Academic Commons

Reports

Can Any Stationary Iteration Using Linear Information Be Globally Convergent?

Wasilkowski, Grzegorz W.

All known globally convergent iterations for the solution of a nonlinear operator equation f(x) = 0 are either nonstationary or use nonlinear information. It is asked whether there exists a globally convergent stationary iteration which uses linear information. It is proved that even if global convergence is defined in a weak sense, there exists no such iteration for as simple a class of problems as the set of all analytic complex functions having only simple zeros. It is conjectured that even for the class of all real polynomials which have real simple zeros there does not exist a globally convergent stationary iteration using linear information.

Files

More About This Work

Academic Units
Computer Science
Publisher
Department of Computer Science, Columbia University
Series
Columbia University Computer Science Technical Reports, CUCS-143-80
Published Here
October 19, 2011
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.