A Brief Tutorial on Using the Ozone Monitoring Instrument (OMI) Nitrogen Dioxide (NO$_2$) Data Product for SIPS Preparation

Lead Author: Bryan N. Duncan (NASA)
Contributing Authors: Michael Geigert (CT DEEP). Lok Lamsal (NASA)
This technical guidance document is a product of a 2017-2018 NASA Health and Air Quality Applied Sciences Team (HAQAST; www.haqast.org) Tiger Team project, “Supporting the use of satellite data in State Implementation Plans (SIPs)”. Team membership is listed below. We are grateful to colleagues who shared ideas and opinions that helped shape this document, and to NASA for hosting these products on the Air Quality From Space website at https://airquality.gsfc.nasa.gov/aq-managers.

HAQAST Tiger Team Participants
Grace Choi (gracesh27@gmail.com), University of Wisconsin—Madison
Bryan Duncan (bryan.n.duncan@nasa.gov), NASA GSFC
Arlene Fiore (amfiore@ldeo.columbia.edu), LDEO/Columbia University
Daven Henze (Daven.Henze@colorado.edu), University of Colorado – Boulder
Jeremy Hess (jjhess@uw.edu), University of Washington
Tracey Holloway (taholloway@wisc.edu), University of Wisconsin—Madison
Xiaomeng Jin (xjin@ldeo.columbia.edu), LDEO/Columbia University
Lok Lamsal (lok.lamsal@nasa.gov), NASA GSFC
George Milly (gpm2109@columbia.edu), LDEO/Columbia University
Jessica Neu (Jessica.L.Neu@jpl.nasa.gov), NASA JPL
Talat Odman (talat.odman@ce.gatech.edu), Georgia Institute of Technology
Jonathan Patz (patz@wisc.edu), University of Wisconsin—Madison
Ted Russell (ted.russell@gatech.edu), Georgia Institute of Technology
Daniel Tong (qtong@gmu.edu), George Mason University
Mark Zondlo (mzondlo@princeton.edu), Princeton University

Stakeholder Participants
Jim Boylan (James.boylan@dnr.ga.gov), GA EPD
Pat Dolwick (Dolwick.Pat@epa.gov), U.S. EPA
Mark Estes (mark.estes@tceq.texas.gov), TCEQ
Michael Geigert (Michael.Geigert@ct.gov), CT DEEP
Barron Henderson (henderson.barron@epa.gov), U.S. EPA
Kurt Kebschull (Kurt.Kebschull@ct.gov), CT DEEP
Sang-Mi Lee (slee@aqmd.gov), SCAQMD
Julie McDill (jmcdill@marama.org), MARAMA
Paul Miller (pmiller@nescaum.org), NESCAUM
Stephen Reid (sreid@baaqmd.gov), BAAQMD
Steve Soong (SSoong@baaqmd.gov), BAAQMD
Saffet Tanrikulu (STanrikulu@baaqmd.gov), BAAQMD
Di Tian (Di.Tian@dnr.ga.gov), GA EPD
Gail Tonnesen (Tonnesen.Gail@epa.gov), U.S. EPA
Luke Valin (Valin.Lukas@epa.gov), U.S. EPA
Susan Wierman (swierman@marama.org), MARAMA
Tao Zeng (Tao.Zeng@dnr.ga.gov), GA EPD
VERSION 6-18

How to cite this technical guidance document:

DISCLAIMERS

The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official position, policy, or decision by any of the authors’ institutions or agencies, nor may they be used for advertising or product endorsement. The guidance provided in this document was written with the intent to encourage “best practices” in using satellite data for air quality applications. Furthermore, neither the U.S. government nor any of the authors’ agencies endorse or recommend any commercial products, processes, or services, including Web sites, maintained by public and/or private organizations, to which this document provides links. When users follow a link to an outside Web site, they are subject to the privacy and security policies of the owners/sponsors of the outside Web site(s). Neither the authors nor their agencies or institutions are responsible for the information collection practices of these sites. Reference to or appearance of any specific commercial products, processes, or services by trade name, trademark, manufacturer, or otherwise, in these materials does not constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any of the authors’ institutions. Neither the authors nor their employers assume any liability resulting from the use of these materials.
A Brief Tutorial on Using the Ozone Monitoring Instrument (OMI) Nitrogen Dioxide (NO₂) Data Product for SIPS Preparation

Please contact Bryan Duncan (Bryan.N.Duncan@nasa.gov) and Lok Lamsal (Lok.Lamsal@nasa.gov) with your questions.

Although State Implementation Plans (SIPs) typically rely on observations from ground-level monitoring networks and regulatory modeling, satellite data is increasingly available to state agencies. Below is an example of how one state agency used satellite data to supplement a state implementation plan to improve air quality. An advantage of satellite data is that it provides information for a broader area than sampled by ground-based networks. This document provides examples and guidance for using satellite products of nitrogen dioxide (NO₂), a precursor to ground-level ozone and nitrate aerosol, in state implementation plans. It also provides some guidance on using SO₂, a precursor to sulfate aerosol.

1. SIP Case Study: Texas Commission on Environmental Quality (TCEQ)

Stakeholder Mark Estes (TCEQ) used OMI NO₂ data in 2016 Houston-Galveston-Brazoria attainment demonstration SIP revision for the 2008 eight-hour ozone standard. The data are used as part of the weight-of-evidence information in Chapter 5, specifically Section 5.2.2:

Here are a few other (non-SIP) examples of how inferred trends in OMI NO₂ and SO₂ have been used by stakeholders:

b. See the OMI NO₂ animation in the EPA report, Our Nation’s Air. Here is a similar animation for SO₂.

c. Recently, former President Obama created a video using OMI NO₂ data to show that air quality is improving and to indicate that the Clean Air Act is working. The work presented was the subject of NASA press releases in June 2014 and December 2015.

2. Publicly-Available Images of Trends in NO₂ and SO₂ Obtained from NASA Satellite Data

In the example above, TCEQ simply presented images and graphics that were made by NASA and are publicly available via the NASA Air Quality website: https://airquality.gsfc.nasa.gov. (As a word of caution, the website will likely be restructured within the next year, so the
Animations of Annual Maps (2005-2016) over the U.S.:
- OMI SO₂ Trends: https://airquality.gsfc.nasa.gov/video/sulfur-dioxide-usa

Slider Maps of OMI NO₂ (2005-2011*):
- https://airquality.gsfc.nasa.gov/slider/ohio-valley
- https://airquality.gsfc.nasa.gov/slider/east-coast
*While the sliders are for 2005 and 2011, there have not been large decreases in NO₂ since 2011 as indicated by the satellite data as well as AQS data.

Images of OMI SO₂ over power plants (2005-7 vs. 2008-2010):
- https://www.nasa.gov/topics/earth/features/coal-pollution.html

Images of OMI NO₂ trends (see next two figures) over 20 large U.S. cities (2005-2016):
- https://airquality.gsfc.nasa.gov/cities

Figure Caption: (left) Annual average OMI NO₂ column (x10¹⁵ molecules/cm²) over the Mid-Atlantic region for 2016. (middle) The absolute change in OMI NO₂ column (x10¹⁵ molecules/cm²) from 2005 to 2016. (right) Same as middle, but for percent change (%).
Figure Caption: (top) Monthly average OMI NO$_2$ column ($x10^{15}$ molecules/cm2) over Washington, DC. (bottom) Deseasonalized OMI NO$_2$ column ($x10^{15}$ molecules/cm2). The percent trend from 2005 to 2016 is shown in parenthesis next to the city name.

The data can be downloaded in ASCII and Excel files for each city.

OMI NO$_2$ trends (no images) for about 200 other U.S. cities (2005-2016):
- https://airquality.gsfc.nasa.gov/cities

Trends* (no images) of OMI NO$_2$ over U.S. power plants:
- https://airquality.gsfc.nasa.gov/power-plants

*Note that the trends over a give power plant may reflect a trend in emissions from the facility but there is likely a portion of the trend associated with regional background changes.

Ozone Sensitivity to Precursor Emissions:

3. Do Your Own Analyses of Changes in NO$_2$ or SO$_2$

If you are looking for more than the ready-made images presented in the previous section, please read on. Currently, there are numerous data websites and webtools available to the end-user. The problem is simply that there are too many and the options are difficult to navigate, particularly for the uninitiated. Fortunately, there are a number of NASA resources (e.g., webtools, tutorials, trainings) available for the beginner to the advance data end-users.
• **General Overview:** For general questions on the use of satellite data in air quality, please refer to the review to the following overview paper: Duncan, B., et al., *Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid*, Atmos. Environ., doi:10.1016/j.atmosenv.2014.05.061, 2014. If you don’t have time to read the article, you can read an abbreviated version in Section 4.

• **Webtools:** There are numerous webtools that may be used for subsetting, downloading and plotting NASA air quality data. Some of these webtools are listed at https://airquality.gsfc.nasa.gov/resources and https://arset.gsfc.nasa.gov/about/models-tools. For instance, one popular webtool is Giovanni – see the following link for introductory materials on using Giovanni for air quality applications: https://arset.gsfc.nasa.gov/about/models-tools#giovanni.

• **Tutorials & In-Person Trainings:** If after looking at the webtools and you are feeling overwhelmed, you may want to turn to the NASA Applied Remote Sensing Training (ARSET) program (https://arset.gsfc.nasa.gov/), which has many resources, such as the latest on inferring surface PM$_{2.5}$ from AOD data. For instance, the Giovanni weblink above is on the ARSET website. Check out their webinar page, which lists their free archived and upcoming live webinars on how to use satellite data for health and air quality applications.

• **Speak with a Scientist:** The NASA Health and Air Quality Applied Sciences Team (HAQAST; https://haqast.org) may be able to help you. HAQAST’s goal is to facilitate the use of satellite data by health and air quality managers.

• **Get it from the Horse’s Mouth:** Ultimately, the best resources for accurately using satellite data for specific applications are the people who develop the retrievals themselves. As a word of caution, the developers are not funded to provide specific analysis or tailored plots for the end-user. Nevertheless, they are the people who know the strengths and limitations of the data for specific applications and are often willing to provide new and improved datasets that aren’t currently publicly available. Their advice will be invaluable. Since there are so many datasets and retrieval algorithm developers, it is best to do a little search via the web for contact information of the appropriate people.

In the next section, we present two examples of the steps that an air quality manager used to download and plot OMI NO$_2$ data.

4. **General background on the use of satellite data for health and air quality applications**

If you don’t have time to read Duncan et al. (2014), here is a brief summary.

Satellite instruments are perched high above the Earth’s surface, affording a “God’s Eye” view of the planet’s air pollution. This spatial coverage has opened new areas of investigation by the air quality community, such as for inferring surface pollutant levels, emissions, and trends, and the health effects of specific pollutants (e.g., Streets et al. 2013; Duncan et al. 2014). Instruments measuring ultraviolet (UV)/visible wavelengths of light allow the detection of NO$_2$, SO$_2$, and small organic molecules, like formaldehyde and glyoxal, and instruments measuring infrared (IR) wavelengths of light detect CO, methane, and ammonia. Particulate matter (PM) may be inferred via aerosol optical depth (AOD) using IR/visible wavelengths, but a direct relationship
with PM emissions is still elusive (e.g., Duncan et al. 2014, and references therein). Satellite data of pollutants have proven valuable for health and air quality applications, despite some challenges that must be overcome (Martin 2008; Streets et al. 2013; Duncan et al. 2014; and references therein).

A retrieval algorithm is the method used to convert electromagnetic radiation observed by the satellite instrument to an atmospheric quantity, such as a column density. For example, the NASA Aura Ozone Monitoring Instrument (OMI) data are given in the sum of all molecules from the instrument to the Earth’s surface and typically reported in units of molecules/cm². The overall uncertainty associated with data products is a combination of uncertainties associated with the instrument and those introduced in the retrieval algorithm, which is a multi-step and sometimes imperfect process (e.g., Duncan et al., 2014).

A fundamental challenge of using these data is the proper “translation” of the observed quantities to more useful quantities, such as emissions and surface concentrations. From a column density, one may infer a surface concentration (e.g., at “nose-level”) or emission flux if the chemical species at the surface is not greatly perturbed by physical transport or chemical conversion; then to first order it can be presumed that it is closely related to the direct emissions from sources within the observed surface grid. Generally, this is the case for NO₂, SO₂ and formaldehyde as their chemical lifetimes are relatively short and their primary sources are located near the Earth’s surface. These assumptions work best for isolated point sources. Otherwise, the use of a chemical transport model may be necessary to allow for transport into and out of any grid and for chemical conversion processes.

Emissions: Streets et al. (2013) reviewed the current capability to estimate emissions from space, and in this paragraph we highlight studies of emissions using NASA Aura data that have been published subsequently. NOₓ emission sources continue to be the primary focus because of the strength of the OMI signal and therefore its potential to detect low-intensity sources. Applications have included ship emissions (Vinken et al. 2014a), Canadian oil sands (McLinden et al. 2012, 2014), soil emissions (Vinken et al. 2014b), biomass burning (Castellanos et al. 2014), and urban areas (Vienneau et al. 2013; Lamsal et al., 2015). Another recent development has been the application of OMI NOₓ data to studies of nitrogen deposition flux (Nowlan et al. 2014). Though the SO₂ signal from OMI is two to three orders of magnitude weaker than the NOₓ signal, statistical data enhancement techniques have enabled valuable new studies of SO₂ emissions from Canadian oil sands (McLinden et al., 2014); and Fioletov et al. (2013) reviewed the ability of OMI to detect large SO₂ sources worldwide, including power plants, oil fields, metal smelters, and volcanoes. Recent retrieval improvements and new statistical techniques have allowed for the detection of even smaller SO₂ sources (McLinden et al., 2016).

Power Plant Emissions: Work continues on the challenge of developing reliable quantitative relationships between observations and source emissions for large isolated power plants. Previous work had only moderate success in correlating observations with emissions (Kim et al. 2009; Russell et al. 2012; Duncan et al. 2013; Lu et al., 2012). Based on earlier work by Martin et al. (2003) and Beirle et al. (2004), new techniques have now been developed to enhance the predictive power of the single-source relationship by taking into account such factors as chemical lifetime and dispersion lifetime within the framework of high-resolution data statistical techniques. Such techniques to account for these complex factors have been explored by Beirle et al. (2011), Fioletov et al. (2011), Lamsal et al. (2011), Valín et al. (2013), and de Foy et al. (2014). The greater the sophistication of the technique, the more it relies on additional weather
data (wind speed and direction) or model calculations to simulate the surface column density. Undoubtedly, the availability of hourly observations at higher resolution from a new geostationary satellite would greatly enhance the capability.

Surface Concentrations: There has been considerable effort over the last decade to improve techniques to infer surface concentrations from satellite data, particularly for NO$_2$ (e.g., Lamsal et al., 2008) and PM$_{2.5}$ (e.g., van Donkelaar et al., 2015, 2016). There are issues with inferring surface concentrations and making apple-to-apple comparisons between the satellite data and surface observations. For instance, estimating surface PM$_{2.5}$ from satellite AOD data is complicated as it requires knowledge of various factors that influence AOD, such as relative humidity, aerosol composition, and the altitude of the aerosol layer (e.g., Hoff and Christopher, 2009; Duncan et al., 2014, and references therein). As another example, the spatial footprint of the satellite data is often large (e.g., 10x10 km2), so that a surface observation may not accurately represent the larger area. This is particularly true for short-lived pollutants, such as NO$_2$. Nevertheless, the inferred surface concentrations largely agree well with surface observations (e.g., Figure below; Duncan et al., 2013, Lamsal et al., 2015). The agreement often improves with temporal averaging as random errors cancel. Consequently, the comparison of monthly, seasonal, and annual means is often favorable, so that satellite data may be used to estimate trends in surface concentrations. A few satellite datasets are useful for inferring surface trends directly from trends in a column density if most of the pollutant is found near the surface. This is the case for two common air pollutants, NO$_2$ and SO$_2$.

![Figure Caption: Daily OMI-derived surface NO$_2$ data (red line) versus in situ observations (crosses). OMI data are not available for every day due to clouds at satellite overpass.](image)

Looking Forward: Our ability to infer surface concentrations and emissions is expected to continue to improve.

- First, new and improved instruments (e.g., ESA TROPOMI, NOAA GOES-R ABI) have recently been launched, which have substantially better temporal and spatial resolutions, among other improvements. Upcoming (2-5 years) instruments will fly in geostationary orbits, allowing hourly data to be collected over any given location over the Earth’s surface, thus providing high quality data at unprecedented spatial and temporal resolutions. (A geostationary satellite’s orbital period matches the Earth’s rotational period, so the satellite appears to be motionless to an observer on the Earth’s surface. Most current instruments are on polar-orbiting satellites, which overpasses any given location on the Earth’s surface approximately once per day during daylight hours.) With current polar-orbiting satellites, clouds often interfere with data collection so that daily data are often not possible; there will be more opportunities to observe cloud-free scenes.
throughout the day with upcoming geostationary satellites. The geostationary NASA TEMPO, Korean GEMS, and ESA Sentinel-4 instruments are planned to launch within the next five years and will provide data over North America, East Asia and Europe/North Africa, respectively.

- Second, techniques to infer surface concentrations from quantities observed by satellite instruments are always evolving (e.g., van Donkelaar et al., 2015) as mentioned above.
- Third, continuing refinements to the satellite retrieval algorithms have resulted in column density data products that are now of sufficient maturity for some species (e.g., NO$_2$) to allow reliable and quantitative estimation of concentrations, trends, and fluxes of some surface pollutants. This is an achievement given that the OMI team, for instance, was initially uncertain as to whether it was practical to credibly derive these quantities with the early versions of the retrieval algorithms.

If you would like more information on PM$_{2.5}$ or OMI data in general, please take a look at these articles:

Overview paper on AOD and PM$_{2.5}$: Hoff, R., and S. Christopher, Remote sensing of particulate pollution from space: have we reached the promised land?, J. Air Waste Manag. Assoc., 59, 6, 645-675.

5. **NO$_2$ column data**

Here are a few places to look for information on OMI NO$_2$ trends in the U.S. and around the world:

- **NO$_2$ trends:** US and worldwide trends in NO$_2$ pollution over the last decade: https://airquality.gsfc.nasa.gov/

In addition to OMI, there are several NO$_2$ column data products from other instruments (Table 1). These include GOME (Global Ozone Monitoring Experiment), OMI, GOME-2 and SCIAMACHY (Envisat SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY). The ESA Tropospheric Ozone Monitoring Instrument (TROPOMI), which is a follow-on instrument to OMI but with finer horizontal resolution (next two figures below), launched in October 2017 on the polar-orbiting Sentinel-5 Precursor satellite and is targeting a
7x7 km² pixel size. TROPOMI also measures CO, CH₄, SO₂, and other gases that will be useful for AQ studies. The NASA TEMPO instrument is planned to launch in the next few years. TEMPO will be in geostationary orbit over North America, which will collect hourly data throughout the day at high spatial resolution (pixel size of 2.1x4.7 km²) (figure below).

Table 1 Information on the satellite instruments that measure tropospheric NO₂ column density.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Platform</th>
<th>Time Period</th>
<th>Nadir Resolution (km²)</th>
<th>Overpass time (Local Time)</th>
<th>Global coverage (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOME</td>
<td>ERS-2</td>
<td>1995–2003</td>
<td>320 × 40</td>
<td>10:30 AM</td>
<td>3</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>ENVISAT</td>
<td>2002–2012</td>
<td>60 × 30</td>
<td>10:00 AM</td>
<td>6</td>
</tr>
<tr>
<td>OMI</td>
<td>Aura</td>
<td>2004–</td>
<td>24 × 13</td>
<td>1:45 PM</td>
<td>2</td>
</tr>
<tr>
<td>GOME-2</td>
<td>MetOp</td>
<td>2006–</td>
<td>80 × 40</td>
<td>9:30 AM</td>
<td>1</td>
</tr>
<tr>
<td>TROPOMI</td>
<td>Sentinel-5 Precursor</td>
<td>2017-</td>
<td>7x7</td>
<td>1:30 PM</td>
<td>1</td>
</tr>
<tr>
<td>TEMPO</td>
<td>?</td>
<td>Anticipated launch in early 2020s</td>
<td>2.1x4.7</td>
<td>daylight hours</td>
<td>1 (for North America)</td>
</tr>
</tbody>
</table>

Figure Caption: Comparison of horizontal resolutions (at nadir) of several instruments that observe NO₂.
Figure Caption: "First look" TROPOMI NO₂ data for one overpass on November 22, 2017 illustrates the superior horizontal resolution of this latest instrument. The TROPOMI data are expected to be publicly released in spring 2018.

Figure Caption: Comparison of the horizontal resolutions (at nadir) of several instruments that currently (or will) observe NO₂ over the Washington, DC metro area.

2a. Accessing GOME, SCIAMACHY, OMI, GOME-2 NO₂ Data

GOME, SCIAMACHY, OMI and GOME-2 NO₂ data may be obtained from the TEMIS website and OMI data from the NASA website. A step by step set of instructions (contributed by Michael Geigert, CT DEEP, with additions from Bryan Duncan and Lok Lamsal) is given here for downloading the data.

TEMIS (Dutch website)
NO$_2$ products and documentation from the European TEMIS project (KNMI, Netherlands) can be found at http://www.temis.nl/airpollution/no2.html. TEMIS is a web-based service used to browse and download atmospheric satellite data products. These tropospheric NO$_2$ columns are derived from satellite observations based on slant column NO$_2$ retrievals with the DOAS technique, and the KNMI combined modelling/retrieval/assimilation approach. The slant columns from GOME, SCIAMACHY and GOME-2 observations are derived by BIRA-IASB, the slant columns from OMI by KNMI/NASA. The KNMI OMI NO$_2$ product is often referred to as the “DOMINO Product”.

On the TEMIS products web page, there is a link for monthly regional NO$_2$ products: http://www.temis.nl/airpollution/no2col/no2regioomimonth_v2.php. Since ozone sensitivity analysis uses NO$_2$ monthly means, it is useful to get an image of the data that is being analyzed. A sample image from the OMI link for NO$_2$ in May 2016 looks like this:

During May 2016, much of the upper Midwest and Northeast States were being affected by the smoke plume from the Fort McMurray, Alberta wildfires, and this image of elevated NO$_2$ over those areas may be indicative of that.

2b. Accessing the OMI Data from the NASA Website

The [NASA](https://www.nasa.gov) website is another repository for OMI NO$_2$ satellite data. OMI NO$_2$ data products are archived and distributed from the Goddard Earth Sciences Data and Information Services center (GES-DISC). OMI products are written in HDF-EOS5 format. GES-DISC also provides a list of tools that read HDF-EOS5 data files. Table 2 shows the data that are available for Levels 2, 2g
and 3. There are a number of “derivative” products of this OMI NO$_2$ product as illustrated in Figure 5.

As with all remote sensing data sets, there are subtleties in the OMNO2 data that are due to geophysics, instrumental measurements, and the retrieval algorithm. Users of the data are encouraged to communicate directly with members of the respective algorithm team. Users of these products are recommended to read their product related publications and README documents.

For advanced uses, Level-2 products are recommended. When using Level-2 products, it is recommended to seek guidance from the developers to ensure appropriate screening and quality control measures are applied. Particular attention should be paid to the various data quality flags. For most users, the Summary Quality Flag (e.g., vcdQualityFlags for NO$_2$) should suffice. In row-anomaly-affected field-of-views (FOVs), the column amount fields have been either incorrect values or set to their respective fill values, so XTrackQualityFlags need to be explicitly checked. In certain periods of time, using these flags will result in up to 50% field-of-view rejection rate.

Since the L2 data are copied directly into the L2G data product, the general quality of the data is the same. For some purposes, in some geographical regions (e.g., in polar regions), more than 15 L2 FOVs may have their centers land in a particular cell, and some L2 data, whose optical path lengths are longer than the others, may be excluded. This should happen rarely, but may lead to slight shifts in statistical measures.

Level-3 satellite products are produced from Level-2 products by using best pixel data over each grid cell, so these products already incorporate the appropriate quality control measures. The product development team has chosen a cloud screening criterion of the effective cloud fraction (e.g. cloud fraction < 0.3 for NO$_2$), which reflects a compromise between data quality and quantity. While the L3 data product can be used to assess the daily NO$_2$ column densities, it is important to remember that the values in the grid cells are weighted averages of a number of OMI measurements, and the value in a cell may not correspond to any one actual measurement.
Table 2: OMI NO\textsubscript{2} data products from the NASA websites. These products are often referred to as the “Standard Product”.

<table>
<thead>
<tr>
<th>Image</th>
<th>Dataset</th>
<th>Temporal Resolution</th>
<th>Spatial Resolution</th>
<th>Process Level</th>
<th>Begin Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMNO2 sample image</td>
<td>OMI/Aura Nitrogen Dioxide (NO\textsubscript{2}) Total and Tropospheric Column 1-orbit L2 Swath 13x24 km2 V003 (OMNO2.003) - Atmospheric Chemistry Get Data/ Subset Data</td>
<td>1 hour</td>
<td>13 km x 24 km</td>
<td>2</td>
<td>2004-10-01</td>
<td>2017-11-01</td>
</tr>
<tr>
<td>OMNO2d sample image</td>
<td>OMI/Aura NO\textsubscript{2} Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree V3 (OMNO2d.003) – Atmospheric Chemistry Get Data/ Subset Data</td>
<td>1 day</td>
<td>0.25° x 0.25°</td>
<td>3</td>
<td>2004-10-01</td>
<td>2017-11-01</td>
</tr>
<tr>
<td>OMNO2G sample image</td>
<td>OMI/Aura NO\textsubscript{2} Total and Tropospheric Column Daily L2 Global Gridded 0.25 degree x 0.25 degree V3 (OMNO2G.003) – Atmospheric Chemistry Get Data /Subset Data</td>
<td>1 day</td>
<td>0.25° x 0.25°</td>
<td>2G</td>
<td>2004-10-01</td>
<td>2017-11-01</td>
</tr>
<tr>
<td>No images</td>
<td>OMI/Aura NO\textsubscript{2} Cloud-Screened Tropospheric Column L3 Global Gridded 0.1 degree x 0.1 degree, https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L3/OMNO2D_HR/</td>
<td>1 day</td>
<td>0.1 x 0.1</td>
<td>3</td>
<td>2004-10-01</td>
<td>2017-11-01</td>
</tr>
</tbody>
</table>

For a more detailed list of available OMI NO\textsubscript{2} data products, please visit this ARSET weblink: https://arset.gsfc.nasa.gov/airquality/applications/trace-gases/omi-no2-data-and-imagery
Figure 1: Note to the User: There are quite a few derivatives of the NASA OMI NO\textsubscript{2} data product, which is sometimes referred to as the “Standard Product”. The “Family Tree” schematic illustrates these derivatives, but there are too many differences between the products to mention here. For the high-resolution products, the reader is referred to the NASA and BEHR websites.

2c. Data Uncertainties

Significant error sources in the retrieval of the tropospheric NO\textsubscript{2} column are associated with the slant column densities, the air mass factor, and with the separation of the stratosphere and troposphere. The uncertainty due to spectral fitting is 0.75×10^{15} molec cm\(^{-2}\) [Boersma et al., 2007] dominates the overall retrieval error over the oceans and remote areas. The uncertainty arising from the stratosphere-troposphere separation is 0.3×10^{15} molec cm\(^{-2}\) [Bucsela et al., 2013]. The air mass factor errors arise primarily from uncertainties in cloud parameters, surface reflectivity, profile shape, and aerosols [Martin et al., 2002; Boersma et al., 2011; Bucsela et al., 2013], and dominates over the continental source regions. The overall error in the OMI vertical column density for clear and polluted conditions is estimated to be 30%, but could be over 60% in the presence of clouds [Boersma et al., 2004].

Users could exclude cloudy observations using cloud radiance fractions exceeding 0.5-0.6. The stripes affecting the slant columns in the swath direction can add additional uncertainties. This
effect is minimized in the NASA product by implementing correction for the stripes. The DOMINO product is not corrected for the stripes. For example, compare the image below with the one downloaded from the TEMIS website, which is shown above.

2d. Downloading the Data – An Example from Michael Geigert (CT DEEP)

To do a proper analysis, it is necessary to download the data files. Retrieving the actual NO₂ satellite data can be challenging if one is not familiar with the process. The TEMIS web site provides downloads for a KML file, and zip-ed ASCII data files in TOMS and ESRI grid formats. The NASA website provides downloads in the ‘.he5’ format, which can be read by various tools.

2d1. Preliminary Steps

Here are some preliminary steps (for windows operating systems) to take before downloading the data that will facilitate the data analysis:

2d1a. Obtain a file ‘unpacking’ utility

Many of the data files are compressed in .tar format and will need something like this open source ‘unpacking’ utility from http://www.7-zip.org/. You can use 7-Zip on any computer, including a computer in a commercial organization. You don't need to register or pay for 7-Zip.
After downloading and installing this application, you can use it to unpack any compressed file right from the Windows file manager.

2d1b. Understanding Satellite File Identifiers.
In order to download data, you may need to know the actual swath identifier that you are interested in. As described on the TEMIS web site, there are several satellites that provide NO2 data, but only the OMI and GOME-2 have current data. The following is a description for the OMI data sets.

OMI is one of the instruments on the Aura satellite. Aura is part of the so called “A-train” series of satellites, which orbits with the MODIS AQUA satellite. This spacecraft orbits at 705 km above the Earth with a sixteen-day repeat cycle. In a single orbit, OMI measures approximately 1650 swaths from terminator to terminator. With an orbital period of 99 minutes, OMI views the entire sunlit portion of the Earth in 14–15 orbits. It has a 1:45 PM ±15 minute equator crossing time and typically, the orbit times for the daytime ascending North American orbits begin around 1700 UTC. OMI measures criteria pollutants such as O3, NO2, SO2, and aerosols. The OMI NO2 README file is available at: https://aura.gesdisc.eosdis.nasa.gov/data//Aura_OMI_Level2/OMNO2.003/doc/README.OMN O2.pdf.

There are generally 3 data levels that are available, with level 1 being the raw data and level 3 is the most quality assured data set. Level 2 is the most commonly available and below is an example of a downloaded level 2 NO2 OMI file:

OMI-Aura_L2-OMNO2_2011m1010t2318-o38499_v003-2011m1011t154524.he5

where:

- `<InstrumentID>` = OMI-Aura
- `<DataType>` = L2-OMNO2
- `<ObservationDateTime>` = 2011m1010t23
- `<Orbit#>` = 38499
- `<Collection#>` = 003
- `<ProductionDateTime>` = 2011m1011t15
- `<Suffix>` = he5

2d2. Reading `.he5` format files
The he5 files can be then plotted using a viewer such as this offered by NASA: https://www.giss.nasa.gov/tools/panoply/. Panoply plots geo-referenced and other arrays from netCDF, HDF, GRIB, and other datasets.

2d2a. Using Panoply to view/extract NO2 data
Unlike TEMIS, the NASA EARTHDATA Level 3 data downloads for NO$_2$ are not processed for monthly means, but the data is readily displayed in Panoply. Using this service will require you to register free with EARTHDATA. The following is a screen shot of the menu tree in Panoply for plotting the May 20, 2016 cloud screened NO$_2$ data parameter:

It is important that you choose the GEO2D file type for plotting, otherwise there will be no geo-reference for the map that is produced. The following map was easily produced after changing the map projection and adjusting the color scale ranges:

Panoply also allows you to download the gridded data as a .csv file, which is readily viewed in a spreadsheet:
2c3. Viewing Satellite data from TEMIS

As mentioned before, the TEMIS web site provides downloads for monthly average KML files, and zip-ed ASCII data files in TOMS and ESRI grid formats. These are not readily viewable in Panoply, but the ASCII data file in TOMS format can be viewed in a spreadsheet (as above). The kml file can be saved and viewed in Google Earth, but that is of limited usefulness. The following is a map that was downloaded as a kml for May, 2016:
If the ESRI ArcGIS products are at your disposable, then the ESRI Gridded formatted data can be plotted. This data needs to be georeferenced within ArcCatalog before it can be plotted. This is what the OMI May 2016 looks like in ArcMAP after the data intervals have been manually selected and the colors changed:

For comparison, this is the downloaded the GOME-2 ESRI gridded data for the same period and plotted in ArcMAP (below). GOME satellite pixels have a coarser resolution than OMI, which is apparent in the image and it is also noted that the NO$_2$ concentrations tend to be higher.

6. References

Duncan, B. N. et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmospheric Environment, 94, 647–662, doi:10.1016/j.atmosenv.2014.05.061.

Hoff, R., and S. Christopher, Remote sensing of particulate pollution from space: have we reached the promised land?, J. Air Waste Manag. Assoc., 59, 6, 645-675.

Lamsal, L.N., R.V. Martin, M. Steinbacher, E.A. Celarier, E. Bucsela, E.J. Dunlea, and J. Pinto,
Ground level nitrogen dioxide concentrations inferred from the satellite-borne Ozone

Lamsal, L.N., B.N. Duncan, Y. Yoshida, N.A. Krotkov, K.E. Pickering, D.G. Streets, and Z. Lu,
U.S. NO2 trends (2005-2013): EPA Air Quality System (AQS) data versus improved
observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ.,

Lu, Z., Streets, D., 2012. Increase in NOx emissions from Indian thermal power plants during
1996-2010: Unit-based inventories multisatellite observations. Environmental Science &
Technology 46, 7463-7470, dx.doi.org/10.1021/es300831w.

Marais, E. A., D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves,
and H. Pye, 2014a: Improved model of isoprene emissions in Africa using OMI satellite
observations of formaldehyde: implications for oxidants and particulate matter, Atmos. Chem.
Phys., 14, 7693-7703.

Marais, E. A., D. J. Jacob , K. Wecht, C. Lerot, L. Zhang, K. Yu, T. P. Kurosu, K. Chance, and
B. Sauvage, 2014b: Anthropogenic emissions in Nigeria and implications for ozone air

Martin, R.V., D.J. Jacob, K. Chance, T.P. Kurosu, P.I. Palmer, and M.J. Evans, Global inventory
of nitrogen oxide emissions constrained by space-based observations of NO2 columns, J.

Martin, R. V., A. M. Fiore, and A. V. Donkelaar (2004), Space-based diagnosis of surface ozone
sensitivity to anthropogenic emissions, Geophys. Res. Lett., 31(6), L06120,

McLinden, C., V. Fioletov, K. Boersma, N. Krotkov, C. Sioris, J. Veefkind, and K. Yang, 2012:
Air quality over the Canadian oil sands: A first assessment using satellite observations,

McLinden, C. A., V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar,
R. V. Martin, J. P. Veefkind, and K. Yang, 2014: Improved satellite retrievals of NO2 and SO2
over the Canadian oil sands and comparisons with surface measurements, Atmos. Chem.
Phys., 14, 3637-3656, doi:10.5194/acp-14-3637-2014.

McLinden, C. A., V. Fioletov, Mark Shephard, Nick Krotkov, Can Li, Randall V. Martin,
Michael D. Moran, and J. Joiner, Space-based detection of missing SO2 sources of global air

Nowlan, C. R., R. V. Martin, S. Philip, L. N. Lamsal, N. A. Krotkov, E. A. Marais, S. Wang, and
Q. Zhang, 2014: Global Dry Deposition of Nitrogen Dioxide and Sulfur Dioxide Inferred from

Osterman, and M. W. Shephard (2011), Quantifying spatial and seasonal variability in
atmospheric ammonia with in situ and space-based observations, Geophys. Res. Lett., 38,

States: effects of emission control technology and the economic recession. Atmospheric

Shephard, M. W., et al., 2011: TES ammonia retrieval strategy and global observations of the

