
An Object Oriented Approach to Content Planning for
Text Generation

*Ursula Wolz

Columbia University
Department of Computer Science

New York, NY 10027

Technical Report: CUCS-004-90

February 28, 1990

Abstract

This paper describes GENIE, an object-oriented architecture that generates text with the intent of
extending user expertise in interactive environments. Instead of generating text based solely on
either discourse goals, intentions, or the domain, we found a need to combine techniques from
each. We have developed an object oriented architecture in which the concepts about which we
talk (domain entities), the goals that may be accomplished with them (intentions), and the
rhetorical acts through which we express them (discourse goals) are represented as objects with
localized knowledge and methods. A three stage process of content selection, content structuring
and content filtering is presented. Content selection and structuring allow us to produce text that
is within the context of the task at hand for the user. Content filtering allows us to revise and
restructure the utterance to achieve clarity and conciseness.

Topic: Natural Language Generation
Keywords: Text Generation, Content Planning, User Modeling,

Intelligent Interfaces
Copyright © 1990 Ursula Wolz

*Supported in part by ONR grant N00014-82-K-0256, by NSF grant IST-84-51438, a
grant from DARPA, and a grant from Siemens Research and Technology Laboratories.

1

1. Introduction
A practical problem for text generation is how to produce good advice for users of

interactive environments. In such settings users attempt to accomplish tasks by combining the
set of available commands in a potentially infinite number of ways. Although canned resources
may provide definitions or tutorials on how particular commands work, they cannot provide
information within the context of the task at hand. To further complicate matters, users rarely
exhibit classic patterns of expertise, but approach such environments with very particular task
specific goals. Since users’ primary goal is to complete the task, and only secondarily to get new
information, they would prefer succinct, informative responses to queries during the first shot,
rather than being diverted by an extended dialogue.

The GENIE project at Columbia has focused on how to build such an advice giving
system. Instead of generating text based solely on either discourse goals [McKeown 85, Paris
87, Hovy 88, Moore & Swartout 89], on intentions [Appelt 85], or on the domain [Dale 88], we
found a need to combine techniques from each. We have developed an object-oriented
architecture in which the concepts about which we talk (domain entities), the goals that may be
accomplished with them (intentions), and the rhetorical acts through which we express them
(discourse goals) are represented as objects with localized knowledge and methods. Instantiated
as objects, concepts such as goals, plans, actions and domain objects contain knowledge of how
they interact with each other, and how they can be expressed textually. Similarly, rhetorical
entities such as stating, comparing, elaborating can include knowledge of how they interact with
each other, and how they may be applied to particular concepts or relations between concepts.

The GENIE [Wolz et al. 90, Wolz 90a] project has two major goals. First, the selection of
content must be based on the current context of the user, which includes not only the problem
with which the user needs help, but also the situation in which the help is requested, and the past
experience of the user. Second, in any response, GENIE has two discourse goals. It responds
informatively about the problem, and then attempts to extend the user’s expertise by providing
information as enrichment.

The three components of context introduce significant complexity into choosing what
plan of action to suggest to the user. In particular they discourage the use of a cross product of
stereotypical functionality and user expertise [Chin 88]. Instead they require the ability to both
reason about the relationship between equally good plans, and explain that reasoning process.
Context also influences the structure of the text. For example, a user who is familiar with a
concept need only be reminded about it, and does not require a long introduction. Therefore, like
other text generation systems, GENIE must first do content selection and choose which among a
set of equally good plans should be described to the user. Then GENIE must do content
structuring, casting the response in a form that most directly addresses the contextual needs of
the user. The intrinsic modularity of an object-oriented approach helps to manage the
complexity within each of these processes, and provides clean mechanisms for moving between
them.

The dual discourse goals of responding and enriching introduce their own complexity,
especially if they are to be combined into a single informative response. The purpose of
enrichment is to sneak in a little extra information without distracting the user from the task at
hand. Therefore, attempting to engage the user in a dialogue, while appropriate in other settings,
is inappropriate here. The content necessary for satisfying the dual goals is often more than a
user might tolerate in a single response however. Furthermore, many of the propositions that are
included are redundant. These problems point to the introduction of a final phase of content
planning, namely content filtering. Unlike current text planners that operate in a linear top-down
fashion, GENIE is able to rewrite, or revise its response at the conceptual level, merging and
restructuring the propositions that will eventually be manifested as text. This is possible because
those propositions, which we call rhetorical acts are objects with knowledge about how they
may and may not be integrated with each other.

The following section presents the motivation for our approach to text planning. Section
3 presents the architecture of GENIE. Section 4 compares this approach to related research.

2

Section 5 discusses the status of the implementation. Section 6 concludes with limitations and
extensions.

2. Background
The GENIE project at Columbia [Wolz et al. 90, Wolz 90b, Wolz & Kaiser 88] addresses

the problem of how to extend users’ expertise in interactive environments. A communicative
problem arises in such environments because users tend to get stuck in a starter set [Finin 83] of
commands and never progress to more sophisticated methods for accomplishing tasks. The
domain we consider is Berkeley Unix Mail, chosen because it is a microcosm of Unix, providing
extremely rich and sophisticated functionality with a frustratingly hard to learn interface. The
domain also allows us to focus on extending system expertise rather than domain problem
solving since the activities, sending, receiving and managing messages, do not require high level
thinking skills.

Interactive environments can be characterized as computational tools that allow users to
accomplish tasks. Examples range from desk top aides such as word processors, message
systems and spread sheets, to cad/cam systems and multi-purpose programming environments.
Typically a core set of functionality can be combined and manipulated to construct solutions to
domain specific problems. A user approaches such an environment with a domain specific or
computational goal, and constructs a plan to satisfy that goal with the functional mechanisms
available in the environment.

In such open-ended settings no two users will approach the system with the same
background or needs. Consequently the degree of difficulty of functionality is more dependent
upon the particular experience of a user rather than on broad categories of functional difficulty or
user expertise. Users tend to develop their own highly personal repertory of commands. For
example, an "expert" user who has extensive experience reading messages, and a "novice", one
who has almost no experience reading messages, may both need to be introduced to a method for
storing mail in files. The level of expertise of the first user is less significant than whether his or
her particular expertise contributes to how much more easily the new method can be
communicated to him or her. Furthermore, a particular goal may be satisfied by more than one
plan, were the criteria for which plan is "best" is dependent up on the current context and the
user’s past experience.

Under these circumstances a pre-specified curriculum for learning about the environment,
such as a text-based tutorial or hypermedia, is inappropriate. Even the best of tutoring systems
[Clancey 82, Bonar et al. 86, Anderson et al. 85] will have expectations about the sequence in

which particular skills are learned. A better approach is to model a human consultant or "guru"
whom the user approaches to answer questions within the context of the current task in relation
to what the user already knows. This type of behavior however requires an extremely flexible
dynamic content planner. Without it, the information may not be sufficiently customized to the
user’s needs, causing confusion, rather than providing information. In GENIE, question
answering is viewed as a three stage process of understanding the user’s question, analyzing the
pertinent information to select a course of action to suggest, and formulating that answer in a
manner appropriate to the user’s background. We concentrate on the second two stages with the
following goals:

1. Provide information about the relationship between users’ task (their computational
goal) and the methods (plans) that may be used to accomplish them. Do this within
the current situation in relation to what the user has done in the past. Respond
informatively, but also attempt to provide enriching material.

2. Provide as much information in the first response so that the need for follow up
questions is reduced, but provide it in a manner that is concise, clear and cohesive.

3. Explicitly include any contextual information that may not be obvious to the user.

3

These goals emerged as a result of two informal studies. First a set of textual materials,
including manuals, tutorials, texts and canned text on-line resources were studied. Tutorials and
on-line resources tended to focus on responding directly the problem of how to do tasks.
Reference manuals, text books and especially "advanced user" manuals focused on enrichment.
In all, 20 passages covering information about Unix, Lisp, Pascal, Logo and a number of word
processors were analyzed. These texts have strongly influenced our approach to content selection
and structuring. In particular, we found that four types of strategies occurred through which
information about the relationship between plans and goals was given:

• Introducing: Presenting plans that the user has not encountered before.

• Reminding: Briefly describing plans to which the user has been exposed, but may
have forgotten.

• Clarifying Distinctions: Explaining distinctions and options about plans.

• Elucidating Misconceptions: Clearing up misunderstandings that have developed
about plans to which the user has been exposed.

The second analysis looked at 30 unix related question answering sessions in which the
correspondence occurred through electronic mail. There were only two incidents of follow up
questions. We found that the responses still fell within the four strategies. The respondent made
an attempt to respond informatively and in 8 cases explicitly included contextual information
that might not have been obvious to the questioner. In 7 cases the respondent included
information that was not merely in response to the question, but that could extend the
questioner’s expertise. Most importantly however, we found that many rhetorical strategies were
often combined into very short utterances. The intent seemed to be to convey as much
information as succinctly as possible.

3. Architecture of GENIE
Since the focus of research in GENIE is on text generation, we take the relevant aspects of

context as input. How these may be derived is discussed briefly in section 6. GENIE also
assumes a rather rich domain model that includes knowledge of intention and causality. Due to
the nature of interactive environments, the primary task of GENIE is to provide information about
how commands may be combined into plans to satisfy computational goals. This is to be
contrasted with systems that explain the attributes of objects [McKeown 85], those that describe
the causal connections between entities [Paris 87], and those that explain the actions of an agent
such as an expert system [Moore & Swartout 89].

Given a particular user context, GENIE progresses through the three stages of text
planning introduced in section 1. It first selects content, instantiating the computational goal —
G under discussion, and relating it to a set of relevant plans. The plans are:

• B — the "best" plan, the plan that may be most appropriate for the goal.

• S — the stated plan, the plan to which reference is made in the question.

• U — the User Model plan, the plan GENIE believes the user has used in the past to
satisfy the goal.

• R — the related plan, the plan that can be used to provide enrichment.

Once the relationships between the goal and the plans, and between the plans themselves
has been established, GENIE begins content structuring in which one of the four strategies
described above is selected for responding, and one for enriching. These strategies are then
expanded until a complete set of relevant rhetorical acts is produced. Finally, GENIE filters
content by applying rules that describe how the rhetorical acts may be merged, where they must
be explicitly kept separate, when they may be excluded and when they must be explicitly

4

included. GENIE employs three overlapping classes of objects; domain objects, intentional
objects and discourse objects. Domain Objects include classifications of domain entities,
including commands, and the entities manipulated by commands — within the Mail domain
these include files, messages and users. Intentional Objects allow GENIE to construct and
analyze plans, and include computational goals, plans, actions (which contain commands),
effects and preconditions. Discourse Objects include rhetorical strategies, speech acts, syntactic
structures and vocabulary. This section will show how once a current context is established,
these objects are used for content selection, structuring and filtering.

3.1. Contextual Knowledge: Input to GENIE
In order for the response to occur within the current context we have identified the need

for a three part user model. A situational context provides information on what activity the user
is currently engaged in. This information may not be obvious to the user. A discourse context
provides details about the user’s elocutionary goal in asking the question. It contains
information obvious to the user. A model of user domain knowledge that is a set of beliefs about
a user’s knowledge of commands and plans for combining those commands to satisfy goals.
Because it is a set of beliefs of GENIE, it may contain information not obvious to the user.

The situational context is essentially a representation of the state in which the user asks a
question. It may include details of where the user is, for example, in a unix shell rather than in
the mail program. The discourse context is based on identifying the user’s question as one of the
following five types, and may include an instantiation of the goal and stated plan, if they are
stated:

1. What plan will satisfy the goal? Given G, find B. Intuitively "How do I do it?"

2. What goal is satisfied by this plan? Given S, find G. Intuitively "What does it do?"

3. Does this plan satisfy this goal? Given S and G, confirm that S satisfies
G. Intuitively "Does it do it?"

4. Why doesn’t this plan satisfy this goal? Given S and G, explain why S does not
satisfy G. Intuitively "Why doesn’t it do it?"

5. Is there a better plan for this goal? Given S and G, find B. Intuitively "Is there a
better way to do it?"

The model of user domain knowledge is an overlay to GENIE’s own "expert" knowledge
of intention and causality within the domain. The user model can however include knowledge
that is not part of the expert model, and may contain faulty knowledge. More will be said about
the expert model shortly. Consider the following scenario. A user is in the Unix environment,
rather than in the mail program itself, and there is no new mail for the user. In the past the user
has only sent mail after reading new mail, that is, only after entering the mail program to read
new mail. The user has never used the option for entering the mail program for the purpose of
sending a message, only for the purpose of reading mail. The user asks the question "How can I
send a message?" The situational context includes the fact "user is in unix." The user model of
domain knowledge would indicate no experience with entering the mail program for the purpose
of sending mail. The discourse context includes a goal "send mail", in which a single message,
rather than a group of messages is specified. It expects a plan for satisfying the goal and assumes
such a plan exists. It does not, however specify to whom the message should be sent. Contrast
this with the question "Why doesn’t "mail McKeown" let me send a message to Kathy?" Here
both a stated plan and a goal are provided along with a specification of the recipient. However,
the assumption is that the plan is faulty and the expectation is that the response will explain why.

GENIE’s hierarchical object base of domain knowledge includes knowledge of intentions
— how to accomplish domain specific tasks, causality — what the results of actions are, and
system operations — the core functionality on which the entire system is based. The intentional

5

layer encodes knowledge of goals and how to satisfy them through actions. Goal satisfaction can
also be encoded as composite plans, which are collections of goals that in turn may be satisfied
through actions or composite plans. For explanation purposes, we also saw the need for
abstracting the knowledge typically encoded in preconditions. Often, the explanation for why an
action should be taken requires knowing semantic information about the relationship between
preconditions, rather than merely that a precondition has been met. For example, in the mail
domain one can send a message from the Unix environment, or from inside the mail
environment. By encoding this knowledge as a discriminator object with type "mode" and with
features "unix" and "mail", we still have the power of choice of a classic precondition, but have
the added explanatory power to be able to relate the chosen feature to the feature that failed.

In GENIE, the action layer is represented in a more classic manner. Actions have
preconditions, which when met, spawn effects. Effects may be represented as composites —
leading to collections of other actions, or as system level operations. Again, for explanatory
purposes, a precondition contains added information: the goal that can satisfy it, and the effect
that occurs if the action is invoked when the precondition is not met. For example, one can
attempt to read a file of mail messages, but if the file doesn’t exist, the action causes an error
message to appear which is a predictable, though unintended effect. Figure 3-1 shows a portion
of the knowledge base required for the question "How can I send a message?" The model of user
domain knowledge is an overlay to this knowledge, as can be seen from the Figure.

Figure 3-1: Partial Map of the Intentional Objects for the Send Mail Goal

Each of these classes of objects contain semantic and lexical information. For example, a
goal can be expressed as a process action which has semantic components agent, process-verb,
medium, beneficiary and/or location attributes. The generic goal "send mail" has uninstantiated
agent and beneficiary, a process-verb "send", and medium "mail." The semantic concepts "send"
and "mail" have lexical attachment to particular verbs and nouns. In particular, since "mail" is

6

also a domain concept it may be instantiated as a subclass with more semantic detail. This is
illustrated more naturally through reference to users. Consider the difference between the
question "How do I a message to Kathy" and "How do I send a message." In the first sentence,
the goal "send mail" is related to the object "Kathy" which includes the fact that reference to the
user should be through the proper name "Kathy." Instantiating the second goal requires
instantiating a default beneficiary relation, which, as will be seen in our example include
semantics for producing either the phrase "an individual", or "individuals."

3.2. Content Selection: Objects Reason About Themselves
Once the contextual knowledge from the situation and the discourse have been

established as instantiated objects, GENIE is ready to select the content of the response. This
requires instantiating the goal and the four plans listed in section 3.1, and comparing these
objects. Each of the objects is sent two messages: construct-yourself and compare-yourself. The
execution is dependent upon the class of the object. The messages may be sent in any order. A
blackboard keeps track of which objects have returned successful constructs and compares, and
messages are resent until all objects return successfully. The methods are sophisticated enough
to prevent redundancies. For example, if while executing its compare, B successfully compares
itself with S and U, then S and U are all marked as compared to B. When S is asked to compare
itself, it need only compare itself with U, as it already knows its relation to B.

Constructing proceeds as follows. If the goal G has not been constructed in the discourse
context, (if it wasn’t included in the question), then its method traverses the domain knowledge
of intention in an action to goal direction, using the actions from the stated plan S. The best plan
B traverses the domain knowledge of intention in a goal to action direction, using G. Both use
the discriminators to guide search based on five ordered heuristics:

1. If knowledge from the discourse context doesn’t conflict with knowledge from the
situational context, rely on the discourse context.

2. Rely on the situational context.

3. Rely on the model of user knowledge.

4. Rely on default heuristics for the domain entity that corresponds to the type of the
discriminator.

5. Don’t make a decision.

If the plan S is not present from the discourse context, it merely marks itself as absent.
The user model plan is constructed in a manner similar to the best plan, but is restricted to
knowledge that is marked as known by the user. The related plan R is dominated by B, that is, B
sends R "close calls" at decision points, giving R the branch that lost. Comparison between G
and a plan requires validating that the plan is works within the current situational context by
applying a simulation technique to the causal layer of domain knowledge. If the plan fails, the
explanation for failure is recorded. Comparing plans with other plans uses a simple matching
algorithm. The objects are annotated as to whether they are equivalent, or if differences occur,
where those differences are. This information is critical to answering "what went wrong" and
"what is a better way" questions.

Returning to the send mail example, only a goal is given. Therefore, S is marked as
absent, B, U and R are constructed and compared. Given the input context, B is instantiated as a
plan to "send from unix" with "recipient is individual." The first decision is based on heuristic 2,
the situation. The second decision is based on heuristic 3, since the user model only contains
experience with individuals as recipients. When comparison occurs, U discovers that it is not
valid in the current context because one of the preconditions to one of its commands is missing
— there is no new mail. When content selection is finished, in this example, over 100 objects
are instantiated including goals and subgoals, discriminators, actions, subactions, preconditions,
and effects. Clearly not all of them should be included in the response.

7

3.3. Structuring Content: Instantiating Rhetorical Objects
The result of an analysis may produce significantly more information than is necessary to

help the user. For example, the details of the best plan may be extensive, but the model of the
user’s knowledge reveals that the user knows most of it already. From the analysis of text, we
identified four strategies or high level themes through which task information is presented.
These are the strategies listed in section 2. Each strategy can be used either to respond or to
provide enrichment.

The strategies contain explicit structure [Wolz et al. 90] that is discourse rather than
domain dependent. This phenomenon is well established, having been first identified by
McKeown [McKeown 85]. In GENIE we represent these structures as rhetorical objects that can
be instantiated, and can refer and send messages to one another and to domain and reasoning
objects. In this way the five objects that form the content can influence the structure of the
response, and independent rhetorical entities can influence content.

Once the content selection stage is complete, each of the plans (B, S, U and R) is sent a
message "talk-about-yourself." Depending on the type of the plan (best, user model, etc.) this
message will select two high level rhetorical strategies. The decision is based on a compilation
of rules derived from the design goals. Examples of the rules are shown in Figure 3-2. In the
"how do I send mail" example, B selects "IntroRespond" because there is no stated plan, and the
user model plan is invalid. U selects "ElucidateEnrich" because it is not valid for G. R remains
silent because U is not equal to B. S remains silent because it is absent. Having selected a
rhetorical strategy, each of the plans creates an instance of its strategies, links itself to the
instantiation and sends a message to the strategies to expand themselves. The strategies contain
rhetorical plans for expanding themselves. The rhetorical plans may either expand into other
rhetorical strategies or terminate in rhetorical acts. The top level strategy for Introducing, that is
called by IntroRespond is shown in Figure 3-3 along with the first level expansion into other
strategies and acts. Plan expansion occurs by sending messages to components of the plan until
the plan bottoms out as a set of rhetorical acts.

Notation: P = P exists P = P does not existE ~E
P = P is validP = P is not validV ~V
& = AND, | = OR

TalkAbout: B If S & (U | U) IntroRespond~E ~E ~V

TalkAbout: U If S & U RemindRespond~E V
If S & (U <> B) ClarifyEnrich~E V
If U & (S | [S = B]) ElucidEnrich~V ~E V

TalkAbout: R If [S | S = B] & (U = B) IntroEnrich~E V V

Figure 3-2: Summary of Conditions that Determine the Strategy

Rhetorical acts contain functional descriptions which when given to the surface generator
can produce text. The form of these descriptions is based on the theory of functional
grammar [Halliday 85]. They also include knowledge for how they interact with other rhetorical
acts, as will be seen in the next section. The execution of rhetorical strategies may produce
redundant, extraneous or obvious information. For example, Figure 3-4 shows the text that
would be produced if the first 6 rhetorical acts instantiated in the send mail example were given
to the surface generator. In all 30 rhetorical acts are produced because of the expansion of
subactions of send mail command.

8

(rh-plan introduce composite-plan ;to introduce a composite-plan send
((state-it goal-satisfied required) ;state-it message to goal-satisfied attribute,
(describe-decisions choice-made self) ;send self describe-decisions using list
(summarize subgoals required self) ;in choice-made attribute, etc.
(expand subgoals required self)))

BEST-PLAN sending INTRODUCE message to {plan} PL-SEND-MAIL-2
PL-SEND-MAIL-2 sending STATE-IT message to {goal} SEND-MAIL-1
STATE-IT-GOAL-1 {r-act} instantiated
PL-SEND-MAIL-2 sending DESCRIBE-DECISIONS message to {plan} PL-SEND-MAIL-2
PL-SEND-MAIL-2 sending STATE-IT message to {discriminator} SEND-MAIL-MODE-1
SEND-MAIL-MODE-1 sending STATE-IT-STRONG message to {discriminator} SEND-MAIL-MODE-1
STATE-IT-STRONG-DISCRIMINATOR-1 {r-act} instantiated
PL-SEND-MAIL-2 sending EXPAND message to {plan} PL-SEND-MAIL-2
PL-SEND-MAIL-2 sending INTRODUCE message to {action} SEND-FROM-UNIX-1

Figure 3-3: Rhetorical Strategies For Introducing

STATE-IT-GOAL-1 :: DOMAIN-OBJECT[GOAL]:SEND-MAIL-1
STATE-IT-STRONG-DISCRIMINATOR-1 ::
DOMAIN-OBJECT[DISCRIMINATOR]:SEND-MAIL-MODE-1

STATE-IT-GOAL-2 :: DOMAIN-OBJECT[GOAL]:CHOOSE-RECIPIENTS-1
STATE-IT-WEAK--DISCRIMINATOR-1 ::
DOMAIN-OBJECT[DISCRIMINATOR]:CHOOSE-RECIPIENTS-RECIPIENT-1

STATE-IT-GOAL-3 :: DOMAIN-OBJECT[GOAL]:SEND-INDIVIDUAL-1
STATE-IT-WEAK-DISCRIMINATOR-2 ::
DOMAIN-OBJECT[DISCRIMINATOR]:SEND-INDIVIDUAL-ADDRESS-1

You want to send mail.
I know you are in Unix.
You want to specify a recipient.
I assume your recipient is an individual.
You want to specify a single recipient.
I assume the address is a local address.

Figure 3-4: Example of Text Produced Before Content Filtering

3.4. Filtering Content: Communication Between Rhetorical Acts
The structuring stage produces an initial ordering of rhetorical acts. The filtering stage

reviews this list and specifically includes, excludes, merges or keeps separate acts within this list.
For example information derived from either the situational context, such as the mode the user is
in, should be included. Information derived from the discourse context, such as an explicit
reference to the goal may be excluded as obvious. In the process of both reminding and
clarifying, the same preconditions may be introduced twice. These can be merged into one
utterance. However, if a component of an utterance is critical, such as a failed precondition
when elucidating a misconception, then it should be kept separate. Restructuring occurs when
recursive merges and excludes occur. A merge may move an act up or down depending on
whether the dominant act comes before or after the submissive one. Two acts which are initially
separated by some distance may find themselves next to each other, or even merged, if the acts
between them are excluded.

The rhetorical acts themselves contain methods for determining how they can be filtered.
This includes specific rules for when they may be excluded, when they must be included, what
other objects they may or must be merged with and which one is dominant, and when they are to

9

be kept separate.

The final stage of content planning occurs when the set of rhetorical acts is sent messages
to "execute" themselves. Each examines its methods for how it may be merged etc. Like the
message passing between the content plans, processing continues until all objects return
successfully. In the process some objects will have been excluded and some will have
instantiated new "merged" objects, subordinating themselves to the merged object. Once
processing is complete, the remaining objects apply knowledge for constructing clause level
structures which are passed to the surface generator.

The resulting text for the send mail example appears in Figure 3-5. Figure 3-6 shows
how the 6 acts from Figure 3-4 are filtered to produce the first sentence in figure 3-5. The first
act of stating the main goal can be excluded because it is in the discourse, and is probably
obvious to the user. The second and third goals may be excluded because they are in the chain
of objects from the primary goal to an action in which there is never more than one step for any
subgoal. Intermediate STATE-IT-GOALs are only kept if there is some problem with the plan
for that goal, or it contains more than one step. Similarly, the justification for decisions that are
manifested through DESCRIBE-DISCRIMINATORs strategies can be merged when such goal,
plan, goal chains occur. Finally, STATE-IT-WEAK-DISCRIMINATORs and STATE-IT-
STRONG-DISCRIMINATORs can be merged when the number of dominant ones (weak) out
number the submissive ones (strong). The "strong" act uses vocabulary such as "Since", while
the "weak" uses vocabulary such as "Asssuming."

I assume you are in unix, your recipient is an individual, and the
address is a local address. You must supply the individual’s email
address. For example, in order to send mail to Kathy, type "mail
kathy", since Kathy is her email address. Your usual method is to
read your mail, then use the mail command inside the mail environment.
Since you do not have new mail, your old method will not work.

Figure 3-5: Example of Text Produced After Content Filtering

Excluded! STATE-IT-GOAL-1 because IN-DISCOURSE-CONTEXT
Excluded! STATE-IT-GOAL-2 because IN-GOAL-PLAN-GOAL-PATH
Excluded! STATE-IT-GOAL-3 because IN-GOAL-PLAN-GOAL-PATH
Merged! STATE-IT-WEAK-DISCRIMINATOR-2 and STATE-IT-WEAK-DISCRIMINATOR-1
into CONJOINED-WEAK-DISCRIMINATOR-1
because IN-GOAL-PLAN-GOAL-PATH

Merged! CONJOINED-WEAK-DISCRIMINATOR-1 and STATE-IT-STRONG-DISCRIMINATOR-1
into CONJOINED-WEAK-DISCRIMINATOR-2
because IN-GOAL-PLAN-GOAL-PATH and WEAK dominates STRONG

I assume you are in unix, your recipient is an individual, and the
address is a local address.

Figure 3-6: Application of Filtering Methods

4. Related Work
The work in this paper extends and contrasts with other research in two aspects of text

generation. First, in its perspective on content selection through context, and then in its ability to
revise the content.

Our first distinction is in the emphasis on a first shot in a dialogue. This is in contrast to

10

Moore [Moore & Swartout 89] whose important contribution is the ability to handle follow up
questions, while down playing the emphasis on the initial response. In particular, her first
response does not include the background information about content planning decisions that we
include. Although GENIE does not contain the methods for following up, the structures produced
in content structure and filtering contain the same rhetorical planning information as Moore’s
system. Our approach to content selection must also be contrasted with work by Chin [Chin 88]
in our emphasis on contextual rather than stereotypical knowledge. Unlike Chin we do not need
rely on a cross product of functional and user stereotypes. Our argument is that users will almost
never fall cleanly into any such stereotypes, and the application of them may only result in
frustrating the user.

Finally our work is distinguished from text planning that relies on discourse goals in our
ability to revise. Although our strategies bear striking similarity to Schemata [McKeown
85, Paris 87, McCoy 86], the modularity of strategies provides a larger degree of flexibility. Like
schemata, structure is controlled by discourse knowledge. However strategies also allow
structure to develop as a result of intentional and domain knowledge. Rhetorical Structure
Theory (RTS) [Mann & Thompson 87], especially as it is applied to text planning [Moore &
Paris 89, Hovy 88] provides a large degree of flexibility in choosing how to expand structure.
However, it is not clear whether any discipline is applied to the expansion of rhetorical relations.
More importantly, both Schemata and RTS proceed in a linear, top-down fashion, and do not
provide for any sort of filtering or revision.

5. Status and Implementation
GENIE is implemented on a Sun 3/60 in Sun Common Lisp. All of the object types

described are represented using Hyperclass [Smith and Carando 86] which provides powerful
inheritance mechanisms. Surface text generation is accomplished through FUF [Elhadad 88] that
employs a two stage process of functional unification [Kay 79] and linearization to produce
English text. All of the functionality of Berkeley Unix Mail can be represented with the
exception of command files which allow customization by loading directives into the mail
environment.

The methods for plan analysis have been implemented as lisp functions for purposes of
efficiency. The methods for content structuring have been implemented using the formalism
shown in figure 3-3. Although we do not presently see a need to extend the formalism, it is a
straightforward process to do so. The formalism currently supports both binary (if/then/else) and
n-ary(case) branching, recursion, and iteration on a list. The methods for content filtering are
currently implemented as lisp code. We are in the process of defining a formalism for these too.
The formalisms themselves are an attempt to abstract out the salient features of these primarily
linguistic processes in order to allow experimentation which might lead to more formal theories
to support the mechanisms that are implemented. Work on integrating completely with FUF
remains to be done. At the present time FD skeletons and vocabulary is only available for a
limited set of examples.

Our approach provides a large degree of flexibility. For any single computational goal, at
least 120 scenarios can be generated [Wolz 90b]. It remains to be seen whether this range
significantly impacts the range of text that is generated. We are about to conduct an analysis of
the relationship between the text produced and the input scenarios. We expect to verify
statistically that the occurrence of specific contextual entities in the text can be predicted by the
information included in the input. Furthermore we expect to show that across texts, the number
of sentences produced is considerably smaller than the number of such contextual entities.

6. Limitations and Conclusions
Two open questions remain. First, can the user model required as input to GENIE be

produced automatically. Second could GENIE be extended to enable it to engage in an extended
dialogue. Building and maintaining the user model would involve developing a system that can

11

observe user behaviors and draw inferences about user knowledge from those behaviors. There
are two obvious observable behaviors, the questions asked by the user, and the actions taken that
affect the situation. Part of the solution to maintaining the user model may be found in
extending the communicative ability of GENIE to allow it to engage in an extended dialogue. In
order to do so, GENIE would need to be able to maintain a history of the discourse context, the
situational context in which the preceding discourse took place, and the reasoning it used to
choose a response. With such data, comparisons could be made about what entities were talked
about or used over time, allowing conclusions about user knowledge to be drawn. Currently
GENIE contains the requisite knowledge representations, we are confident that the appropriate
knowledge acquisition systems can be built.

Another open question is the problem of mapping GENIE’s rhetorical acts to surface
forms. In the present implementation the functional descriptions embedded in the acts is
extremely primitive. Although Fuf supports lexical choice, it is not presently exploited in
GENIE, and although we make use of complex sentences, there is no principled theory for our
choice of sentence structure. Work by Elhadad [Elhadad 90] is directed toward these problems.

To summarize, in this paper we have shown how knowledge of the domain, intentions
and discourse can be combined in an object oriented architecture for text planning. A three stage
process of content selection, content structuring and content filtering is employed by GENIE as it
responds informatively to users and opportunistically enriches their expertise.

Acknowledgements
Kathy McKeown and Gail Kaiser deserve thanks for supporting this work. Dr.

McKeown also provided valuable suggestions on an earlier version of this paper. I am grateful to
David Robinowitz and Wonsuk Jang for proving that GENIE could be integrated with Fuf, and to
Michael Tanenblatt for the readability of his code.

12

References

[Anderson et al. 85]
J.R. Anderson, C.F. Boyle and B.J. Reiser.
Intelligent tutoring systems.
Science 228(4698):456-462, April, 1985.

[Appelt 85] Appelt, D. E.
Planning Natural Language Utterances.
Cambridge University Press, Cambridge, England, 1985.

[Bonar et al. 86] J.G. Bonar, R. Cunnigham and J. Schultz.
An object-oriented architecture for intelligent tutoring.
In Proceedings of OOPSLA ’86, pages 269-276. Association for Computing

Machinery, Portland, OR, September, 1986.

[Chin 88] Chin, D. N.
Intelligent Agents as a Basis for Natural Language Interfaces.
PhD thesis, University of California, Berkeley, 1988.

[Clancey 82] Clancey, W.J.
Tutoring rules for guiding a case method dialogue.
Intelligent Tutoring Systems.
Academic Press, London, 1982, pages 201-225.

[Dale 88] Dale, R.
Generating referring expressions in a domain of objects and processes.
PhD thesis, University of Edinburgh, 1988.

[Elhadad 88] Elhadad, M.
The FUF Functional Unifier: User’s manual.
Technical Report CUCS-408-88, Columbia University, June, 1988.

[Elhadad 90] Elhadad, M.
Constraint-Based Text Generation: Using Local Constaints and

Argumentation to generate a turn in conversation.
Technical Report CUCS-003-90, Columbia University, New York, NY, 1990.

[Finin 83] Finin, T.
Providing help and advice in task oriented system.
In Proceedings of the Eighth International Joint Conference on Artificial

Intelligence, pages 176-178. Karlsruhe, West Germany, 1983.

[Halliday 85] Halliday, M.A.K.
An Introduction to Functional Grammar.
Arnold, London, 1985.

[Hovy 88] Hovy E.H.
Two types of planning in language generation.
In Proceedings of 26th Meeting of ACL, pages 179 - 185. Association for

Computational Linguistics, 1988.

13

[Kay 79] Kay, M.
Functional Grammar.
In Proceedings of the 5th meeting of the Berkeley Linguistics Society.

Berkeley Linguistics Society, 1979.

[Mann & Thompson 87]
W.C. Mann and S.A. Thompson.
Rhetorical Structure Theory: A Theory for Text organization.
The Structure of Discourse.
Ablex, Norwood, NJ, 1987.

[McCoy 86] McCoy, K. F.
The ROMPER System: Responding to Object-Related Misconceptions Using

Perspective.
In Proceedings of the 24th Annual Meeting of the ACL. Association of

Computational Linguistics, New York City, New York, June, 1986.

[McKeown 85] McKeown, K.R.
Text Generation: Using Discourse Strategies and Focus Constraints to

Generate Natural Language Text.
Cambridge University Press, Cambridge, England, 1985.

[Moore & Paris 89]
Moore, J.D. and C.L. Paris.
Planning text for advisory dialogues.
In Proceedings of 27th Meeting of ACL, pages 203 - 211. Association for

Computational Linguistics, 1989.

[Moore & Swartout 89]
Moore, J. D. and Swartout W. R.
A Reactive Approach to Explanation.
Submitted to the: ‘‘Eleventh International Joint Conference on Artificial

Intelligence’’ Detroit, Michigan.
August, 1989
also presented at the Fourth International Workshop on Natural Language

Generation on July 1988.

[Paris 87] Paris, C. L.
The Use of Explicit User Models in Text Generation: Tailoring to a User’s

Level of Expertise.
PhD thesis, Columbia University, 1987.

[Smith and Carando 86]
Smith, R.G and P.J. Carando.
Structured Object Programming In Strobe.
Technical Report, Schlumberger-Doll Research, Ridgefield, CT, 1986.

[Wolz 90a] Wolz, U.
Extending User Expertise in Interactive Environments.
PhD thesis, Columbia University, 1990.
Forthcoming.

14

[Wolz 90b] Wolz, U.
The impact of user modeling on text generation in task-centered settings.
In Second International Conference on User Modeling. Honolulu, Hawaii,

1990.

[Wolz & Kaiser 88]
Wolz, U. and G.E. Kaiser.
An Automated Consultant for Interactive Environments.
Technical Report CUCS-391-88, Department of Computer Science, Columbia

University, New York, NY, 1988.

[Wolz et al. 90] Wolz, U., K.R. McKeown and G. E. Kaiser.
Automated tutoring in interactive environments: A task centered approach.
Machine-Mediated Learning 3(1):53-79, 1990.

