing

Very accurate, larger strains

Figure 4.7-lllustration of extra neutral axisemdingi vertical pushing method for applying strain

Statics of the beam

What we needs to develop a mathematical function demonstrating the redaforbetween the
vertical motion of the ends and the applied strain ormikgle region-- "Q . We assume
uniaxial strain case in which we have axial load on a thin plée.simple mechanical and loading
notation for this method is ilustradein Figure 4.8. In this figure the center supports (points B and
C) are assumed to be fixed amb vertical loads are applied to the ends (points A and D) in order
to deform the beam. Points A and D also could be considered fixed with applying fguoatsn

B and C.
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Figure 4.8-Statics of extraneutral axis bendingvertical pushing method. ¥ assumed that the ends move
downwardbuckling the beam up in the centér.introduces the load applied to the system

region | A R
g { pure \
o C

region |l

\A?‘ B ,r"b6§:tion dep.
\_ bending /

Figure 4.9-Bending moment and force analysis in different regions of the beam under vertical IoBwBncenter
reg on i s unde mwhié pis positiorbdepertdéennirgRegion II.

Statics of the beam with force and bending moment analysis is shown in Figuks #i8.shown

in this figure, the center regoph6r egi on |1 6 bet ween plendng Fhis B
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means that all points in the center undergo the same moment indepehgesition causing a
uniformly distributed strain in top and bottom of the center regidhis is promising since any

flake could be posttioned on the ceritdbetweenpoints B and G and it wil go under he same
calculated strain. Then the important remaining imdo determine straif, asa function of
vertical deflection, a. I n order to do this,

Geometrical considerains of strain in deflected beam

Figure 4.10 shows an infinitesimal arc on a point in the center refgoi.is clear in the figure,

®Q
= /finite arc -
<ens 7__",-"7;“ : -.':‘lN N el -
2N al e ‘
| “l
b| |d
| ,
‘ | | . Ng
L
Figure4.10a slice of the beam in the center regiomQ Neutral

enlarges t@ dat an arbitrary distance y from neutral axis.

|l ocated on the neutral axis (N. A.) doesnot g C
surface by 06yo6 ®@hameslt@ olelmmount of lergth éxpsiorgisChaTop
surface is under tensile strain while the bottom surface undergoes compressive strain with the same

absolute valug if N.Ais located on the geometrical center of cross section. We define strain by:
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Using similaity of triangles

— 0 _— —

Then, strain simply wil be:
- - 1)

Using Hoolkeb s | aw f orituhniinaxpladt esdtsr ecsass e, we wi l | h a\
, 0-0  -Ow 2

Force, bending moment and stress calculation

Now we should find a relation independent of

Letds take a piece of the biraegbn has shenrinoFgee sect i

4.9. This cross section is illustrated in Figure 4.11.

f \--.\‘\\ - ]
W N {&‘;[ ’/1"1
b 5 y
« " O _< .
= S P i e
~ & < J v
R <. e, A ex(-‘WI
s _,-“/ r .
ol { 3 p i
Cﬁ , ~("{l{l/]l
It d‘A o ”
{ s <
P, é\o
. - <
> ,\@
~L~ <
O<(\

Figure 4.11- cross section of bending beam in the center regicegion |, under pure bending
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Regions above the N.A. are under tensie strain while the bottom section is under sw@pres
strain. If we take an infinitesimal piece of cross section dA with a distance y from N.A., then the
force acting on this segment wil be as following:

Q0 ,&0
Then using equation (2),

0 . ,&@b  —Qb - GQb

The term. Q& first moment of the area of the cross section with respect to neutrdl axis
N.A. The total resultant force acting on the cross section bwigero since there is no external
force acting on the cross section. This yield:

L 0WQO0w mMOoOw m (3)

This claims that the neutral axis lies on the centroid of the cross section area.

Now lets us calculate amount of the bending momeities to the segment dA in Figure 4.11.

Q0 ®QO0-0GQ°H - QB
0 . % Qb )
b -00 5)

Where | is the crossectional moment of inertia. Doing integration for a rectangular cross

section, with width w and height h as shown in Figure 4.11, we wil have:

O 0Vojpg (6)
Considering thapj ” , 7O ¢) then the famous formula for beam stress will be
. U0 a0 (7
Differential equation of elastic cunendEulerBemoul | i 6s equati on
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From differential calculus, the curvature of a deflected elastic beam at any point is:

- — 1 odgae (8)

This approximation is accurate for small curvatures. Theimdhaw consideratiornthatpj ”

0 ] O"@m equation (5)we wil have:

06 0 O6EuBemrnoul |l i d® equationo

This is Euler-B e r n o aqudtian.0ls any problem it is necessary to integrate this equation to

obtain an algebrai relationship between deflection y and Different loadings with various
geometries wil provide different boundagonditons which generatdifferent solutions of this

equation.

Solutionof EuleBer noul | i 6s equation for our geometry
In region Ii the center region which is depicted in Figure 4.9, the bending moment is fix&d¢d

; and there is no other loadings which we calipdre bending region. Considering this figure, if

we take the origin located on B then at any x from the origin, we can soveBeelerno ul | i 6 s

equation as following:

4
b M=Pa
‘ -
y s, '
M=Pa ~® X =
g A
P
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0. 0 0o (10)
06 0Oww (cis constant) (12)
Now, let us apply boundary conditons to our case. In this region, since we deform the beam
symmetrically, therat the center, the slope of the curve wil be zero:
W W¢OoOQPXL T
ROOC @ TO @ -0 O®
Now we plug in(11)and integrate again:
08 0O®-0 QG (12
00W-0 @& -0 &6 W (13
Applying boundary conditions:
W MO w T
@ T
Then the deflection curve for the center region wil be:
000-0 & -00O0® (14)

This equation reveals that the deformation is a parabatat a circle.

In region Il the end sides as shown in Figure 4.9, the bending momerftinstian of position

I not independent of x. Then we shouldsodve EuerBer noul | i 6s equation:
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X
> > X
P 2 |
v M=Px

" \ P A

P
06 0 0w (15)
06 -0 de (16)

Boundary condition for the slope equation of this region ftsstraightforward. The onlgxisting
relation is that the slope of the curvecat ¢ should be the same slope of the regioncdatT.
Then comparing equation (32vhich is slope bthe region I, with equation ()&vhich is the
slope of region II, we wihave:

—Qpc k —QB o 17)

— — 0% e o e -0 ed-00

Plugging in (7) and integrating again:

00w-0k -0 GO® e (18)
Now we can apply bouady condttion for this equation:

W WO w m
Gae 00 00 @ ©
The deflection curve fothe end regions wil be:

00Ww-0 & @ -0 & @ @ (19
This eqation reveals that the deformation i€abic functiori not a circle.
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Since our mai n iithée end teflection toitheentdr etraim, with &dquation (L9
we can easily calculate U0 as a function of ge
W MO w

1 —— ¢d o (20)

Equaton 20 is i mportant as we should find relatin
What we need is to calculate the strairthattop surface. Considering that our case is uniaxial
stess, then we canapply Haks | aw in the simplest form that

Figure 4.11, the strain on the top and in region Il wil be:

, —hho - 0 (22)
Then we wil have:
by (22
Rewriting Hookeb s | a w ialf stress andhpluggixg into (R2
., 0-0 - 7TO
- (23
— - (24)
Plugging equation (24) into (20ve wil haveourd esired for mul a, U as a f
geometry, indepemght of mechanical data:
- (25)
This means that the strain is Ilinearly depend

exerting linear vertical motion to the end points, we can apply linear strain increase.
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Example
If t=0.5mm, a=b=2mm, then: b X8 with 0O in mi2tmmerpearPs . For 1

If t=0.5mm, a=b=1mm, then: b omtwith O in wmEEEMmMmMmadRrr . For

This example reveals that we need to design very accurate mechanism to be abje to appl

stepwise vertical motionsirom mechanisms point of views and the standard shelf tems
availabl e, w@e nec aans cah oroesfeerle=snZ e mini mum moti on.
the applicable device range dimensiossunds reasonable target parameterghi® mechanism.

| call this mechanisn®train Ji@ Figure 4.12 is a version of this mechanism with the possibility

of adding wire bounds for electrical connections to the sample.
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Figure 4.12 Strain Jigi miniature version for wire bondirigdesighed for cryostats.

~

Adjusting screw.
Every 30 degree of
rotation, applies
0.47 percent strain
to 0.5mm
substratesinitial
adjustment for rest
case is crucial.

Center Support

6 mm focal dist. to 50X objectiv

| 40 mm

Figure 4.13 Strain Jigi main version used in our strain experiments
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CHAPTER 5

DeviceMicro / Nano Fabrication Techniques
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5.1 Introduction

Device fabrication is crucial for an experimentaligEor the main purpse of this
dissertation which are flexible devices, we provide here the basics and fundamentals of device
fabrication for high strain devices. Sections 5.2 is introduction to polymers and polymers based
devices, folowed up by section and SwBich is fiexble devices. Sectiorb.4 presents the
techniques we used for making transport devices that we used for the experiments explained in
part C of this dissertationln section 5.51 provide information to how to makeeterostructures

and stacked devices withe use of polymers.

5.2 Introduction to polymers and polymers based devices

A polymer is alarge molecule made of many subunits which usualy appear iikbain
structure. These chains are normally amorphous which give noninear mechanical propérée
polymer. In addition to nonlinearity, the long chains cause them to be flexible with higher elastic
range. These polymer chains are criogé®d with another smaler molecule or atom which makes

even longer and bigger chains.

Curing
Curing of poymers means hardening the molecular structure by-@nkssy the chains.

Since crosdinking needs energy, this process can be done by either heating or applying chemicals.
In the case of chemicals, ultra violet (UV) light is needed to activate thecetheagent. We use
heating to cure polymers. Folowing parameters are important factors which should be decided
before going to the process of heating.

7Y Qol QBN QI G061 Q

T 0 woi BEIRQ

73



71 1 0&dnRIAAOYQ €idé €¢dQa N Qi wooi Q
T 0 0ol Qa@iioi Q
For each device and polymer stack these parameters shoumdestigated experimentally. In
addition, if the polymer is used for liting off a sensttive device such as a TDwing
parameters should be carefully studied before finalizing those parameters:
- The polymer doping effect on the device
- Temperature saitivity of the device
- Chemical sensitivity of the device to the main solvent of the polymer
Polymers are normally solved in their related solvents which are covered later in this chapter. One
of the curing purposes is to evaporate the solvent until belchains are remained which wil be
in a solid form. In order to bond (stick) two polymers together or to use a polymer for liting off a

device, we need to understand glass transition temperature first.

Glass Transition Temperature

Glass transition tengpature,”Y is a temperature region in which the polymer starts being
soft and rubbery from a hard material. This is normally a range of temperature in which we select
the middle point as the reference. Fig. 5.1 shows the location of a glass transition teengerdt
how the heating flow rate occurs with respect to this region.

Glass transttion temperature is strongly dependent on the curing schedule. Low curing
temperature’Y, such as room temperaturéy Y “Ywil result in lower”Y. Then if we want to
use a polymer in conjunction with a temperature sensitive material, we have to cure it at room

temperature (RT)Another parameter which has huge impact™6is humidity. Moisture absorbs

in polymer structures and results in lowering.
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Since mechanical properties are very important to our experiments, in the next section, we

wil be discussing the effects 6f in mechanical characteristics of polymers.

A
“Y=100
G °
3
W
3
8 e
>
80 120 Y JO

Fig. 5.1- Glass transition temperature of polymers. In the exartipdetransition region is 8020. The average is taken
as glass transition temperatid¥e p T

Effects of glass transition temperature on mechanical properties
We realized that we can lower glass transiton temperature by controlling the processes of

polymer fabrication.l hereby indicate four important properties that may affect a polymer:

Youngds Modul us:

Higher the™Y, the higher the crodsi nked density and then the You
values. This results in low energy dissipatiand less flexible polymer. Then, as a conclusion, if

we need more flexible polymer, we have $0 cur e
modulus of Cellulose Acetate Butyrate (CAB)lymer on a stresstrain diagram.We measured

the yield mint of this polymer 7% in which starts fowing and strain hardening.

75



Flexible polymer Fracture
A poly Foint
90 MPa 4
70 MPa - |
| |
| \, |
: yvield point l
| |
| |
| ——=£
7% 100%

Fig. 5.27 stress strain curve of a flexible polymer. The numeric value in this graph represent data for CAB

Lap Shear:

Fig. 5.3 is schematics of lap shear. It presents sheagtktrehadhesives for bonding materials

when tested on a singllap-join specimen. Then test procedure is according ASTM D3A§3Y

increases, lap shear decreases.

iSya

Fig. 5.37 Lap shearexperiment according to ASTM D3163

Die Shear:

Fig. 5.4 show the definition and mechanism of die shear. With increaSedie shear decreases.

Then if we need flexible devices that endure higher die shear and lap shear, we have to decrease

glass transttion temperaturéy.
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Fig. 5.4i Die shear expgment. Glass transition temperature directly affects the shearstrength of a polymer.

Coefficient of Thermal Expansion (CTE):

The thermal expansion coefficient is directly related to glass transiton temperdtukay

increase in'Y, wil rise the CTE.

5.3 Flexible devices

As mentioned, polymers are the basics of fiexible devices. Here | explain the device
fabrication protocols we developed for strhmsed devicesSome detailed explanations are
discussed in chapteriGRaman signals prossing section though, here we explain more in detail

the fabrication processes.

Making Cellulose Acetate Butyrate (CAB)

We use CAB to lit off CVD grown TMDs. Then the first step is making the CAB solution.
The concentration we use for this purpose is@aihs of CAB powder, solved irliier of anisole.
We use a magnetic stirring bar in a glass botteth cleaned and rinsed with anisole first, for this
purpose. After mixing power with anisole, we use a hot plate with magnet to heat on 80C with 120

rpm of spinning for overnight.

Spin coating CAB
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The CAB is then spin coated to the siicon substrates that have TMDs. The spin coating is
data is 3000 rpm, 10,000 rev/sec of acceleration for a minute. Then we cure CAB on hot plate with
80C temperature for 1Minutes. TMDs or any layered material can be used with this technique
since CAB plays a glitke role to lit off thin materials very efficiently.This produces‘ a

thickness CAB fims.

Lift off

When the substrate is ready with the CAB flm on thg ibis the time to lit off. We use
DI water for this purpose. But since polymer absorbs humidity, the technique should be done very
fast. We first clean the edges of the substrates to open the interface to be permeable to DI water.
Then we put in DI war and play with sharp tweezer to it off the CAB fim. This should not take

more than 10 seconds. Then we eventually place the fim in desiccator for at least 4 hours to dry.

Bonding Annealing

We use polycarbonate (PC) plates as a standard substratseldlited this material after
hundreds of experiments to find a good match with the top covering fim. It turned out that PC is
a good match with CAB. This means that they can bond very well in the temperature regime that
are safe for TMDs and graphene.

One of our chief innovations is the development of a novel poljpased encapsulation
method to enable the application of large strain to 2D mateiialour technique, thesawvo
polymers are bonded to produce encapsulated monolayers and muttilayetsey Theachieving
good bonding is perfect control over the temperature, time and pressure during the bonding
process. Additionally, polymer layers that are in the amorphous phase cause nonlinear strain
deflection behavior which is not desirable in our expemts. To resolve this issue, we crystallize
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the polymer stacks by annealing near the glass transition temperature folowed by slow cooling.
First, we measuredhe glass transition temperaturéy of each polymer blend we use, by
continuously heating it on an accurate Riéntrolled hotplate (1@ 3 accuracy) whie checking

its ductility. After determining”Y, we assemble the polymer stack and perform the bonding process
at4 1@ ¥ . We use a compressive pressure of 3.0 psi for 60 min to complete the bonding,

followed by slow cooling at a rate of 2 K/min to room temperature. We find that this process of
encapsulation does not modify the peaks or intensity ratios in the Raman,spdictaéing that

the structural qualties of the fims are maintained during the encapsulation process. To
additionally check the electronic properties of the bonded fim, we perform photoluminescence
(PL) spectroscopy of the monolayers before and afteapsulation. We find that the major
electronic features observed in the PL spectra are imgdtaduring the bonding procesBhe
crystalized polymers are fully fiexibleglastic and springy substratesfter all of our processing
steps, we find that thgolymer stacks enter into the plastic regime at 7% strain. We find that strains
up to this value are perfectly transferred to the encapsulated 2D material as describedHselow.
final bonded device is shown in Fig. 5We can bond the device etther ipemphase or closed

phase (encapsulated) geometries as shown in Fig. 5.6.

Fig. 5.57 Flexible device usedtoencapsulate 2D materials. The technique can be used for making fully encapsulated
devices or face up devices as shown in Fig. 5.6.
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Fig. 561 Fully encapsulated devices and face up devices. The difference is the direction of bonding.

Face up bonded devices would be subjected to air and then might ndtlble dor air sensitive

devices. Fig. 5.7 is the schematic diagram of thasecddion steps.
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Fig. 5.71 Device fabrication procedure for encapsulated devices. Step 1: growing/preparing TMD on oxide substrates.
Step 2: spin coating CAB. Step 3, 4: lift off. Step 5: bonding and annealing. (6): cross seeticapdulated device.
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5.4 Field-effect transistors and transport devices

Part C of this dissertation is dedicated to transport measurements of pristihe and nitrogen
doped graphene. The growing teglmeis of both types of grapheiage explained in paD. Here
we briefly explain the device fabrication steps for these type of devices.

As explained in chapter 9 and 10, graphene is grown on copper foils which have to
transferredon to the siicon substrate$here are many techniques to transfer. We @ copper
foils in small pieces of 3x3 mm and then transfer to PDMfgaphene faced down to the PDMS.

Then we use oxygen plasma for 30 seconds to etch and clean the backside. We put the whole stack
in ammonium persulfate (APS) on hot plate at 40C. Qimeeopper is resolved, we wash PDMS
substrate six times in fresh DI water and nitrogen dry. PDMS now has graphene on the top and
could be used to transfer.

Having in consideration that PDMS loses adhesion at about 65C, we put a clean silicon
dioxide subsate on a hot plate at this temperature. Then we approach PDMS to the siicon dioxide
with graphene side. This leaves graphene to the substrate with very clean and the gentlest way. We
observed that this technique gives the cleanest and largest contiguapisene onsiicon
substrates. These steps are summarized in Fig. 5.8.

Once the graphene is transferred to the desired siicon substrate, we use electron beam
lithography to pattern the desired regmich is cleanessingle crystal We pattern Hall bafor
transport measurements which is explained in part D of this dissertation. Fig.5.9 shows the Hall

bar and the real device which is wire bonded for cryogenic transport studies.
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Fig. 581 Transfer technique of CVD graphene to silicon dlexisubstrates. This technique provides cleanest devices
for transport experimetns.

Fig. 597 Hall bar designed with graphene transport technique and electron beam lithography (left) and the final
device wire bonded ready for experiment (right)
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