Academic Commons

Theses Doctoral

Charge Injection and Transport in Pentacene Field-Effect Transistors

Masurkar, Amrita Vijay

Since the seminal discovery of conductive polymers four decades ago, organic electronics has grown from an exploratory field to an industry offering novel consumer products. Research has led to the synthesis of new organic molecules and polymers and their applications: organic field-effect transistors (OFETs), organic light-emitting diodes, and organic photovoltaics. The goal for research as well as for industry is producing low-cost, flexible, and, ultimately, sustainable, electronics.
Although on the rise, organic electronics faces several challenges: air instability, reliability, and scaling, to name a few. And despite that organic devices and larger systems have been demonstrated, there remains a gap in understanding underlying mechanisms behind light absorption, photoconduction, charge transport and conduction in them.
The primary purpose of this thesis is to use a relatively under utilized technique, photocurrent microscopy (PCM), to directly probe charge carriers in pentacene and 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene FETs to learn about charge injection and transport. The latter part of the thesis focuses on the use of thiols to modify electrode properties to both increase charge injection efficiency and to provide passivation to low-work function metal electrodes.
It is demonstrated for the first time experimentally by directly probing the OFET channel that top-contact geometry OFETs suffer minimally from a charge injection barrier, and that trap filling and altering of trap density-of-states in the channel is directly observable with PCM.
PCM was used to investigate grains and grain boundaries in TIPS-pentacene devices. By varying gate bias, it was shown that the PCM maps of grains are not simply a result of varying absorption on the surface of the film; rather, it is an artefact of charge transport between grains and grain boundaries. Through this study, PCM was shown to be a useful, large-area scanning technique, for observing transport in devices with large (on the order of 50 $\mu$m) grains. This is particularly relevant as solution-proccessable films are likely to dominate the flexible electronics industry.
The thiol portion of this thesis compares the impact of two distinct thiols on bottom-contact pentacene FETs: perfluorodecanethiol (PFDT) and pentafluorobenzenethiol (PFBT). Using X-ray photoelectron spectroscopy to measure metal oxidation, it was determined that short aromatic thiols are poor choices for low work-function metal passivation. In addition, both passivation and charge injection enhancement can be achieved with long fluorinated alkanethiols. However, there is a trade-off between passivation and on-current. The enhancement of on-current in thiol-treated Cu-electrode pentacene devices is most likely not morphology related, due to the fact that PFDT was found to be in a standing-up orientation on the metal surface.
Additionally, it was demonstrated that although highly electronegative atoms such as fluorine can beneficially modify metal work function, too many fluorine atoms in thiols can lead to too high a work function and a large mismatch between the pentacene highest-occupied-molecular-level and metal work function.

Files

  • thumnail for Masurkar_columbia_0054D_14049.pdf Masurkar_columbia_0054D_14049.pdf application/pdf 16.8 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Kymissis, Ioannis
Degree
Ph.D., Columbia University
Published Here
August 18, 2017
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.