

Initial World Model:
INROOM (ROBOT, R1)
INROOM (BOXl , R2)
CONNECTS (Dl,Rl,R2)
CONNECTS (Dl,R2,R3)
BOX (BOX1)

33

[CONNECTS(x,y,z) => CONNECTS(x,z,y)]

Goal Formula:
(3x) [BOX (x) A rNROOM(x,Rl)]

GOTHRU(d,rl,r2)
Precondition:
Delete List:
Add List:

Figure 20: STRIPS' Initial World Model

INROOM(ROBOT,rl) A CONNECTS (d,rl,r2)
INROOM(ROBOT,rl)
INROOM(ROBOT,r2)

PUSBTHRU(b,d,rl,r2)
Precondition: INROOM(ROBOT,rl) A CONNECTS(d,rl,r2)

A rNROOM (b, rl)
Delet. List: INROOM(ROBOT,rl)

INROOM(b,rl)
Add List: INROOM(ROBOT,r2)

INROOM(b,r2)

Figure 21: Examples of STRIPS Operators

for generalizing operator sequences. An example of a triangle table is shown in Figure 22,

taken from [Fikes et al. 72]. A procedure for building such a table is shown in Figure 23. 15 The

triangle table is useful because it shows how operator preconditions depend on the effects of

other operators and on facts from the initial world model. Any fact marked with a • in the table

indicates just such a dependency. For example, the marked fact INROOM(ROBOT,R2), in

column 1, row 2 of Figure 22, indicates that the precondition ·of the PUSHTHRU operator

depends on a fact added by the GOTHRU operator. Likewise, the presence of the marked fact

INROOM(BOX1,R2), in column 0, row 2, indicates that the precondition of PUSHTHRU

depends on a fact from the initial model.

There are two main criteria that are used to determine how to generalize the robot plan

represented by a triangle table. The first criterion involves maintaining the dependencies

between operators. Operator (i) will add a clause supporting operator U) in the generalized

table if and only if the same dependency exists between operators (i) and U) in the original table.

'sthe example table departs slightly from the definition. In column zero of the example. only the "marked" clauses
are shown.

34

o
'1 KRO<II (~BOT • R II

·CONNECTS(OI.RI.R21 GOTliRU (01 .RI. R2)

·INAOOII(BOXl.R2)

'1 KRO<II(~BOT. R2)
·CO~LCTS(OI.Rl.R2)

PUSIfTHRU(IlOXl.Ol.R2 .Rl)
·CONNECTS{x.y.z) :'

COHllECTS(x.z.yl

3 lHR~(~BOT.Rll

1~(BOx\.Rll

Figure 22: Example of a Triangle Table

O. For an operator .equence of length N, number the rows from 1 to N,
and number the column. from 0 to N-1.

1. Place the (i)th operator in the cell at column i, row i.
2. In every cell in column 0, row i, (i < N), place the fact. of

the initial model that were true just before that (i)th operator
was applied.

3. In the cell in column 0, row H, place the fact. of the initial
model that remained true in the final world model.

4. In every cell in column i, (i > 0), row j, (j < N), place the fact.
added by the (i)th operator that remained true just before the
(j)th operator was applied.

5. In every cell in column i, (i > 0), row N, place the fact. added by
the (i)th operator, that remained true in the final world model.

6. Ose a * to mark each fact in row j, (j < H), that was u.ed in the
proof of the precondition of the (j)th operator.

F1gure 23: Definition of Triangle Table

The second criterion requires that the preconditions of operators in the generalized table be

provable using the same proofs as used to verify preconditions in the original plan.

STRIPS generalizes operator sequences using the procedure shown in Figure 24. This

procedure makes use of both the triangle table and the proofs of operator preconditions that

were created when the robot plan was formed. The first step replaces constants with variables

leading to an over-generalized table. The second step constrains the table in accordance with

the two aforementioned criteria. The precondition proofs are performed once again. The

supporting clauses of the new proofs will be the generalized versions of the marked supporting

clauses of the original proofs. For every proof step in the original proof that resolved clauses "a"

and "b" and unified literals "i" and "r, the new proof will resolve the generalized versions of "a"

35

and "b" and will unify the generalized versions of "i" and "j". This technique is similar to the

EGGS procedure described above inasmuch as they both require that the same objects be

unified in the generalized proof as in the original proof.

1. "Li~t It the triangle table.
a. Replace each distinct constant in column zero with a distinct

variable.
b. Replace each clause in columns 1 - N with the corresponding

clause ~rom the add list o~ the corresponding uninstantiated
operator.

c. Rename variables so that clauses from distinct operator
applications have variables with distinct names.

2. Rerun proo~s o~ preconditions usinq isomorphic ~ges o~ origina1
proo~s.

a. Each proo~ will be supported by the generalized versions o~
clauses that were marked in the oriqina1 table.

b. Each proo~ step per~orma resolution on pairs o~ clauses and
uni~ication on pairs o~ literals corresponding to the pairs
matched in corresponding step o~ the original proo~.

c. Substitutions generated during unification are applied
throughout the entire table.

Figure 24: STRIPS Generalization Procedure

When the STRIPS generalization procedure is used to process the triangle table of Figure

22, it produces the generalized table shown in Figure 25, taken from [Fikes et al. 72]. Several

interesting generalizations have been made. The object to be moved from one room to another

has been generalized from a BOX to any object. Although the initial and final rooms were

identical in the original plan. the room variables are distinct in the generalized plan. STRIPS

has also generalized the conditions of applicability of the operator sequence. The marked

clauses in the leftmost column of the generalized table indicate the generalized conditions under

which the sequence is applicable. Initially. STRIPS only knows that the sequence applies to the

initial world model shown in Figure 20. After generalizing the triangle table, STRIPS knows the

sequence is applicable whenever the conditions in the leftmost column of the generalized table

in Figure 25 are met.

An obvious next step would be to create a new STRIPS operator representing the entire

generalized operator sequence. The new operator would have the same effect in a Single step

as the entire sequence of operators used in the original plan. The marked clauses in the

leftmost column of the table would constitute the preconditions of the new operator. The clauses

in columns 1 through N - 1 of the Nth row will constitute the add list of the operator. The delete

list could be formed by combining the instantiated delete lists from all the operators in the

36

o
·IHROOM(ROBOT.p2l

J 'COIOlICTS (pJ • p2 • pSl GOTliRU(pJ .p2 .p5l

'1 HROOII (pO. p5l

·CONNECTS(pH.p9.p5l
• I NROOM(ROBOT.pSl

·COHHECTS(x.y.zl ~
PUSHTHRU(p6.p8.p5.p

CON~U:TS(,. z. yl

1 NROOW (ROBOT. p9l

INROOM(pO.p9l
:3

Figure 25: Generalized Triangle Table

original sequence. STRIPS does not actually build such a macro operator. STRIPS keeps the

generalized triangle table in the form shown in Figure 25 instead. This means that the

MACROP cannot be applied in a single step in the course of solving a new planning problem.

The operators must be applied one by one. Nevertheless the table does directly indicate when

an entire sequence will be applicable to a problem situation.

There are a several reasons for preserving the generalized table. The generalized

triangle table helps STRIPS to determine when any subsequence of the original operator

sequence will be useful in a planning problem [Fikes et al. 72]. The table also appears to

contain information that would directly enable determining when the operators of a sequence

can be reordered, contrary to DeJong's comment in [Dejong and Mooney 86]. An ordering

relation can be defined so that operator A precedes operator B if there is a marked clause in the

cell at column A, row B. Any topological sort on this relation would yield a valid operator

sequence.

STRIPS has been described above in terms of "generalization" and "chunking". It can

also be viewed In terms of reformulating non-operational concept descriptions. (See Figure 3.)

Given an operator sequence OP1 ... 0PN, STRIPS contains all the information needed to

determine the condition of applicability of the entire sequence. The information is only present

implicitly, embedded in the definitions of the individual operators. One could view the sequence

description "OP1...0PW as a non-operational description of the condition of application.

STRIPS creates an operational description by building the generalized triangle table. The

marked dauses in the leftmost column constitute such an operational description.

37

3.3.3 Similar Work

Anderson's ACT· system is similar to the chunking systems described here [Anderson

83a; Anderson 83b; Anderson 86]. The ACT* system uses a learning mechanism called

Hknowledge compilation", which is based on collapsing sequences of production rules into single

rules. Each single rule has the same effect as the original sequence from which it was compiled.

Anderson describes his ACT· system as a general architecture that underlies all types of human
cognition.

Many people have investigated methods of forming macro operators outside the context

of explanation-based learning. Cheng and Carbonell are working on methods of building macros

with conditional and iterative constructs [Cheng and Carbonell 86]. Korf developed a method for

finding useful macro operators that applies to any problem exhibiting a property called "serial

decomposability" [Korf 85]. The REFLECT system of Dawson and SikJossy also has a

mechanism for creating macro operators [Dawson and Siklossy 77].

3.4 EBl = Operationallzatlon

The term "operationalization" may be defined as a process of translating a "non

operational" expression into an "operational" one. The initial expression might represent a

piece of advice, as in Mostow's FOO and BAR programs [Mostow 81; Mostow 83a], or it might

represent a concept, as in Keller's lEX COP program [Keller 83]. The initial expression is said

to be "non-operational with respect to an agent" because it is not expressed in terms of data

and actions available to the agent [Mostow 83a]. An operationalizing program faces the task of

reformulating the original expression in terms of data and actions that are available to the agent.

As shown in Figure 3, operationalization can be placed into rough correspondence with

the EBl generalization processes described previously. The explanation rules used in systems

like GENESIS or lEX-II may be viewed as non-operational specifications of the concepts that

these systems learn. The rules "specify" the concepts because they contain all the information

needed to construct the learned concepts. The concept specifications are "non-operational"

because the rules only impliCitly contain the information. The EBl techniques of GENESIS and

lEX-II serve the purpose of making the concepts explicit. Building and analyzing an explanation

is similar to the process of translating a non-operational concept into operational form. The

translation may be sald to "explain- how the operational concept description meets the

conditions given by the non-operational concept description.

,6.: •

38

3.4.1 Mostow's FOO and BAR Programs

The FOO and BAR programs were developed by Mostow to investigate the problem of

operationalizing "advice". The older FOO program is described in [Mostow 81] and [Mostow

83b]. BAR was developed as an extension to FOa and is described in [Mostow 83a] and

[Mostow 83c]. The programs were tested mainly in the domain of the card game "heartsM.

Some additional tests were run in the domain of music composition.

As an example of a non-operational expression from the hearts domain, consider the

advice to Mavoid taking pointsM .16 This advice is considered Mnon-operationalM because it is not

written in terms of actions that a player can perform. The rules of the game do not allow one to

refuse to take up the cards at the end of a trick merely because they include point cards. The

only actions available to a player are to choose to play one of the cards from his hand. As

another example, consider the advice Mdon't lead a card of a suit in which an opponent is

void"17. This advice is not operational because it requires knowing one's opponents' cards. This

data is not usually available to a player. Mostow's program can translate the advice to "avoid

taking points· into an operational form. After translation, the advice becomes Mplay a low cardM.

In this new form, the advice does directly specify an action available to the player and is

therefore considered to be operational.

In order to reformulate a piece of advice, Mostow's programs make use of several types

of knowledge. One part of the knowledge base contains a set of domain-independent Mproblem

transformation rules". Each rule has an ac~on component specifying how to rewrite an

expression representing some advice as well as conditions governing the applicability of the

rule. Examples of such rules are shown in Figure 26, taken from [Mostow 83b]. The

transformation rules are progressively applied to the initial advice, gradually changing it into a

form that meets the requirements of operationality. The knowledge base also contains domain

dependent "concept definitions" like those shown in Figure 27, taken from [Mostow 83b].

The FOO and BAR programs differ in the type of control structure used to choose a

sequence of rule applications. FOO relies on a human user to pick an appropriate sequence of

transformation rules [Mostow 83b]. BAR uses means-ends analysis to guide the choice of

which rule to apply [Mostow 83a]. The rule sequences can be quite long, amounting to over 100

16The phrase 'aking points" means winning tricks that contain point cards. In the version of the game described
previously, point cards are hearts.

17 A player is said to be "void' in suit if he does not have any cards of that suit in his hand

39

Un~olding concept de~initions:
I~ F i. a concept de~ined as (lambda (xl ... xN) e), then
replace the expression (F el ... eN) with the result o~
substituting el ... eN ~or xl ... xN throughout e.

Approximation ot a predicate (1):
Given an expression ot the form (.... (P S) ...), where P is a
predicate, replace the expression (P S) with the expression
(High (Probability (P S»).

Approximation ot a predicate (2):
Given an expression ot the form (.... (P S) ...), where P i. a
predicate, replace (P S) with (Possible (P S», where
(Possible (P S» is true unless (P S) is known to be ~a1se.

Figure 26: Problem Transformation Rules

POINT-CARDS = (LAMBDA () (SET-OF C (CARDS) (BAS-POINTS C»)

VOID = (LAMBDA (P SUIT)
(NOT (EXISTS C (CARDS-IN-HAND P)

(IN-SUIT C SUIT»»

AVOID 3 (LAMBDA (E S) (ACHIEVE (NOT (DURING S E»»

'!'RI Clt :. (LAMBDA ()
(SCENARIO (EACH P (PLAYERS) (PLAY-CARD P»

(TAKE-TRICK ('!'RIClt-WINNER»»

Figure 27: Concept Definitions

rule applications in some cases. Even the BAR program is unable to work without some human

guidance.

In order to guide the search process, BAR needs to know which specific parts of an

expression are not operational. This is done by annotating each "domain concepr with

information that indicates the operationality of the concept [Mostow 83a). For example, the

concept ·point-cards" is marked as being operational since a player always knows which cards

are worth points. The "void" predicate is not operational, since a player cannot generally know

when an opponent is void in a suit. In general, predicates can be "evaluable" or "not evaluable";

functions can be "computable" or ·not computable"; events can be "controllable" or "not

controllable·; and constraints are "achievable" or "not achievable". BAR also contains some

general knowledge about operationality. For example, there is a rule stating that "A computable

function of evaluable arguments is itself evaluable". Another rule says that "An evaluable

constraint on a controllable variable is achievable·. This knowledge can be used to guide the

search process by determining which parts of an expression are non-operational and need to be

transformed.

40

In order to illustrate the ope rationalization techniques, consider the following example

taken from [Cohen and Feigenbaum 82], which shows how the FOO program operates. FOO is

initially given the advice ·avoid taking points·, which is represented internally by the expression:

(AVOID (TAKE-POINTS ME) (TRICK»

This expression may be interpreted as saying "Avoid an event in which the player 'me' takes

points during the current trick". In order to translate this expression, FOO first uses the rule for

unfolding concept definitions, (Figure 26), and the definitions of the concepts "avoid" and "trick"

(Figure 27). The system subsequently applies several more transformations, including "case

analYSis", "intersection search", "partial matching" and "simplification" to translate the
expression into the form:

(ACHIEVE (NOT (AND (= (TRICK-WINNER ME) (TRICK-HAS-POINTS»»)

This expression says "Try not to win a trick that contains point cards". After several additional

transformations, the final form of the advice is obtained.

(ACHIEVE (=> (AND (IN-SOIT-LED (CARD-OF ME»
(POSSIBLB (TRICK-HAS-POINTS»)

(LOW (CARD-OF ME»»

This expression asserts the advice "Playa low card when following suit in a trick that could

possibly contain point cards" .18

This final expression is not exactly equivalent to the original advice. There have been

several modifications to the content of the advice as well as the form of the advice. To begin

with, the final form of the advice is specialized to a more limited range of situations than the

original advice. The final advice only applies in situations when the player is "following suit". The

original advice purports to apply to any situation. In addition to specializing the advice, the

system was forced to make approximations. One approximation replaced the expression

(TRICK-HAS-POINTS) with (POSSIBLE (TRICK-HAS-POINTS)). This was necessary because

it is not possible to determine in advance whether a trick will have points. In order to have an

operational rule, the system inserts a condition testing whether, based on current information, it

is possible for the trick to eventually contain points. Another approximation replaced the

requirement of playing a card that will lose the trick with the weaker requirement of playing a low

card. Since the player cannot generally determine whether a card will lose a trick, he must use

the approximation of playing a low card. This example illustrates the need to sacrifice generality

and accuracy in order to translate advice into an operational form.

18A player is said to be "following suit" whenever he plays a card in the same suit as the card played by the leader
of the current trid(.

41

The FOO and BAR programs have been described in terms of operationalizing "advice".

As suggested by Figure 3, they may also be viewed in terms of operationalizing "concepts" in

the following way: Initially the system is given the non-operational concept description "cards

that avoid taking pOints". This description is translated into the operational form "low cards".

Faa and BAR can also be viewed in terms of chunking. After translating the advice, the system

may be said to possess a rule of the form "If a card is low then the card avoids taking points".

This rule represents the result of forming a chunk out of the sequence of problem transformation

rules used to translate the advice. Although FOO and BAR do not look at examples, they could

be modified to implement a process of generalizing from examples. The system could be given

an example of a "card that avoids taking points". The search for a translation could be

constrained by imposing the requirement that the translated advice be capable of predicting the

given example. Examples might help the system decide what types of approximations and

specializations are appropriate.

3.4.2 Keller's LEXCOP System

The LEXCOP system [Keller 83] is closely related to Mostow's operationalizer. Uke

Mostow's systems LEXCOP is intended to translate non-operational expressions into

operational form. The systems differ slightly in the types of expressions they reformulate.

Whereas FOO and BAR are designed to reformulate "advice", LEXCOP is explicitly intended to

address the problem of reformulating "concept descriptions". LEXCOP takes non-operational

concept descriptions as input and produces operational concept descriptions as output. Keller's

system is also distinct from Mostow's because of its criterion for deciding when an expression is

operational. In LEXCOP a concept description is operational if it allows instances to be

"efficiently" tested for concept membership. LEXCOP uses the same basic methodology as

FOO and BAR. The knowledge base contains a set of transformation rules that can rewrite

concept descriptions. LEXCOP uses these rules to perform a heuristic search in a space of

concept descriptions. Each state is a concept description and the transformation rules are

operators of the state space. LEXCOP was worked out on paper but apparently never

implemented [Keller 84].

Consider the following example from the domain of symbolic integration. A definition of

the concept "POSINST(op,s)" is shown in Figure 28, taken from [Keller 83]. This definition

asserts that a state "s" is a positive instance if applying MOp" to "s" leads to a state along a

minimum cost solution path. In this form the concept description is considered to be "non

operational". In order to test a state MS· for concept membership, it may be necessary to build a

large search tree. LEXCOP attempts to reformulate this concept description into something that

can be tested more efficiently. For instance, LEXCOP can produce the description shown in

Figure 29, taken from [Keller 83]. This new concept description can be tested more efficiently,

42

because it is written as a pattern match using the generalization language of LEX [Mitchell 83b].

Notice that the translated description is a specialization of the original concept description. Like

Mostow's systems, LEXCOP is forced to sacrifice generality in order to make an expression

more operational. In order that the new concept description be useful in a variety of situations,

LEXCOP would have to create a conjunction of several alternate specializations of the original
concept description.

(~op,a){POSINST(op,a) <= OSEFUL(op,s)}

(~op,a){OSEFOL(op,a) <=
[-.SOLVED (a)

A SOLVABLE(APPLY(op,s)
A APPLlCABLE(op,s)
A {(~oop)

EQOAL (op, oop)
v -.APPLlCABLE(oop,s)
v -.SOLVABLE(APPLY(oop,a»
v GREATER-COST(APPLY(oop,a},APPLY(op,a»}]}

(~op,a){SOLVABLE(a) <= SOLVABLE (APPLY (op, a) }

(~op,a){SOLVABLE(a) <= SOLVED(APPLY(op,a}}

Figure 28: Rules Defining the POSINST Predicate in LEXCOP

(~a}{POSINST(OP1,.) <= MATCB«function>fain(x}dx,a)}

Figure 29: Translated Concept Description

Some of the transformation rules used in LEXCOP are shown in Figure 30, taken from

[Keller 83]. The rules are divided into three main types. The ·concept preserving

transformations· rewrite concepts without changing their meaning. The ·concept specializing"

and "concept generalizing" transformations make concepts more specialized and more

generalized respectively. A concept specializing rule creates a new expression representing

sufficient conditions for concept membership. A concept generalizing rule produces a new

expression representing necessary conditions for concept membership. The sequences of

transformations used in LEXCOP correspond closely to the explanation trees used in LEX-II

[Mitchell 83a]; however, the explanation trees of LEX-II are built from concept preserving and

concept specializing transformations only. This explains why LEX-II creates generalizations that

represent sufficient, but not necessary, conditions for concept membership. Unlike the LEX-II

system, LEXCOP would arrive at the translated concept description without making use of any

training examples.

43

concept Preserving Transforms:
1. Expand definition of a predicate.
2. Constraint Back-Propagation.
3. Enumerate the values of a universal variable.

Concept Specializing Transforms:
1. Add a conjunct to an expression.
2. Delete a disjunct from an expression.
3. Instantiate a universal variable.

Concept Generalizing Transforms:
1. Add a disjunct to an expression.
2. Delete a conjunct from an expression.

Figure 30: Transformation Rules in LEXCOP

Keller has proposed a new system called METALEX, which is intended to build on the

ideas of LEXCOP [Keller 84]. METALEX is intended to show how learning systems can exploit

explicit representations of contextual knowledge, i.e., knowledge of the context in which

learning takes place. Keller defines "contextual knowledge" to have several components,

including knowledge of the task the system is intended to perform and knowledge of the

algorithm used by the system's performance element. Keller argues that contextual knowledge

is useful for several purposes. For example, he suggests that a learning system can utilize

contextual knowledge to automatically formulate its own learning tasks. By analyzing the

algorithm used by the performance element, a learning system can formulate a performance

improvement plan. The improvement plan might involve modifying the algorithm to insert a

concept membership test at some location. The plan would initially describe the concept in non

operational terms. The learning element would then be faced with the task of translating the

concept into an operational form. This process suggests a solution to the "wandering

bottleneck" problem. Contextual knowledge gives a learning system the potential ability to

handle this problem by formulating new learning tasks to attack bottlenecks as they move

around in the performance element of a system.

MET ALEX is intended to use a complex notion of "ope rationality" . Faa, BAR and

LEX COP all use a simple notion of "ope rationality" . Expressions and terms are either

completely operational or completely non-operational. METALEX is based on the view that the

operationality of an expression is often a matter of degree. This is especially true when

operationality is defined in terms of the efficiency of testing concept membership. Efficiency is

naturally measured in terms of continuous variables like time or space complexity. METALEX

attempts to use such continuous measures of operationality.

44

Unlike FOO, BAR and LEXCOP, the proposed METALEX system would make use of

empirical information. Keller proposes that METALEX should collect data indicating the CPU

time expended in evaluating each part of a concept description. This data can be used to

determine which part of an expression is the least operational and most in need of

reformulation. The empirical information would help guide the process of searching in the space

of concept descriptions. Keller also proposes to collect data to help determine when a concept

can be safely approximated. In particular, the proposed system would run empirical tests to

determine how often an approximate concept description would make errors of inclusion or

exclusion. The results could justify the use of an approximate concept description, if the

approximation leads to few errors in practice.

3.4.3 Similar Work

Techniques for operationalization have not been studied extensively in the field of

machine learning. Some automatic programming methods can be viewed in terms of

operationalization. The transformational implementation methodology developed by Balzer is a

case in point [Balzer et al. 76). This technique takes a (non-operational) program specification

as input. A series of correctness preserving transformations are then applied to the

specification, gradually refining it into an executable (operational) program. This method has

been used by Swartout to build knowledge-based expert systems for which human oriented

explanations can easily be generated [Swartout 83).

3.5 ESl = Justified Analogy
This section will discuss techniques for performing "justified" analogical reasoning.

Traditional methods of reasoning by analogy require making a guess about what information

should be transferred from a remembered analogous situation to a new situation. The "justified"

version of analogy tries to avoid guessing. One approach to justified analogy involves mapping

sequences of "inference rules", or "explanations", from analogues to target examples. The

inference rules might encode "causal relations" as in [Winston et al. 83; Kedar-Cabelli 85;

Gentner 83) or they might represent problem-solving "derivation" steps as in [Carbonell 86).

(See Figure 3.) Since the inference rules contain their conditions of applicability, the system

needs only to verify that the mapped rules apply to the new situation in order to avoid making

guesses. This suggests that explanation-based analogy (EBA) would be a reasonable name

for these these techniques.

45

3.5.1 Winston's ANALOGY Program

Winston and his coworkers have developed the ANALOGY system [Winston et al. 83].

This program is intended to learn "physical" or "structural" descriptions of objects. The program

is given "functional definitions· of objects as input. By finding analogies between ·precedents"

and "practice examples", ANALOGY transforms the functional definition into a physical or

structural description.

The ANALOGY program wili be described using the example of a drinking cup. The input

to the system is a functional definition of a cup, shown in Figure 31, taken from [Winston et al.

83). This definition gives three conditions that must be met in order that an object function as a

drinking cup. The object must be a "stable, liftable, open vessel". These conditions are

considered to be functional specifications but not physical or structural properties. ~ variety of

physically different objects could fulfill these three functional criteria. In addition to a functional

definition, the system is also given an example of a cup, shown in Figure 32, taken from

[Winston et ai. 83]. ANALOGY is also provided with a set of precedents that are used to

reason by analogy. These precedents include descriptions of objects, like bricks, suitcases and

bowls, that are useful for establishing the connection between physical properties and functional

specificatio"ns.

FIgure 31: Functional Definition of a Cup

ANALOGY begins by trying to confirm that the example is indeed a cup. The functional

definition network Is retrieved and superimposed on the example network. Next the system tries

to establish each of the three criteria in the definition, I.e., the program must show that the

example is a -stable, liftable, open vesse'-. Each condition can be established either by

verifying that the condition appears directly In the description of the example or by reasoning

from a precedent. The suitcase precedent is used to show that the example is liftable. The

description of the suitcase precedent contains a causal chain. This chain has two steps

asserting that (1) 'he suitcase is liftable because it is light and graspable- and (2) "the suitcase

46

___ 1=5_ "Shl

Figure 32: Example of a Cup

is graspable because it has a handle-. In order to use the chain, ANALOGY determines a

correspondence between parts of the cup example and parts of the suitcase precedent, using a

method called -importance dominated matching- [Winston 82]. While transferring the chain, the

program tests whether the antecedents of the chain are found in the example. In this case the

cup example does in fact contain the -light- and "handle- relations. This means the condition of

being -liftable- is successfully established. In a similar manner, ANALOGY uses the brick

precedent to show that the example is stable and the bowl precedent to show that the example

is an open vessel. The final version of the example network is shown in Figure 33, taken from

[Winston et aI. 83]. This diagram shows all the causal chains transferred from the precedents

to the cup example.

After establishing the example to be a cup, ANALOGY creates a general rule. The rule is

intended to summarize the set of physical properties that enabled the example to function as a

cup. An English paraphrase of the new rule is shown in Figure 34. The "IF- part of this rule was

built from the antecedents of the causal chains transferred from precedents. The -rHEW part

asserts an object to be a cup. The -UNLESS- conditions correspond to the intermediate nodes

of the transferred causal chains. These conditions are included because the causal connections

are not considered to be infallible. For example, the causal link asserting that "an object is

graspable if it has a handle- might be wrong in some cases. By adding the -UNLESS- condition.

the rule is understood to mean -an object is graspable if it has a handle, unless there is some

reason to believe otherwise-.

47

cup

.-----\
~--, I
~-\ I I

: I I
I I I ako

- - ,- ,. - - ~ open-vessel
~/:r __ --',"" I I is ~~

" 1- --"7 ~ stable' \
'- '5 ~ \

- - - .:. ~ liftable "

++,\ \~
I I \, 'I
1, 1 I

~ has; f 1/' I I
./ I I

_ -:,. /1 I
...- '" ;1/

;' -- " f\ l ,I I is rgh 1/, /
~/ aka 1 t ////

Q
_ ~ .handle:., ~ / / /

aka -: - - - -:.. --' / /
i = · bonom / / 5 / ~ / /

Q
. fiat II

_ aka '/ . • body
1.S '" ;

Q
_ --~ ~_aJl- -_-- ..-

ako,.. - - - - --- - -
, ~ concavlt}'

15 ~ upward-pOinting

Figure 33: Final Version of Example Network

Ii' : AN OBJECT IS LIGHT AND BAS A HANDLE, A FLAT BOT'1'OM AND AN
UPWARD POINTING CONCAVITY,

THEN: THE OBomCT IS A CUP,

UNLESS: Tim OBomCT IS NO'1' ST.AB.LK, OR NOT LIFTABLE, OR NO'1' AN OPEN
VESSEL, OR NOT GRASP.AB.LK.

FJgure 34: Rule Extracted From Network

A question arises regarding whether the precedents are really necessary in the

ANALOGY system. According to Winston, "The precedents are essential for otherwise there

would be no way to know which aspects of the example are relevant" [Winston et al. 83], (page

433). The precedents might appear to be necessary because they contain causal information in

the form of links between causes and effects, ANALOGY may be said to possess an

"extensional theorY of causes and effects In the form of precedents. This can be contrasted

with an "intensional theory" In the form of general rules connecting causes and effects [Mitchell

et al. 86]. Nevertheless, Winston's data base of precedents is really an intensional theory in

disguise. ANALOGY has the ability to extract causal relations from precedents and transfer

them to new situations. This implies it can determine which conditions must hold for a causal

link to be in effect. As observed by Mitchell, the ANALOGY program implicitly assumes a

causal link such as "FEATURE1 (A) -. FEATURE2(A)" is supported by a general rule of the

48

form "(V'x){FEATURE1 (x) ~ FEATURE2(x)}" [Mitchell et al. 86]. If data base of rules were

created by extracting causal links from the precedents, the result would be a program looking

more like GENESIS or LEX-II. There may be a reason for storing causal rules in the context of

precedents. The causal rules may be faulty. When contradicted by future information, they will

need revision. The precedents might help determine how to revise faulty rules.

Winston's ANALOGY program can also be viewed in terms of generalization, chunking

and operationalization. (See Figure 3.) The rule in Figure 34 can be taken as a generalization

of the single example of a cup that was provided to the system. The rule may also be seen as

an operationalization of the functional definition of a cup. The original definition of a cup in

Figure 31 in may be considered to be "non-operational", because it describes a cup in functional

terms. The final rule in Figure 34 is operational because it describes cups in physical or

structural terms. Winston's program also performs chunking. Three causal chains are taken

from three precedents, the suitcase, the brick and the bowl, and are spliced together to build an

explanation of the cup example. The explanation is then collapsed into a single rule

representing a chunk.

3.5.2 Carbonell's Derivational Analogy Method

Derivational Analogy (DA) was developed by Carbonell to investigate analogical

reasoning in the context of problem solving [Carbonell 86; Carbonell 83a]. The DA technique

solves a new problem by making use of a solution derivation that was generated while solving a

previous problem. The new problem is solved by recreating sequences of decisions and

justifications for decisions that were used to solve a precedent problem. Carbonell uses

derivations in a way similar to the manner in which Winston uses causal networks. Carbonell

proposes transferring derivations between examples, whereas Winston proposes transferring

causal networks. Derivations and causal networks are both types of dependencies or

justifications. Inasmuch as DA involves transferring justifications from a precedent to a new

situation, it may be seen as a type of justified analogical reasoning.

The DA method was originally developed to remedy a limitation of earlier work on analogy

in problem solving. Carbonell's earlier work involved solving new problems by directly modifying

solutions to previously solved problems [Carbonell 83b]. For example, one might try to write a

sorting program by directly modifying the code used in a previous sorting program. The difficulty

can be illustrated by considering the following problem from [Carbonell 86]. Suppose one

wanted to write a LISP sorting program, and one had already written a PASCAL program

implementing quicksort. The approach of directly modifying the PASCAL program would either

fail completely or lead to a poor LISP program. This would happen because a good LISP

implementation of quicksort would look quite diHerent from the PASCAL program due to

49

differences in the structures of these languages. Nevertheless, the LISP and PASCAL programs

might share the same underlying design strategy. They could both use a divide and conquer

approach manifested in terms of partitioning sets. This strategic information is ignored by an

analogy process that directly transforms the code of one program into the code of another. DA

avoids this problem since it does not try to directly transform one solution into another. The DA

method transfers information at the level of "derivations" rather than "solutions". DA would

solve the sorting problem by transforming the derivation of the PASCAL program into a

derivation of a LISP program.

Carbonell gives a detailed specification of the sorts of information that should be

contained in a derivation [Carbonell 86; Carbonell 83a]. A derivation is supposed to include the

"hierarchical goal structure" used to generate the solution. The goal structure is represented in

terms of the ·sequence of decisions" made while solving a problem. For each decision, the

derivation should list the alternative that was chosen as well as those that were considered, but

not chosen. The record of a decision should include the reasons for the decision, (Le., the

derivation might record an explanation of the decision along with dependency links to aspects of

the problem specification and dependency links to general knowledge). The derivation should

also indicate how each decision depends on prior decisions and influences subsequent

decisions. Finally, the derivation should record the initial segments of any dead end paths were

explored, along with reasons that paths appeared promising and reasons the paths ultimately

failed.

In order to use the DA method to solve a problem, it is necessary to find prior problem

situations that are analogous to the current situation. The DA system begins by solving a

problem using general techniques. e.g., application of weak methods or instantiating a general

problem solving schema like divide and conquer [Carbonell 86]. A trace is maintained to record

these initial stages of the problem solving process. Appropriate analogous problems are found

by matching the initial analysis trace of the current problem with the initial analysis of previous

problems. This seems to beg the question since one is tempted to ask what makes two initial

analysis traces similar.

After finding an analogous problem, the derivation of the analogous problem's solution is

retrieved and applied to the new situation. A derivation may be transferred to a new problem in

the following way. The system must follow the sequence of decisions in the derivation and

reconsider each one in the context of the current problem. In order to reconsider each decision,

the system must examine the reasons for the decision. This can be done by examining the

dependency links to the previous problem situation and to general knowledge. If the relevant

aspects of the problem specification are the same and the general knowledge applies to the

50

new situation, then the same decision can be made. Otherwise, the system must reconsider the

decision. Carbonell actually provides a more detailed description of how to transfer a derivation

from one problem to another [Carbonell 86].

3.5.3 Analogy versus Generalization

The explanation-based versions of analogy and generalization differ mainly on the issue

of schema formation. Systems like GENESIS and SOAR are naturally viewed as generalizers

because they convert explanations (operator sequences) into schemata (chunks). The

schemata represent compiled versions of the explanations that need only be instantiated to

apply to new problems. The process of schema instantiation solves a new problem in a single

step, bypassing all the intermediate steps of the explanation. In contrast to this, Carbonell's DA

method is more naturally viewed in terms of analogy because it does not convert an-explanation

(derivation) into a schema. but rather keeps the explanation in its original form. In order to solve

a new problem, DA must pass through all the steps in the original explanation, possibly

modifying the explanation to some degree.

The schema-building approach seems to provide some efficiency advantages. Schema

building systems can usually solve new problems faster since they omit all the intermediate

steps of the derivation, although the process of instantiating a schema may be slower, in some

situations, than replaying the original derivation. The schema approach suffers from the

disadvantage that a schema is not immediately useful if a new problem falls outside its scope.

The DA method does not suffer from this problem. If one assumes that the DA method can

modify an explanation so it can apply to a new problem, then the original explanation does not

have a fixed range of application.

In order to decide which approach is better for a given application, it is necessary to

recognize that there are really two issues here:

• Should a schema be formed from the explanation?

• Should the original explanation be retained?

A reasonable compromise would involve answering "yes" to both of these questions.

Explanations can be converted into schemata and also kept around in original form or in

generalized form.19 A new problem can be processed by first trying to instantiate a schema. If

that fails, the problem may be processed by modifying an explanation using the DA method.

19GENESIS and STRIPS take such intermediate approaches. GENESIS builds a schema also keeps the
generalized explanation. STRIPS generalizes the explanation (i.e .• the triangle table) but does not form a schema
represanting the entire generalized explanation as a single operator.

51

3.5.4 Similar Work

The EBA methods discussed in this section are similar to other recent research in

analogical reasoning. In particular, they are related to Gentner's "structure mapping" theory of

analogy [Gentner 83]. This theory involves using a principle called "systematicity" to determine

what information should be mapped from the analogue to the target example. According to the

systematicity principle, analogy processes should transfer "systems of relations". A system of

relations involves "first order" relations that are governed by "higher order" relations. Causal

relations are one type of higher order relation. The systematicity criterion often leads to

transferring networks of causal relations from one example to another. The causal nets can be

interpreted as explanations. For this reason the systematicity principle often results in

transferring explanations from the analogue to the target, just as in explanation-based analogy.

Another method of justified analogical reasoning, called "Purpose-Directed Analogy",

(PDA), has been proposed in [Kedar-Cabelli 85]. PDA is intended to address the question of

deciding which causal network should be transferred from the analogue to the target, in cases

when the analogue contains many possible causal networks. Kedar-Cabelli argues that the

methods of Winston and Gentner are not able to operate unless the relevant network is

specified in advance. PDA tries to avoid this limitation by using the "purpose of the analogy" to

select the relevant network from among many.

A technique similar to derivational analogy has been used by Mitchell and coworkers in

the domain of logic circuit design [Mitchell et al. 83). Their REDESIGN system serves as an

assistant to a human for the purpose of designing new circuits by analogy with existing ones.

REDESIGN combines causal reasoning about circuit behavior with knowledge about the design

plan of the original circuit in order to focus attention on the parts that must be modified. Mostow

has investigated derivational analogy methods in the context of design problems in general,

including both circuit design and program generation [Mostow 85). He has examined some

difficulties that arise in the course of attempting to replay derivations. This study has led him to

propose criteria about the types of information that should be included in derivations.

An entirely different approach to justified analogy has been developed by Davies and

Russell [Davies and Russell 86]. Their technique involves utilizing "determinations", e.g., a rule

asserting that -the value of feature A determines the value of feature B". A system in possession

of determinations can make logically sound inferences from precedents to new examples. Other

knowledge-intensive approaches to analogical reasoning include [Burstein 86; Hall 85].

52

3.6 Additional Related ESl Research

Several additional research projects are related to explanation-based learning but do not

fit neatly into any of the categories. Silver and Schank fall into this group. Silver has built a

program called LP, which learns heuristics for solving algebraic equations. lP uses an analytical

learning technique called "precondition analysis" (PA) [Silver 86]. The PA method is used to

infer the strategic purpose of an operator, when the lP system sees it used within a sequence

of operators. Suppose the two operators, P(i) and P(i+ 1), appear within the sequence,

P(1), ... ,P(i-1),P(i),P(i+1), ... P(N). The PA method will assume that P(i) was used to achieve

some preconditions of P(i+ 1). Suppose A is a set containing all the preconditions of operator

P(i+ 1) and that B is a set containing members of A that are true before P(i) was applied. The set

difference, A - B, represents those preconditions of P(i+ 1) that were brought about by the

operator P(i). PA would then infer that these conditions are the "strategic purpose" of P(i). After

learning the purpose of an operator, lP would use the information as a search control heuristic

in future problem solving. Precondition analysis is related to EBl methods in two ways. It can

learn from a single observation of an operator sequence applied to an algebra problem. It also

relies on background knowledge about the preconditions of operators. Precondition analysis

differs somewhat from analytical techniques like constraint-back propagation (CBP) and EGGS.

PA can be applied to operators that are ill-behaved in certain ways that would cause these

methods to fail [Silver 85].

Schank and coworkers have been working on a theory of learning and memory that is

similar to EBl. Schank envisions a role for explanations in learning; however, he uses

explanations in a somewhat different way than the EBl systems described above. He has

proposed a theory called "failure driven memory" (FDM) based on the idea that learning is

possible whenever a person encounters a failure of expectations [Schank 82]. In the course of

attempting to explain the failure, a person is reminded of previous episodes that can be

understood using the same explanation. Such reminding is possible if memory is indexed in

terms of ·pattems of explanations·. Schank has proposed a typology of standard explanation

patterns [Schank 84; Schank and Riesbeck 85]. Hammond has used the FDM method in his

WOK and CHEF programs [Hammond 83; Hammond 85]. Salzberg has used FDM in his

HANDICAPPER and FORECASTER programs [Salzberg 83; Salzberg and Atkinson 83].

Schank's FDM theory can be compared to EBl in the following way: According to FDM, if

event A causes one to be reminded of event e, then A and e share a common explanation. In

the context of EBl, if A and B are instances of a single generalization, then they can both be

understood using the same explanation. Due to the emphasis that Schank places on case

based reasoning, his work bears an especially strong resemblance to explanation-based

53

analogy.

4 Formalizations of Explanation-Based Learning

4.1 Mitchell's EBG Formalism

A formalism called explanation-based generalization (EBG) has recently been

proposed by Mitchell [Mitchell et al. 86]. EBG attempts to capture the essential elements of most

explanation-based learning systems that have been proposed. EBG is similar in spirit to Mitchell

and Utgoff's LEX-II system; however, it uses a more uniform set of methods and is cast in a

form that is more clearly applicable to other domains. Mitchell describes the EBG framework as

a "domain independent method ... for using domain dependent knowledge to guide

generalization" [Mitchell et al. 86], (page 49).

The EBG formalism consists of two parts called the "EBG Problem" and the "EBG

Method". A formal specification of the problem is shown in Figure 35. The EBG problem is

defined in terms of four parameters that are necessary for all EBG systems. The "goal concept"

represents the objective of the learning program. This parameter provides a non-operational

specification of the concept that the system will attempt to learn. In Mitchell's presentation of

EBG, the goal concept is represented as an atomic predicate calculus formula, possibly

containing free variables, e.g., POSINST(OP-3,s) or CUP(obj). The "operationality criterion"

specifies the types of concept descriptions that are considered to be operational. Mitchell

represents the criterion as a list of predicates that are observable or easily evaluable. A concept

description is considered operational if and only if it is expressed entirely in terms of predicates

from this list. The "training example" is a description of an object that is an instance of the goal

concept. The training example parameter is described in operational terms, i.e., using

predicates from the list of operational predicates. Finally, the "domain theory" parameter is a

set of rules describing the domain from which the example and goal concept are drawn. The

rules must be capable of proving that the training example meets the conditions for being an

instance of the goal concept. In Mitchell's presentation, the domain theory is represented as a

set of Horn clauses.

The EBG system is charged with the task of reformulating the goal concept into an

expression that meets the operationality criterion. The new concept description need not be

exactly equivalent to the original goal concept. so long as it is both (a) a specialization of the

goal concept and (b) a generalization of the training example. In order to create such a concept

description, the EBG system uses a two step process similar to the ones described above for

Given: (1) Goal Concept
(2) Training Example
(3) Domain Theory

54

(4) Operationality Criterion

Find: A new concept description that is:
(a) a generalization of the training example,
(b) a sufficient condition for the goal concept, and
(c) that satisfies the operationality criterion.

Figure 35: The EBG Problem

GENESIS and lEX-II. First the system uses the domain theory to build an explanation tree

proving that the training example satisfies the goal concept definition. Then the system

"regresses" the goal concept formula through the explanation tree, to obtain a generalized

operational concept description at the leaves. For this step, EBG uses a procedure called

modified goal regression (MGR) [Mitchell et al. 86]. MGR is a modified version of the goal

regression technique described in [Nilsson 80] and [Waldinger 77]. MGR fulfills conceptually

the same function as Dijkstra's method of calculating weakest preconditions [Dijkstra 76],

Utgoffs constraint back-propagation [Utgoff 86), STRIPS' method of generalizing resolution

proofs [Fikes et al. 72], and Mooney and Dejong's EGGS procedure [Mooney and Bennett 86;

Dejong and Mooney 86]. For a comparison of MGR, EGGS and the STRIPS proof generalizer,

see [Mooney and Bennett 86].

Mitchell's EBG formalism is valuable for the conceptual clarity it provides. It is especially

helpful in making the ·goal concept· and ·operationality criterion· into explicit parameters. In

previously existing EBl systems, these two parameters were present only implicitly. By making

them into explicit parameters, the EBG formalism raises the question of how they may be

obtained. As suggested in [Keller 84], these parameters might be generated automatically by a

learning program in possession of ·contextual knowledge" describing the task and internal

architecture of the performance element.

The EBG formalism is also useful for clarifying the relation between generalization.

chunking, operationalization and analogy. Figure 36 suggests how EBG can be interpreted in

terms of each of these processes. Each interpretation involves emphasizing one input and one

output and ignoring the others. If the training example is the input and the operational concept

description is the output, EBG looks like generalization. In order for EBG to look like chunking.

the domain theory is taken as the input. The output is a concept membership test rule of the

form "if OCD then GC· where OCD is the operational concept description and GC is the goal

concept. EBG looks like operationalization if the input is the non-operational goal concept and

the output is the operational concept description. In order for EBG to look like analogy the

system would be given the training example and a ·tesr example as inputs. The output would

55

be the classification of the "test" example as a member or non-member of the goal concept.

Generalization:

Traininq Example ~ Operational Concept Description

Chunkinq:

Domain Theory ~ Concept Membership Test Rule

Operationalization:

Goal Concept ~ Operational Concept Description

Analoqy:

Traininq and Test Examples ~ Test Example Classi~ication

Figure 36: Four Interpretations of EBG

4.2 Other Formalizations

Dejong has recently presented a detailed critique of EBG, covering a number of specific

areas in which he claims EBG is deficient [Dejong and Mooney 86]. Among other things,

Dejong argues that EBG suffers from problems of undergeneralization. He points out that EBG

cannot generalize the predicates appearing in domain theory rules and cannot generalize the

structure of the explanation itself. Dejong also discusses other problems with EBG. He claims

that the operationality criterion used in EBG is deficient. He also argues that the EBG

generalization procedure fails to take adequate account of the source of the explanation, i.e.,

whether the explanation is built by the system or provided by a human expert. According to

Dejong many of these problems can be solved by organizing the system's knowledge base in

terms of a hierarchy of schemata. He presents his own formalism as an alternative to EBG in

[Dejong and Mooney 86].

A number of other authors have made attempts to define EBL in a domain independent

manner. Laird and Rosenbloom examine the relation between EBG and SOAR in [Rosenbloom

and Laird 86]. Mooney and Bennett have formalized the notion of an "explanation structure" in

[Mooney and Bennett 86]. They also describe a domain independent version of the EGGS

procedure. An early attempt to formalize EBL was made by Minton in [Minton 84]. A

formalization of explanation-based analogy is presented by Kedar-Cabelli in [Kedar-Cabelli 85].

56

5 An Evaluation of EBl
The EBG formalism clarifies a number of outstanding issues in the field of explanation

based learning. Mitchell's formalism draws attention to the fact that an EBG system must be

provided with a "domain theory" and a "goal concept" at the outset, before learning can occur. A

couple of questions are suggested by this fact:

• Are training examples necessary for EBG systems?

• Do EBG systems learn anything they do not already know?

The first question results from the following observation. If an EBG system possesses a

domain theory capable of explaining an example, the same theory is probably sufficient for

generating the example in the first place. If the system can generate its own example, the

training example parameter is not necessary. FOO, BAR and LEXCOP take just this approach

of reformulating a non-operational concept without making use of an example.

Mitchell's EBG method might be modified to operate without training examples. This

would require omitting the step that involves explaining how the example satisfies the goal

concept. The following "explanation step· would be used instead: The system would find any

explanation tree that has the goal concept at the root and only operational statements at the

leaves. The modified explanation process would be permitted to use any operational predicate

as an assumption in the explanation. The resulting explanation process might be more time

consuming than if an example were being explained. Some search control techniques that

would be useful in the presence of a training example would not apply to the modified

explanation process. If Mitchell's EBG method were modified in this way, the result would look

very much like Keller's LEXCOP system.

In some domains the ability to explain an example is not equivalent to the ability to

generate an example in the first place. Consider the 8-QUEENS problem as an example.

Suppose an EBG system were given the goal concept "mutually non-attacking positions of 8

queens·. Given a theory about how queens can attack, a system could easily verify that a

solution satisfies the goal concept. Nevertheless, it is much more difficult to find a solution than

to verify the correctness of a solution provided by a teacher. This argument applies to the whole

class of NP-complete problems, of which the N-QUEENS problem is an instance. The NP

complete problems all have the property that solutions are easy to verify but difficult to find. For

such problems an example solution provided by a teacher can be very useful.

Even if an EBG system is capable in principle of reformulating goal concepts without

using examples, there would nevertheless be a useful role for examples provided by a teacher.

EBG normally does not produce an exact reformulation of a goal concept. It usually creates a

