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Abstract: This paper surveys results and techniques for 

computing D-optimum weighing designs. 

1. Introduction. 

In this paper we survey results and techniques for 

computing D-optimum weighing designs. The paper summarizes 

the results of my work with Jack Kiefer ([1]-[6]), and des-

cribes some related results. This paper is written with two 

hopes in mind. We hope that the work on D-optimum design 

will be continued. Although we know now much more than 

before, the picture is far from complete. We also hope that 

some of the techniques we developed will be found useful 

elsewhere: for finding optimum designs using other optimality 

criteria or for solving other optimization problems. 

Let k and n be positive integers with k ~ n, and let 

x = X(k,n) denote the set of all n x k matrices X = (x .. } 
~J 

-consisting entirely of entries ~l. If X maximizes 

det(X'X) overX, then X or X'X is said to be D-optimum. 

-
The problem of characterizing such X arises in two 

statistiqal settings, both with uncorrelated homoscedastic 

observations. In both cases l/det(X'X) is proportional to 

the generalized variance of the least squares estimators of 

the parameters °1 ,8
2
"" ,9k of interest. 

, , 



Firstly, there is the setting of finding the weights 

qj (l ~ j ~ k) of k objects with n wieghings. In one 

model, in which a chemical balance is used with each object 

present on each weighing, we let x,, = 1 or -1 depending on 
~J 

2 

whether the }th object is on the left or right pan in the ~th 

weighing. That weighing model may be altered to allow the 

x,, to be 1, -1, or O~ i.e. all k objects need not be 
~J 

present in each weighing. It can easily be shown that every 

-
X optimum for the previous model is optimum for this one. 

Also, when k = n = r the optimality results for x,, = ±l are 
~J 

well-known to correspond to optimality results for k = n = r - 1 ' 

with x,, = 0 or 1, the "spring-balance" model~ see Mood (1946) . 
. ~J 

The equivalences of the various D-optimality problems for 

the two settings is also treated by Hedayat and Wallis (1978), 

when k = n. 

Secondly, there is the setting of estimating the para-

meters of the first order regression model on the p-dimensional 

cube [-l,l]P with p = k - 1, the ~th observation being at 

(Z'l,Z'2""'Z, ) with expectation ~k + L: Pl z, ,~" which we 
~ ~ ~p LJ-J 

can writeL:~ Zijqj by defining zik = 1. It can easily be 

shown that there is a D-optimum X in)(. Conversely, each 

X in" can be transformed into an element of ·X with the 

same determinant and all x
ik 

= 1. 

If [-l,l]P is replaced by (-l,l}P in the above, we obtain 



3 

the even simpler correspondence of the weighing problem to 

the first order (resolution III) fractional 2P-factorial 

problem. 

The cases k = n are called saturated. 

-The problem of finding an X is the subject of many 

papers, two early ones being those of Hotelling (1944) and 

Mood (1946). For reference to the many contributions of 

Kischen, Banerjee, Raghavarao, and others, see Raghavarao 

(1971), who also gives typical results. Many of the known 

-
results characterize a D-optimum X subject to the restriction 

to X's in)( for which X'X is permutation invariant (has 

all diagonal elements equal and all off-diagonal elements 

equal). The imposition of this restriction simplifies the 

optimization problem considerably, but for many k and n 

it yields designs that, although often fairly efficient, are 

not optimum in·~. This is known, for example, from the 

saturated cases n = 6 or 7 in Mood (1946) and n _ 2 (mod 4) in 

Ehlich (1964a). The matter is discussed in cheng (1980) and 

Kiefer (1980). In the present paper we are concerned with 

finding a D-optimum X in)( without any such restriction. 

We note that recent combinatorial literature often refers 

to "weighing matrices" as square orthogonal matrices with 

entries from (0,1,-1). This should not be confused with our 

weighing designs X. other optimality criteria, such as 
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-1 tr(X'X) J have also been considered J but our main concern 

here is wi th det (X' X) . 

Our work on finding D-optimum designs touched five 

different fields: 

1. Statistics J 

2. combinatorics J 

3. Number TheoryJ 

4. Computation J and 

5. Complexity. 

Statistics J in particular experimental designJ was the 

source of our problem J as described above. Once the problem 

is defined as maximizing det(X'X) no statistics is used. We 

are basically solving an optimization problem, or more pre-

cisely an infinite family (with parameters k and n) of 

optimization problems. We will see below how techniques from 

the other four fields are used. 

Since five different fields are involved J it can be 

valuable to consider the varied interplay between some of them. 

Kiefer (1981) describes the interplay of optimality and com-

binatorics in experimental design: there are two approaches 

for defining "good" designs. The first which was developed by 

R.A. Fisher and his followers often used combinatorial 

strucrures that yielded simple calculation of estimates or of 

1 . 
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symmetric variances and covariances. Examples include block 

designs with balance and regression experiments with equally 

spaced observations. This approach was justified at the time 

when inverting a 10 x 10 matrix (by hand) was a formidable 

computational task. 

The second approach was to choose an optimality criterion 

(or criteria) and to find designs which are optimal or almost 

optimal according to the criteria chosen. Jack Kiefer was a 

pioneer (perhaps the leader) in developing this second approach. 

Using this approach, it was sometimes possible to justify the 

simple symmetric designs found by the former approach. But 

in many cases this was not so. Followers of the second 

approach discovered new designs which, though they displayed 

some symmetry, were not as "nice" as the symmetric designs 

found by the former approach. This led to the use of new 

combinatorial structures and to a "back and forth" between 

design criteria and combinatorial constructions. In his 

paper, Kiefer gives two examples of this interplay: 

construction of D-optimum weighing designs and of incomplete 

block designs. The interplay in the first case will be 

indicated below. 

In this paper we will emphasize another interplay between 

analytical methods and computational methods for finding D

optimum designs. There are two pure strategies for finding 

· . 
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D-optimal or almost D-optimal designs. The first is to use 

analytical methods in order to prove that certain designs 

are optimal (o r almost optimal). Unfortunately, in many cases 

~e do not know how to do this. The second is to use the 

compu=er to search for an optimum search strategy, employing 

simple heuristic, usually yielding a local maximum with 

very little information on how good this local maximum is . 
hl"u. 

We now describe A mixed strategies for finding D-optimum 

designs. Later in the paper we will give examples, where 

these mixed strategies were successful. 

Sometimes the computational results suggest a theorem. 

For this to hold we often need that our search b e so good 

that it finds a global optimum. What makes our task 

difficult is that we do not know when this has occurred. Once 

a candidate for a theorem emerges from our computations J we 

of course, try to prove it. 

OccasionallYJ using analytical methods we only prove an 

upper bound for the maximum. We then try to use our search 

strategies to match this bound; i.e. to find a design with 

det(X'X} · equal to the upper bound . This strategy can work 

only if our upper bound was actually the value of the optimum. 

In all cases, the upper bound yields a lower bound for the 

ratio of the best design we have found so far to the 

optimal design. 



Sometimes, by using analytical methods we considerably 

restrict the search space. In the resulting (much smaller) 

space it is sometimes possible to search exhaustively for 

the optimum. In any case, search procedures perform much 

better on a smaller space. The "proof" of the Four Color 

7 

Theorem (Appel and Ha~e~ (1976)) uses this type of strategy. 

The next sections summarize four cases of our problem: 

Case i, i = 0,1.2,3. case i consists of all (k,n) such that 

k ~ n € ~i = (nln ~ i mod 4}. We also point out several 

examples of the two interplays mentioned above. 

2. Case 0. 

H'H 
n n 

An n x n Hadamard matrix H is a member of ~(n,n) with 
n 

= nI A necessary condition for H to exist is that 
n n 

n 

be 1,2 or n E ." . '0' and we also include the empty matrix HO 
for 

use in further discussion. There is much more literature on 

existence of H than on all other aspects of the subject of 
n 

the 

weighing designs; see, e.g., Hedayat and Wallis (1978). By now 

H are known to exist in case ° for all n ~ 200, and for infin
n 

itely many other n. There is an X in ~(k,n) with X'X = nIk 

if H exists (namely k columns of H ), and such X can in fact 
n n 

often be found much more easily. In particular such X exists for 

all (k,n) k ~ lOa, n € ~O (see [1]). Such an ~ is not only 

well known to be D-optimum, but also minimizes ~(X'X) over)( 
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for every nonincreasing convex orthogonally invariant 

extended real-valued t defined on the nonnegative definite 

symmetric k x k matrices: see Kiefer (1975). It also 

minimizes the individual variances of best unbiased estima-

-1 
tors of the 9

i 
(diagonal element of (X'X) ), as was shown 

by Hotelling (1944). 

The other three cases are not so simple, and their 

investigation in the saturated case was pioneered by Ehlich 

(1964a,b). (See also Wojtas (1964).) 

3. case l. 

Ehlich showed that an X in X(n,n) with 

X'X = (n - l)I + J (where J consists entirely of l's) 
n n n 

is D-optimum. Unfortunately, such as X can exist only if 

2n - 1 is the square of an integer. such designs are known 

for the "practical" values n = 1,5,13,25. 

It is perhaps somewhat surprising at first glance that 

the unsaturated case of case 1 is easier to handle than the 

saturated case. It was shown by Cheng (1980) that any X 

in X(k,n) with X'X = (n - l)I
k 

+ J
k 

is not only D-optimum, but 

also optimum with respect to a large subclass of the ~'s,J1, of 

the previous section, including all those of common interest. 

(The D-optimality in the unsaturated case. obtained by payne 

(1974), can also be obtained by a simple modification of 

Ehlich's saturated case proof~ but the more general results 
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require Cheng's analysis.) Moreover, for k < n such an X 

can always be obtained when the design of case 0 in X(k, n - 1) 

exists, by adjoining a row of l's to that design. Although 

such an adjoining is a common practice in the literature of 

weighing designs, the D-optimality over )(without the addi-

tional symmetry restriction) of the resulting -X was 

evidently unknown before Payne's paper. Thus, Mitchell 

(1974b) made computer searches in several of these cases, 

always obtaining such an X, and remarking that Mood had 

suggested such designs would be "very efficient." For 

values of n ~ 20 in case 1, we are left without knowledge 

of an optimum design only in the saturated cases k = n = 9, 17. 

Ehlich and Zeller (1962) state that for k = n = 9 the 

design obtained by them can be proved optimum. A normaliza-

tion of the design given in Table 4b of Mitchell (1974b) is 

of this form, and such a design can also be constructed using 

a method of Williamson (1946). Ehlich (1978) has indicated to 

us that the method of proof of optimality is similar to, 

but simpler than, that mentioned in Section 5 below for the 

k = n = 11 case. The method also shows no other form of X'X 

can be optimum for k = n = 9. Recently, Moyssiadis and 

Kounids (1982) computed the case k = n = 17 by applying 

analytic methods that restricted the number of possible 

optimal designs, followed by an exhaustive search. Consequently, 



the smallest unknown instances of case 1 are k = n = 21, 29. 

We do not know the solution for k = n > 30 n E ~l' 

4. case 2. 

Here Ehlich (1964a) and Wojtas (1964) showed in the 

saturated case that any X for which X'X = (~ ~), where 

M = (k - 2)Ik /
2 

+ 2Jk /
2

, is D-optimum. Ehlich constructed 

A B) . h such X of the form (-B' A w~t A and B circulants, in 
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all cases k ~ 38 except k = 22 and 34. Other optimum designs 

in these cases were obtained by Yang (1968), who in references 

cited by him there also obtained optimum X for k = 42, 

46, 50, 54. 

For general k ~ n E ~2' we consider 

:oJ - L 0 for which A'X = (0 ), where 
M 

those X in X(k,n) 

for k even 

L = M = (n - 2)Ik /
2 

+ 2Jk/
2

, and for k odd Land Mare 

(n - 2)I(k±1)/2 + 2J(k±1)/2' These designs were proved 

D-optimum by Payne for k ~ n - 2 using the work of Wojtas, 

and one can also see that Ehlich's proof requires only simple 

modifications to apply to Case 2 for n 2 k. (In fact, payne's 

proof also applies for n 2 k, but he does not say so because 

he gives constructive methods only when k ~ n - 2 and H 2 
n-

exists. ) 

-
When k ~ n - 2 and a design X in X.(k,n - 2) of case 0 
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~X\sts , an optimum X for Case 2 is achieved by using one of 

Mood's devices, discussed and employed by Mitchell and by 

Payne. This X is obtained by adjoining to X two rows, 

one consisting entirely of ones and the other consisting of 

k/2 (respectively, (k - 1)/2) l's following by k/2 (respec

tively, (k + 1)/2) - l's, depending on whether k is even 

or odd. It seems not to have been observed by the cited 

authors that when k = n - 1 with n € ~2' removing a column 

from an optimum saturated X of Ehlich or Yang in X(n,n) 

(mentioned two paragraphs above) yields an optimum design 

in X(n - l,n). Thus, just as the construction problem in 

Case 1 was much simpler for k < n than in the saturated case, 

so in case 2 it is simpler for k < n - 1 than in the saturated 

or near-saturated (k = n - 1) case. The only four instances 

of case 2, with n ~ 52 in which we do not know the 

optimum are n € (22,34), k € (n-l,n). 

It is interesting to note that restricting attention to 

a symmetric solution in the intuitive Fisherian spirit in 

which all of the off-diagonal elements are equal is quite 

poor, especially for small n~ thus, in the case n = k = 6 

the determinant of Ehlich's information matrix is 56~ larger 

than for the best matrix with all off-diagonal elements equal. 

Like the D-optimum designs of Case 1, those of case 2 

have been shown to have otner optimum properties. Cheng (1980) 

showed they are among the E-optimum designs. Jacroux, r~saro 



and Wong (1983), have recently shown that they are also 

optimum with respect to the class A that we mentioned in 

Section 3. 

5. Case 3. 

This is well known to be the most difficult (and the 

most interesting) case. If one knows an H lor, more 
n+ 

generally, an X in X(k,n + 1) of case 0, deletion of one 
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yields an X in't(k,n) with X'X = (n + l)I
k 

- J
k

. 
-

row of X 

We denote X by X (e for easy). However such an X was 
e 

until recently known to be optimum for k > 2 only when n = 3 

(e.g., Mood (1946)). For k = n = 7, the optimum design X 

is not of this form. It was found by williamson (1946) and 

discussed by Mood (1946). Designs for the cases k < n = 7 

have been obtained through computer search by Mitchell 

(1974b) but their optimality was not previously verified 

theoretically. His computer search yielded, after norma1i-

zation, the ~ described just above, and Payne (1964) 

proved these optimum for k ~ 5. 

For n = k = 11 (not treated by Mitchell), an X'X was 

obtained through computer search combined with some algebra 

by Ehlich and Zeller (1962), in which paper the optimality 

of the design was indicated to be questionable. This design 
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was subsequently verified by Ehlich to be optimum, as described 

to us in Ehlich (1978). Ehlich used an ingenious combination 

of theoretical developments and computer search, by means of 

which he obtained designs with three structures of X'X, 

proved them optimum, and proved no other structures of X'X 

could be optimum. 

Before [1], designs for k < n = 11 had not been proved 

optimum theoretically except for payne's treatment when k ~ 5. 

Of the designs found by Mitchell for k = 9 and 10, the former 

was not optimal, payne (1974) sho~d that an X is D-optimum 
e 

provided n is sufficiently large compared with k. He 

k2 k 
gives n > (5/2)3-K ([k/2]) as a crude sufficient bound for 

which his proof works, and remarks that numerical evidence 

suggests that n > 7k/2 might suffice, and that the proof is 

likely to fail in general for k ~ n < 3k. Our own early 

numberical investigations indicated that n 2 2k might suffice, 

so that the evidence cited by Payne is a commentary on his 

method of proof rather than on the definitive results. In 

[1] we showed that n 2 2k - 5 suffices. 

The entire treatment of Case 3 is based on Ehlich work. 

E'nlich (1964b) considers only the saturated case. But minor 

modifications yield the development below. 

Let ~ = ~k be the class of all symmetric k x k 
,n 

matrices with diagonal entries n and off-diagonal entries 



-lor 3, where n Let 

( 1) '1' (k, n) = maxA€ p det A. 
K,n 

E!.h\ I'th shows that max ,/ det(X'X) ~ ,¥(k,n) 
XE "-

in Case 3. 

A block of size r is an r x r matrix with diagonal 

elements n and off-diagonal elements 3. A block matrix 

in Ck,n with block sizes r l ,r2J •.. ,rs satisfying r~ r i = k 

is a k x k matrix with diagonal blocks of those sizes and 

with all other elements equal to -1. As Ehlich shows, any 

such block matrix C has 

3) k-s (1 _ s 
+ 4r.) J det C = (n - G}r.l(n - 3 

1. 

(2 ) 
s 

r./(n 3 4r. ) . G = Ll - + 
1. 1. 

Ehlich also shows that there is a block matrix in ~k which ,n 

has maximum determinant in ~k and which is a member of the 
,n 

subset ~ of C
k 

which consists of block matrices with 
~K,n ,n 
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blocks of only one size or blocks of only two contiguous sizes, 

u of size r and v or size r + 1, where consequently 

(3 ) u + v = s, ur + v(r+l) = sr +-v = k. 

For any block matrix Cs in !It wi th 
K,n 

s blocks (2) and (3) 

yield 



det C s 
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k-s u v = Dk (s) = (n-3) (n-3+4r) (n+l+4r) (l-G} ,n 

(4 ) 
k-s (r+l)s-k k-sr = (n-3) (n-3+4r) (n+l+4r) (I-G}, 

G = [k(n-3) + 4sr(r+l)]/(n+4r+l) (n+4r-3). 

Ehlich's last-cited result is thus ~(k,n) = max Dk (s). 
s ,n 

Of course, s uniquely determines r except when slk. In 

that case, the block matrix with r = r o' u = u O' v = 0 is 

identical to that with r = r - 1, u = o 0, v = u O' and either 

yields the same result in (4). The x discussed earlier has 
e 

s = k. 

As a result of the discussion above, one approach of 

solving our problem (of maximizing det(X'X» is to solve the 

following two subproblems: 

(1) to find s*, 1 ~ s* ~ k, such that 

D (s*) = ~(k,n) (= max Dk (s», and then 
k,n s ,n 

(2) to find an X in X such that 'f (k, n) = det (X' X) . 

As indicated above for n2 2k - 5, s* = k and X = X 
e 

is D-optimurn. Thus we are left with those subcases of Case 

with n < 2k - 5. For solving some instances of the two 

subproblems above we used the computer extens ively. The 

next section digresses momentarily to describe briefly our 

computational methods. 

3 
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6. computation. 

In a pathbreaking sequence of papers, Mitchell (1974a,b) 

developed and implemented a general technique, termed 

DETMAX, for obtaining D-optimum experimental designs in a 

wide variety of settings. It is a search technique. Exhaus

tive search in typical applications involves too many (2
nk

) 

possible design matrices X. Moreover, in attempting to 

maximize det(X'X), all known usable techniques that move 

from an X to a nearby "better" X can get trapped in a 

neighborhood of a local maximum that is not the desired global 

maximum, and perhaps not even moderately efficient. One 

therefore introduces some randomization into the search tech

nique, both in the initial guess, and also in later "tie

breaking", so that different" tries" can lead to different X' s j 

thus, with enough tries, one can hope to find an X that is 

optimum or close to it. Mitchell's technique seems to us by 

far the most successful general method that has appeared 

for solving such problems. 

We had hoped, over a period of several years, to improve 

upon DETMAX, e.g., by finding a way of "jumping" far enough 

out of a local maximum to escape from it in a usually favorable 

direction; or by adding, subtracting, or exchanging more than 

the one point per step that Mitchell does. These hopes proved 

fruitless, the first from lack of the right idea, the second 
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because of astronomically increased computer time. Thus, 

with renewed respect for Mitchell's method, we were led to 

try to modify it in more modest ways, in terms of the actual 

computational steps it performs. 

This involved a careful analysis of the individual 

operations it performs, especially in the updating of such 

entitites as (X'X)-l, that are used in improving the design 

successively. In [2] we introduced a collection of methods 

capable of both time and space saving. We called our proce-

dure MDETMAX (M for modified). We tested MDETMAX and found in 

our examples that it was typically 15 to 50 times faster than 

the original DETMAX in problems with 5 to 10 parameters and 

10 to 20 observations, on each "try" in which a design X was 

found. One could therefore perform that many more tries 

than did DETMAX, for a given expenditure of computer time or 

money, and thereby increase greatly the chance of finding an 

improved solution in many problems. We did often achieve 

such solutions. Alternatively, we could tackle larger 

problems (larger(k,n)) that DETMAX could not. 

7. Back to Case 3. 

As we concluded in section 5. one way to solve the problem 

is first to find s* which maximizes Dk (5) and then to try to 
,n 

find X such that 

(St det(X'X) = Dk (s*) ,n (= If'(k,n)}. 



The first subproblem is relatively easy. For specific 

cases, this is a very simple task, since one has to compute 

and compare k values of n (5). -k,n In [4] we listed the 

values of 5* (8 s*(k,n)) for all case 3 (k,n), k ~ n ~ 100. 

The general problem of finding s*(k,n) is open. We 

already noted that s*(k,n) = k for n 2 2k - 5. Ehlich 

18 

(1964b) showed that s*(n,n) = 7 for n 2 63. In [4] we obtain-

ed upper and lower bounds for s*. We also found s* for 

several infinite families of (n,k), near the two ends: for 

cases n = 2k - d, d = 5,7, ... ,17, we found 
l; 'v'\': <'i! 

s* = ~dk + Bd'Aad decreases from 1 to 1/3. Near the saturated 

case, for n large enough, s* is still 7~ then as we increase 

n, s* grows slowly. More specifically for n ~ 00 with 

kin 4 1 - \, we have lim s* = 7 if 0 ~ A ~ .08837, = 8 if 

.08838 ~ A ~ .17027, = 9 if .17028 ~ A ~ .22494, > 9 if 

.22495~ \. 

These results were obtained using elementary number 

theory and manipulation of inequalities. We believe that 

Dk (s) is unimodal. This was indeed verified for k ~ n ~ 100, 
,n 

but we could not prove it in general. 

Once we know s* we have to find a design X with 

det(X'X) = ~(k,n). Unfortunately, such an X does not 

always exist. When k = n, (the case studied by Ehlich) 

the Ehlich theory is rarely implementable in the sense of 
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there existing an X with det(X'X) = ?(n,n). Specifically 

~(n,n) is infrequently a square, which is necessary for 

such an X to exist; the only two values of n < 200 for 

which ~(n,n) is square, other than the trivial value n = 3, 

are 91 and 147 (misprinted 47 in [lJ). It is not known 

whether an X with det(X'X) = ~(n,n) is constructible for any 

n > 3. When k < n we do not of course have squareness of 

Ok (s*) as a condition for constructibility of an X with ,n 

det(X'X) = ~(k,n). 

We now discuss three different methods for solving (5). 

The first was to search among all X in X. This approach 

is prohibitively expensive. If one were going to use exhaus-

tive search, he should rather use it for the entire problem 

(maximizing det(X'X». Nevertheless we used a modified ver-

sion of this approach to f:nd that for k E {13,14}, n = 15 

there is no solution to X'X = Cs * and hence (by Ehlich's 

theory) no solution to (5). The search was somewhat reduced 

by observing certain symmetries (see [3J). Consequently, the 

smallest unknown instances of Case 3 are k E {13,14,lS} 

n = 15. 

The second approach was to use MDETMAX, and compare the 

best determinant we found with ~(k,n). This approach proved 

to be successful in several cases. Also, in the three cases 

mentioned above, when (5) is not solvable, MOETMAX found 

designs with determinants close to (the unattainable) ?(k,n). 

· ' 



It is interesting to note that in all cases but one the 

modifications introduced in MDETMAX (in [2]) were crucial. 

The original DETMAX either could not handle these cases or 

gave much inferior results. 
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The third approach was to invent combinatorial construc

tion methods for finding X with X'X = c
s

*. In [5] we 

invented such methods, yielding X's which attain ~(k,n) 

for infinitely many (k,n). As a result we now have an 

infinite family of D-optimum designs for case 3 with n < 2k - 5. 

Our methods used certain Hadamard matrices as building blocks. 

More recently Kounian ad Hajipantelis (1983) and 

Kounias and Farmakis (1983) invented new construction methods 

using circular matrices, and matrices of Goethals-seidel 

type. 

8. Conclusion. 

We surveyed results and techniques for computing D

optimum weighing designs. For more details see [1]-[6J. 

Two topics which appear in these papers and were not discussed 

here are: 1. More details on our computational experience 

with MDETMAX, especially its remarkable performance in 

computing quadratic regressions [3]. 2. The nonuniqueness of 

s* ([1], [2], [4]). In [4] we characterized all these cases 
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of "ties". There are five families of (k,n) which are sub-

families of the cases n = 2k - d discussed above. These are 

all the cases when s* is not unique. In these cases two 

values of s are optimum. Beginning in [2] and continuing 

in [6], we used additional criteria to choose between two 

such values of s. 

The current state of knowledge of our problem is as 

follows. Considering the (approximately) 5000 cases (k,n), 

k ~ n ~ 100, there are 1250 in each case i, for i = 0,1,2,3. 

All the Case 0 instances are known. For case 1 (Case 2) 

less than 20 (30) instances are not solved. For Case 3, 

slightly more than half have n > 2k - 5, for which we know 

the solution. For the remainder of close to 600 instances 

we know only about 120. As for small values of (k,n) all 

instances of cases 1 (2) are solved for n ~ 20 and only two 

instances are not known for n ~ 30. For case 3, 5 instances 

are not known for n ~ 20 (k € (13,14,15} n = 15 and 

k € (16,19) n = 19) and 18 instances (including the 5) 

are not known for n ~ 30. 

We -leave as a challenge 

1. to find ~(k,n) for all k and n (one possible step 

in this direction would be to show that Dk (s) ,n 

is unimodal) i 

2. to devise new construction methods for cases for 

I' 
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which ~(k,n) is known; 

3. to find new methods to deal with instances in 

which (5) is not solvablej (The only such instances 

for which a solution is known are k = n £ {7,11}.) 

4. to consider Case 3 and other optimality criteria. 

(Initial work in this direction is reported in 

Cheng, Masaro and Wong (1983).) 

We considered here the following problem: 

I max det(XIX} 

X an n x k matrix 

x .. £ {-l,l}. 
1) 

A special case of Problem I (k = n) is 

II max det(X) 

X an n x n matrix 

x .. £ {-l,l}. 
1) 

A special case of Problem II is 

III Is XIX = nI solvable for all n = 0 (mod 4)? n 

Problem III has been studied for more than a hundred years, 

Problem II for nearly twenty years, and Problem I for nearly 

ten years. Naturally, we use our vast knowledge on Problem 

III to make progress on Problems I and II. Possibly, if we 

know more on problems I and II we will be able to make progress I~ 

solving Problem III. 
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