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In order to make possible a detailed performance analysis, algorithms for a number 

of vision tasks were developed for a particular massively parallel machine, called 

NON-VON. The 53-processor NON-VON 1 prototype, which implements only 

some ot the features of the full NON-VON architecture, was developed at 

Columbia University, and has been operational since January, 1985 An 8,191-

processor prototype of a more recent version of the machine, called NON-VON 3, 

is presently under construction. While the full architecture [171 supports other 

mterconnectlOn topologies and execution modes, only its tree-structured 

communicatlOn capabilities and its SThID mode of execution are used In the 

algorithms described m this paper. The current paper thus provides an evaluatIOn 

of the strengths and hmltations of a "pure" fine-grained SIMD tree machme, and 

not of the full NON-VON machine, whIch contams additional features that mIght 

be expected to offer significant performance enhancements in a number of vIsion 

applications. 

Several parallel Image understanding algorithms, spanmng different levels within 

the process of Image understanding, have been developed and tested using a 

functional Simulator, and in some cases, a NON-VON machine instructlOn level 

simulator. In this paper, we describe S11ID tree algorithms for two commonly 

used and representative tasks drawn from the intermediate levels of computer 

vIsion. In particular, algorithms are presented for the Hough transform and for 

mOVIng hght display applications. Novel algOrithmic techniques are described that 

effectively explOIt the massive parallelism available in fine-grained S11ID tree 

machines while avoiding communication bottlenecks. 

Both algOrithms have been Simulated using a functional Simulator runmng on a 

VA .. X 11/750 augmented with a Grinnell Image processor. Other Image 

understanding tasks (not discussed in thiS paper) for which NON-VON algOrithms 

have been developed and simulated include image correlation, histogrammmg, 

thresholding, connected component labeling, and the computation of the area, 

perimeter, center of gravity, eccentncity, and Euler number of connected 

components [101. Based on simulation results, NON-VON's performance has been 

compared with that of other highly parallel architectures for image analysis 

Certain algorithms have been shown to execute faster on NON-VON than on other 



highly parallel machines having a similar cost. 

cost/performance advantages were seen to derive from 
These performance and 

1. The effective use of an unusually high degree of parallelism, made possIble 
by the machine's very fine granularity. 

2. The natural mapping of hierarchical and multi-resolutIon techniques 
developed by other researchers onto NON-VON's tree structured topology 

3. The extensive use of content-addressable matching and other asSOCIatIVe 
processing technIques. 

4. The use of the tree to perform algebraically associative operatIons such as 
addition in time logarithmic in the number of pixels. 

5. The slmphcity and cost-effectiveness with which tree-structured machines 
can be Implemented using VLSI technology. 

In other cases, certain limitations of SUvID tree machines for computer vIsion 

applicatlOns were apparent. These problems fell Into two Lategories: 

1. Situations in which multiple instruction stream, multiple data stream 
(!\f~ID) techniques would be more effective than SllvID approaches. 

I) Situations in which the root of the tree may become a signihcant 
com m unlcation bottleneck In the absence of speCial measures. 

These advantages and disadvantages are even more apparent In the case of 

middle-level vIsion tasks considered in this paper. In the succeeding section, the 

NON-VON architecture IS described, along With a Pascal-based parallel 

programming language that will be used to express the algorithms presented in thiS 

paper. In Section 3 and 4, we introduce the algorithms for implementing the 

Hough transform and moving lIght display applications, respectively. Issues related 

to the efficiency of both algOrithms are discussed. In the concluding sectlOn, we 

attempt to characterize more abstractly the basis for NON-VON's speedup on 

these tasks. Since some of the conclusions appear to derive from considerations 

Intrinsic to middle-level vision, our conclusions should apply to other architectures 

as well. 
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2 The NON-VON Architecture 
The name NON-VON is used to describe a family of massively parallel machInes 

10tended to provide high performance on anum ber of computational tasks, with 

special emphasis on artificial intelligence, database and knowledge base 

management, and other symbolic information processing applications The general 

architecture 10cludes a massively parallel primary processing subsystem (PPS) based 

on custom YLSI circuits, along with a secondary processing subsystem (SPS) based 

on a bank of intellIgent disk drives. FIgure 1 depicts the top-level orgaDlzatlOn of 

the general NON-VON architecture. However, only some of the sUbsystems 

depicted in this Figure are directly relevant to the concerns of this paper 10 

particular, we deal only with the "pure" tree subsystem. 

The PPS is composed of a very large number (as many as a million, 10 a full­

scale "supercomputer" confIguration) of sImple, area-efficient small processlng 

eJements (SPE's), which are implemented using custom VLSI circuits Each SPE 

comprises a small local RAM, a modest amount of proceSSlOg logic, and an I/O 

switch that permits the mach10e to be dynamically reconfigured to support various 

forms cf inter-processor commUDlcatlon The most recently fabricated PPS chIp 

contains eIght 8-bit processing elements In order to maXimize circuit Yield, each 

SPE was fabrIcated wIth only 32 bytes of local RAM in the current worklOg 

prototype, 10 a production versIOn of the machine, however, each SPE would 

probably contaIn the maximum amount of local RAM supported by the instruction 

set, which is 256 bytes 

In the current version of the general NON-VON machine, the SPE's are 

confIgured, as a complete binary tree whose leaves are also interconnected to form 

a two-dimensional orthogonal mesh. Since the present paper considers only the 

behavior ~f "pure" tree machines, however, the mesh connections will not be of 

concern here. In addition to tree-structured communication, the I/O switches may 

be dynamically configured in such a way as to support communication between 

any pair of nodes that would be adjacent in an inorder enumeration of the actIve 

memory tree; this is used in certain tasks requiring a linear array of processors. 

The SPS is based on a bank of "intelligent" disk drives, which are connected to 



Figure 1: Organization of the General NON-VON Machine 
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all SPE'S at a particular, fixed level within the PPS tree, providing a high­

bandwidth path for parallel data transfers between the PPS and the SPS. 

Associated with each disk head is a small amount of logic capable of dynamically 

examining and performing certain simple computations (hash coding, for example) 

on the data passing beneath it. Only the parallel I/O capabilities of the SPS/PPS 

interface, however, will be relevant to the concerns of this paper. 

NON-VON 1 and NON-VON 3, the first two members of the NON-VON famtly, 

include a single special control processor (CP) at the root of the tree. The CP is 

capable of broadcasting instructions to be executed sim ultaneously by all enabled 

PE's. In contrast with the general architecture, NON-VON 1 and NON-VON 3 

thus function for most part as S1110 machines, with all SPE's executmg 

instructions "in lockstep". Algorithms that use this mode of execution are referred 

to as S11ID algorithms. NON-VON 3 is expected to execute about four million 

instructions per second [181· This number is used throughout the paper to 

compute the time required to execute the developed algorithms. 

The first member of the NON-VON family, NON-VON 1, is operational. 

Constructed using chips containing only a single SPE, the NON-VON 1 prototype 

was assembled primarily to evaluate certain electrical, timing, and layout area 

charactenstics. NON-VON 3 [18] is based on modified chips containmg multiple 

8-bit SPE's. The modified chip has less area per SPE, and the instruction set has 

been m'ade more powerful by generalizing register-to-register data transfers and 

adding more anthmetic processing power. Algorithms described in this paper are 

based on the NON-VON 3 architecture and instruction set. 

2.1 Inter-Processor Communication 

Inter-PE communication in NON-VON IS supported by the I/O switch, a matnx of 

pass transistors that routes uata between the two internal buses of the SPE and 

its I/O ports. The NON-VON I/O switch supports three modes of 

com m unication: 

1. Global bus communication, supporting both broadcast by the CP to all 
SPE's in the PPS, as required for SIMD execution, and data transfers 
from a single selected SPE to the CP. No concurrency is achieved when 



data is transferred from one SPE to another through the CP USlllg the 
global communication instructions. 

2. Tree communication, supporting data transfers among SPE's that are 
physically adjacent within the PPS tree. Instructions support data 
transfers to the Parent (P), Left Child (LC), and Right Chlld (RC) SPE's. 
Full concurrency is achieved in this mode, since all nodes can 
communicate with their physical tree neighbors in parallel. 

3. Linear communication, in which the whole tree is reconfigured as a linear 
array of SPE's. This mode of communication supports data transfers to 
the Left Neighbor (LN) or Right Neighbor (RN) SPE's in the linear array. 
Linear communication is useful for applications that require a predefined 
total ordenng of data. 
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Special modes of communication are employed in the execution of two NON-VON 

instructions. The RESOLVE instruction is used to disable all but a single SPE 

chosen from among a specified set of SPE's. This is an example of a hardware 

multiple match resolution scheme, in the terminology of the literature of 

associatlve processors. Upon executmg a RESOLVE instruction, the CP is able to 

determine whether the operation resulted in any SPE being enabled. The 

REPORT instruction is used to transfer data from the single chosen SPE to the 

CP using global bus comm unicatlOn. 

The origInal ~ON-VON archItecture, which was not intended for computer VISIon 

applicatIOns, dIffered from other proposed highly parallel hierarchical Image 

understanding archItectures (for example, [191) in that it did not employ any extra 

physical hnks to perform mesh neighbor commulllcation. The "pure tree" topology 

of the ongmal NON-VON machme was assocIated with both advantages and 

disadvantages. From a performance perspectIve, the absence of mesh connectIOns 

slowed many local operations In which the output value at an image point depends 

on its own image value and that of neighbonng points. 

From the viewpoint of implementation, however, the strictly tree-structured 

topology had certain advantages, permitting the use of a processor embeddIng 

scheme that had a fixed chip pinout, independent of the number of embedded 

SPE's (unlike those involving mesh connections, in which the number of reqUired 

pins grows as the square root of the number of embedded SPE's). This made It 
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possible to increase the size of the tree with decreasing device dimensions by 

simply embedding more SPE's on each chip; thus, the machine size could be 

increased by simply removing the old SPE chips and inserting the new ones. 

Algonthms for anum ber of computer vision tasks, with performance comparisons 

assuming the presence and absence of mesh connections, are outlined in [10]. In 

this paper, we restrict our attention to the strictly tree-structured topology 

implemented in the original NON-VON 3 machine design, in the interest of 

clarifying the strengths and limitations of "pure" tree machines. \Ve note that 

NON-VON's other special hardware features have proven useful in overcoming that 

residue of communication bottlenecks in "pure" tree machines that appear to resist 

software amelioratIOn. 

2.2 A Descriptive High-Level Language 

To present the NON-VON algorithms presented in this paper, we use a PASCAlr 

based parallel language, referred to as N-P AS CAL. It is a dialect of NY­

PASCAL, which was designed for use on SIMD architectures [1]. \Ve will now 

briefly describe some features of N-P AS CAL that are relevant to the algonthms III 

this paper One new data type and two extra constructs distlllguish It from 

standard PASCAL. In addition, bullt-lll functions allow the program mer to 

exphcltly make use of the NON-VON tree communication instructions. 

The new data type vector ~'ariable IS used to express parallelism at the level of 

the individual data element. Vector variables refer to a set of vanables, one 

element of which is found in each SPE, which is addressed associatively; they wlll 

be llldicated by upper-case letters in the N-P AS CAL procedures that follow 

Standard PASCAL scalar variables reside in the CP and are sequentially 

addressed; they will be indicated by Italics. Small bold letters will be used to 

refer to the reserved keywords of the language. 

There are two types of statements in N-P ASCAL: sequential and parallel The 

sequential statements are those of standard PASCAL, while the parallel statements 

are those that operate on vector variables. The assignment statement therefore 

can be either sequential or parallel. The parallel assignment statement is executed 

on vector variables, concurrently in all active SPE's in the machine. 
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The \VHERE statement IS a form of parallel conditional statement that operates 

only on vector variables. The WHERE statement has the following syntax: 

WHERE <conditional expression> 
DO <statement> 

[ ELSEVv1iERE <statement> J ; 

It is used to first select only those SPE's with vector variables that satisfy the 

boolean expression. The statement following the DO is then executed in only 

those SPE's. If the optional ELSE\At1IERE clause is included, the statement 

following the ELSEWHERE keyword is executed in the subset of the SPE's that 

failed to satisfy the original conditional expression. 

Built-in functIOns based on the NON-VON instruction set are employed to 

implement operations that use the tree communication modes of the machine. 

Function names that start with 'N ' correspond to NON-VON machine 

in~tructions, and their parameters correspond to the arguments of these 

instructions. Names have been mnemonically chosen to suggest their semantics; 

thus, N RESOLVE selects a single PE and N REPORT8 IS the subsequent 8-bit 

Wide transfer of data from the selected PE to the control processor. 

3 The Hough Transform 
The Hough transform method is used frequently in image understanding tasks to 

detect the shape of object boundaries described by parametric curves This 

method is based on the mathematical duality between points on a curve and the 

parameters of that curve. Since we will descrIbe two differing implementatIOns of 

the method, we qUickly review it here in its simplest form. The methods and the 

analYSIS WIll be based on this simple form, also, although the properties of the 

implementations are easily extended to more complex versions of the transform 

In his initial work, Hough [8] descrIbed a. method for detecting straight lines in an 

Image USing the slope-intercept parameterization of the line. According to this 

parameterizatIOn, the line equation is expressed as: 

(1) 
y = mx + c 
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Suppose that we have a set of image points (x y) (x) th t h l' I' ..., n'Yn a ave a 
likelihood of being on linear boundaries. In this paper, we refer to these points as 

boundary points. The Hough transform method organizes the boundary points into 

a set of straight lines as follows. 

Consider a boundary point (xj,Yj) 10 the image plane. The parameters of all lines 

passmg through this point must satisfy the equation: 

Yj = mXj + C 

This equation corresponds to a straight line in the m-c space (the parameter 

space). Thus, the set of boundary points in the image plane corresponds to a set 

of lines in the m-c plane. If two bounda.ry points are on a line AB in the image 

plane with parameters m1 and cI ' then the two lines corresponding to these two 

points in the m-c plane mtersect at the point (ml,cJ In fact, all boundary points 

in the image plane on the same line AB map to lines in the m-c plane that 

intersect at the point (m1,cJ Thus, the problem of finding the set of lines in the 

image plane is reduced to that of finding common points of intersection of lines in 

the parameter space. 

!\1uch is known about this transform. A better parameterization of a straight lme 

IS suggested by Duda [41. in which the parameters 8 and p are used, where 8 IS 

the angle of the line normal and p IS the algebraic distance from the origin, the 

advantage of this parameterization is that the values of 8 and p are bounded 

The Hough transform can be extended to detect other curves of analytical 

parameters [ll\, or to detect general curve shapes using edge orientation at the 

image pOInts and a reference pOInt [2]. A memory-efficient implementation of the 

Hough transform on sequentIal machmes IS deSCrIbed in [31 A parallel algOrIthm 

based on the Hough transform for detectmg a general curve with speCIfIc 

orientation has been developed by Merlin et al [141. Since we are prImarIly 

interested in exploring the efficiency of NON-VON-like machines on thiS method, 

we wIll'flOt need to attempt Its more refined forms. 

The implementation of the Hough transform for detecting straight lines on a 

sequential machine involves a quantization of the parameter plane into a quadruled 

gnd. The grid size is determined by the acceptable errors 10 the parameter values, 
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and the quantization is confined to a specific regIOn of the parameter plane 

determined by the range of parameter values. A two-dimensional array (the 

accumulator array) is then used to represent the parameter plane gnd, where each 

array entry corresponds to a grid cell. For each boundary point, the algorithm on 

a sequential machine increments the counts in all accumulator array entries that 

correspond to grid cells along the straight line in the parameter plane. After this 

step, grid cells corresponding to the accumulator array entries where the count 

exceeds a certain threshold value are selected as the set of parameters for the 

image straight lines being sought. 

The process of incrementing accumulator array counts can be thought of as 

<cvoting" by the boundary points for the parameter values of possible curves 

passing through these points. The time required to execute this algorithm on a 

sequential machine is proportional to the number m0 of boundary points times the 

number of votes v of each point, plus the cost of scanning the grid of size 8 to 

select the maximum: (O(s+mv)). Memory space required is proportional to the 

size of the grid. 

In what follows, we describe and contrast the efficiencies of two algorithms to 

implement the Hough transform on NON-VON The first one is a direct parallel 

implementatIOn of the standard sequential algorithm The disadvantages of thIS 

approach are analyzed, and we descnbe a second approach that alleVIates these 

problems. We assume that the boundary points have been detected by some other 

procedures and that the SPE's which are holding them, one boundary POInt per 

SPE, are marked using a speCIal flag. AgaIn, we assume the simplest case In 

order to hIghlight the machine-dependent aspects of the problem. the curves beIng 

sought are straight lines, whose equatIons are expressed using the slope and 

intercept parameters. 

3.1 The Hough Transform Algorithm - A Direct Approach 

First, each NON-VON SPE IS associated with an accumulator grid cell In the 

parameter space in the follOWing manner. The NON-VON tree SPEs are uniquely 

enumerated using the inorder enumeration descnbed in [121. The number asSIgned 

to each SPE is stored in the vector integer variable ADDR. If the parameter 
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space is m by c, then the address of the grid cell held by each SPE is the pair 

(\1, C), where M is the remainder and C the integer quotient obtained when 

ADDR IS divided by m. The N-PASCAL procedure to perform this 

straightforward association is described in [10]' and executes in time proportIOnal 

to the tree height. In effect, each grid cell is superimposed on the tree structure 

by decoding its position in the linear ordering of the tree nodes. 

A vector integer variable COUNT is initialized to zero in all SPE's before starting 

the algorithm. The coordinates of boundary points in the image (still stored m 

the SPE's) are then reported to the CP one point at a time using the RESOLVE 

instruction. The reported point is then broadcast to all SPE's, which increment 

their vector variable COUNT by one if it satisfies the parameter space curve 

equation for their cell. Thus, image boundary points are retrieved sequentially 

although accumulator grid points are updated in parallel (albeit slowly) for each 

point. All boundary points have been reported when the vector variable HT is 

universally false. In the selection phase, each SPE whose COUNT variable 

exceeds a threshold value is marked, and the value of the grid cell associated with 

it is reported to the CP using the RESOLVE and REPORT instructions. Final 

selectIOn of a maximum is made in the CP. The N-PASCAL algorithm that 

descnbes the procedure follows 

Procedure bougbl(thr: integer); 
var 

x, y, m, c: integer; 
vector var 

COUNT. X, Y: integer; 
P A.R~1 boolean; 

begin 
r 1 Initialize. * / 

COUNT := 0; 
PARM= raise; 

/* 2. Enable all SPE's whose boundary points have not yet been reported. 
Report the coordinates of a single boundary point using the RESOLVE instruction 
and mark it as reported. Broadcast the point Increment COUNT in all SPE's 
in which point satisfies the equation. Repeat Step 2 until all boundary pomts 
have been reported. N Al is the special flag invoked by the RESOLVE 
instruction. * / 

N Al:= HT; 



while N_RESOLVE(N_AI) = 1 do begin 
where N _ Al = true do begin 

HT := raise; 
N_REPORT8(XADO, x); 
N_REPORT8(YADO, y); 

end; 
X:= x; 
Y:= y; 
ir Y = (M * X + C) then 

COUNT := COUNT + 1; 
N Al = HT; 

end; 
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/* 3. Mark all SPE's in which the count exceeds the threshold value and report 
them. * / 

where COUNT> thr do PARM := true; 
N_AI := PARM; 
while N_RESOLVE(N_AI) <> 0 do begin 

end; 

where N _ Al = true do begin 
PARM := raise; 
N REPORT8(M, m), 
N REPORT8(C, c); 

end; 
N AI= PARM; 

end; 

, I 

Step 2 is executed a number of times equal to the number of boundary points b) 

Step 3 is executed a number of times equal to the number of curves found, whIch 

is usually less than b. Thus, the algorithm takes time proportional to the number 

of image boundary points (O(b)). The NON-VON 3 code for this procedure [10] 

executes approximately 500 instructions to associate parameter values with PE's, 

assuming that all possible values fit within the NON-VON tree. Step 2 executes 

about 70 instructions, of which approximately 40 instructions implemer. t the 

evaluation of the straight line equation. Step 3 executes about 12 NON-VON 3 

instructions for each set of parameter values found. Thus, if the image contains 

1000 boundary points, the execution time of the algorithm is approxImately 18 

msec. 

The number of SPE's required by this approach is equal to the number of gnd 

---- - -
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points. If the grid SIze IS larger than the machine SIze by a factor of k, the 

parameter space is divided into k parts, and the above procedure IS executed for 

each of these parts in turn. The time required to execute the algorithm in this 

case IS O(kb), independently of how the k-fold division is mUltiplexed into the 

existing time and space. 

A major disadvantage of this approach is that it requires a NON-VON machine of 

size comparable to the grid size, despite the fact that many of the SPE's never 

increment their COUNT. Note also that each time a boundary point is broadcast, 

the curve equation has to be evaluated in each SPE. (It does, however, exploit 

the associative memory of the machine in searching both for boundary points and 

for curves above threshold.) Our second approach alleviates these problems: it 

uses a number of SPE's equal to the maximum number of total votes, and the 

curve equation IS evaluated only once. 

3.2 The Hough Transrorm Algorithm - A MSIMD Approach 

Here, the NON-VON tree is configured as if it were an independent set of 

subtrees, with each boundary point deciding to cast its vote only in its own 

subtree. Votes are sequenced by broadcasting an enumeration of a cross-section of 

the accum ulator array; in thIS problem, they are sequenced by broadcastmg all 

possible quantized values of the parameter m in order. However, for each value 

(of m), the voting process can be performed concurrently in all the subtrees, 

requiring little inter-tree communication. (In analogy to uniprocessor data 

structures, instead of the entIre tree representing the total array of grId points of 

size m by c, many of which are empty, each subtree now represents a distrIbuted 

array of voted-for grid points of size b by m, most of which are non-empty.) 

Therefore, in time proportional to the quantizatIon of a cross-s~ction of the grid, 

all votes are cast and stored throughout the tree. Because of the way the votes 

are cast in this second approach, we refer to this algorithm as a multiple-SIMD 

(MSIMD) algorithm. The problem of finding the parameter values that exceed the 

threshold value is now eqUIvalent to that of finding the local peaks In a 

distributed histogram; here the histogram is two-dimensional, m by c. 

The size of these subtrees is determined by the maximum number of votes, 
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max _ num _ votes, cast by any boundary point. Boundary pomts are stored m 

the roots of these evenly distributed subtrees. This storing can be performed by 

several methods; the simplest (but not the most efficient) one is to report the 

boundary points to the CP one by one using the RESOLVE instruction, and then 

to broadcast them to be stored in the roots of the subtrees. This has complexity 

O(b) as before, although the constant is much smaller. A far better way is a type 

of parallel "elevation" method in which image boundary points in each subtree are 

reported to the appropriate level, with only exce5S boundary points in any subtree 

redistnbuted in serial fashion over the remaining free subtrees. Multiplexing may 

occur, but is unlikely given that the number of boundary points tends to be a 

small fraction of the image. 

The SPE's in these subtrees are enumerated so that each is assigned a unique 

address (stored in the integer vector variable ADDRESS) relative to the subtree, in 

the range [0, max _ num _ votesl. This enumeration procedure is similar to the 

address enumeration procedure described in the previous section, except that the 

number assigned to each SPE is the computed address modulo the subtree size; 

this can be done by simple shifting. Again, the time required by this procedure is 

proportIOnal to the height of the subtree. In effect, the tree has become a dense 

two-dimensional accumulator array, addressed by boundary point number and 

sequential vote number 

'We now describe the algorithm for storing the votes in the NON-VON tree. The 

vector integer variables X and Yare used to store the value of the boundary 

POInts, while the vector variables M and C are used to store the parameter values 

voted for by the boundary points. A scalar variable 9 _ m stores the value of 

parameter M to be broadcast, and the scalar constant delta m is the increment 

used to change the value of 9 _ m. The scalar constant h subtree is the height 

of the subtree. The N-PASCAL voting procedure follows: 

Proced ure hough2; 
var 

i, j, 9 m: integer; 
vector var 

M, C, X, Y: Integer; 
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begin 

1* 1. InItialize global variables. Enable all SPE's that are not the root of some 
voting subtree. Propagate the X and Y values of the root of the subtree 
throughout the subtree. * / 

i= 0; 

9 m.= 0, 
where SUBTREE_ROOT = raise do begin 

N_RECV8(P, XADD, X); N_RECV8(P, YADD, Y); 
ror j= 1 to h 8ubtree-l do begin 

end; 

N RECV8(P, X, X); 
N_RECV8(P, Y, Y); 

end; 

1* 2. Step through the subtree addresses, storing in them the increments of 
M. Now compute all corresponding C's from the curve equation. * / 

while i < max num votes do begin 
where ADDRESS = i do M - 9 m; 
i := i + 1; 
9 m: = 9 m + delta 

end; 
C .- Y - M * X; 

end, 

m· , 

Step 1 is executed a number of times equal to the subtree height, log v, where v 

is equal to the number of votes cast by each point. Step 2 is executed exactly v 

times Thus, the procedure to store the votes in the subtree takes time of 0( v) 

Note that the curve equation is evaluated only once. 

In general, the evaluation of the "dependent" variables (here, c), depends on the 

parameter space curve, which may produce multiple values for the dependent 

parameters. (For example, the parameter space curve may be a circle, With two 

values of its counterpart of c, one each for the top and bottom arcs) 

Occasionally the parameter space curve is not separable, as it is in the case of 

transcendental equations. It is no trouble to compute and store multiple values; In 

general, this adds only a constant factor. In the second case, however, It may be 

necessary to replace direct computation in the SPE's with the broadcast of a table 

of valid pairs from the CP; each SPE passively waits for a match on Its first 

parameter, and then stores the second. This process takes time proportIOnal to 

the length of the table, but it too is executed only once. 
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The NON-VON 3 code for the voting procedure executes approximately 8v + 25 

log v + 100 NON-VON 3 Instructions. For v equal to 32, the time required to 

cast the votes in the tree is thus about 0 14 msec. If the number of required 

votes exceeds the number of SPE's in the NON-VON tree, each SPE can be used 

to store more than one vote. If each SPE stores k values, the time required to 

execute the above procedure is O(kv). 

\Ve now describe the manner in which those parameter values whose votes exceed 

the threshold value are found. These values occur at the local peaks of the two 

dimensional histogram of the votes for M and C. \Ve assume in the follOWing 

diSCUSSion that there are few such local peaks, which is usually realistic. Figure 2 

shows such a histogram. 

A direct approach to the identification of these local peaks would require the 

quantization of the two dimensional histogram space into grid cells, perhaps in a 

coarser manner than by the original quantization. Then, for each new grid cell, 

all SPE's with ordered pairs (here, of (m, e)) falling within it are marked and 

counted. The time required to execute this simple procedure is O(sh), where 8 IS 

the grid size and h is the r--;ON-VON tree height, with the latter coming from the 

need to associatively add counts from subtrees into the root. Counts that exceed 

a threshold value are the parameter values being sought. However, a large 

percentage of the time in this procedure is spent counting votes in sparsely 

populated cells 

A more effective approach attempts to aVOId such areas. It first computes a one­

dimenSional histogram along one parameter (e, as shown In Figure 2.) A 

plpelined-SThID algOrithm to compute the one-dimensional histogram IS described In 

1101. Only those votes are marked whose parameter IS found among the small 

num ber of local peaks expected to appear In the one-dimensional histogram A 

second one-dimensional histogram of the second parameter (m) is then computed 

for these marked votes only Values for which there eXist local peaks in the two 

one-dimensional histograms mark regions of activity In the two-dimensional 

histogram (If the converse is expected to fail, or if no such peaks are found, the 

prior two-dimensional method must be used.) 
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This approach executes in time of O{bm + be + h), where bm and be are the 

n urn ber of bins in the two one-dimensional histograms The com putatlOn of a 32-

bin one-dImensional histogram requires about 0.5 msec; peak-finding thus takes 

about one msec. Total executIOn time for the MSTh1D approach is thus about 

1.14 msec, which is considerably less than the time required by the direct Hough 

approach (18 msec for 1000 boundary points). 

The algorithms descnbed here can be extended uSing slight modificatIOns to deal 

with parameter spaces of higher dimensions. For example, in the direct approach, 

if we have an n-dimensional parameter space, then each SPE will correspond to a 

n-dimensional grid cell In this space. In the MSIMD approach, the subtree size 

will correspond to that of (n-l)-dimensional area of the parameter space, and each 

SPE Will store parameter values that represent cells in this sub-parameter space 

3.3 Simulation Results 

The two algonthms descnbed In this section have been tested using the functional 

siro ulator. Boundary points representing straight lines in a 32 x 32 binary image, 

as shown In Figure 3, have been input to the simulator. The parameter space 

grid is a 32 x 64 grid, with m taking the values -15 to 16 and c assuming the 

values -10 to 53. The two-dimensional accumulator array of these lines are shown 

in Figure 4-a. 

In the second approach, 16 votes are cast in each subtree with m varying from -7 

to 8 Figure 4- b depicts the two-dimensional histogram of the votes stored in the 

tree. The second approach has computed the same set of straight hnes found by 

the first approach. 

3.4 Discussion 

The MSIMD approach illustrates some of the advantages of duphcating data 

throughout the tree in order to avoid communication costs within it No 

additional time cost is incurred in broadcasting a value (here, one of the quanta of 

m) throughout the entire tree over that of broadcasting it to one PE. The 

presence of many local copies allows the true parallel computation of "dependent" 

variables, now themselves distnbuted. Thus, as long as storage remains adequate 
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and an efficient retrieval method can be found, input redundancy can alleviate the 

need to precisely and uniquely distribute data (here, ordered pairs) It IS this last 

step which becomes, in the worst case, purely sequential in a tree-based machme-­

as well as some other architectures). 

Profligate duplIcation IS of no help, however, If data must be preCisely and 

unIquely_ retrIeved (that is, sorted). It is useful only in those problems where 

intermediate results can be suppressed because the final result relIes on an 

associative operation, such as addition of partial results or the calculatIOn of a 

global maximum. By delaymg or avoiding intermediate data transfer, tree-based 

communication IS replaced by a final senes of RESOLVE-like requests for only the 

most pertInent Information. ~10st data either remains in the tree (here, ordered 

pairs that have sparse votes), or is only logically removed by arithmetiC 

combInatIOn (here, the accumulated one-dimenSIOnal histogram). Agam, the 

technique applies to other architectures as well 

It appears that more than a few middle-level VISion tasks can be approached m 

such a duplIcate-and-delay manner. A qualItatively different one follows. 

4 Moving Light Displays 

\Ve now deSCrIbe a ~00I-VON algOrIthm that Implements the correspondence step 

m methods that interpret the motIOn of JOInted objects from binary moving light 

displays (\110) An ~fLO system uses only informatIOn about the pOSitIOn and 

velOCity of ItS pOInts for the perception of motion, and a sequence of such binary 

Images (frames) are reqUired for the interpretatIOn of the object motion The 

objects m these frames are typically represented by a relatively small number of 

pOInts (typIcally less than one hundred). Rashid [161 has implemented a system, 

which he calls Lights, that interprets Simple tvILO's. The input to this system IS a 

set of coordinate pairs corresponding to the POInts of the ~fLD. 

The correspondence step is concerned With mapping the points of one frame to the 

next. The only informatIOn known IS the pOSition of frame points depicting parts 

m relative motIOn and the average velOCity of these points based on prevIOus 

frame Information. A fundamental assumption is that the velocity of MLO POints 



vanes "smoothly" This assumption can be used to predIct the posItIOn of the 

MLD points In the r.ext frame. The tracking algorithm computes the 

correspondence that minimizes the sum of dIfferences between the expected positIon 

of each point and the actual position of the corresponding POInt in the next frame 

The XO:\-VO~ algonthm starts by computing an approximate solutIOn based on 

the heunstic mentioned earlier Assume that the first frame contains m POInts and 

the next frame contains n points; note that m and n may differ, SInce different 

points may be occluded In the two frames. Since we wish only to hIghhght the 

machine-dependent aspects of the computation, we assume that the number of 

points in both frames IS equal. The imtial approximation IS performed by 

ca.lculating for each point In the ftrst frame that POInt closest to its predicted 

position, among those points that have not been selected yet In the second frame 

This approach to compute the InItial solutIon is basically a greedy algonthm, 

where the best local match among the ava!lable ones is selected. As In all greedy 

algonthms, the order in which points In the first frame are ordered IS critIcal 

We would hke pOInts In the ftrst frame that are near each other in the image to 

also be ne3.r to each other In the ordered set This heuristic ordering is Important 

to our algOrIthm, but It should be noted that In general a perfect linear orderIng 

of a two-dImensIOnal graph IS not pOSSIble There are several ways to strengthen 

thIS starting step, perhaps the easiest IS by USIng redundant first-frame orderIngs 

That IS, If there are two POInts that are suffiCiently near each other In the two­

dimensional frame but are far from each other In the ordering, then an additional 

startIng solutIOn IS computed by altering shghtly the method for obtaIning the 

first-frame orderIng (which perhaps was Itself a greedy algOrithm) so that the 

stranded nearby neighbor IS selected more Immediately. ThiS alteration can be 

done In many ways, including purely stochastiC ones; like other heuristIC algOrithms 

ItS effectiveness is hard to analyze. However, t.here is much redundancy In the 

processing of any given starting correspondence in any case, as the rest of the 

algonthm shows. 

\Ve now apply the following procedure to each computed initial solutIOn, which IS 

stored in the root SPE of the tree as a m-vector of pairs of points. In order to 



concentrate on the SL\ID aspects of the problem, we wtll show its application to 

only one Initial solution. The basic idea of the procedure is to qUickly gen~rate 

from the Initial pairing other possible solutIOns to the correspondence problem, and 

to store these additIOnal candidate solutions as m-vectors of pOint pairs In the leaf 

SPE's Once in the leaves, the goodness of all correspondences can be calculated 

in parallel and the one with minimal distance qUickly found uSing the tree 

connections In O(h) time. 

AdditlOQal candidates solutions are generated by permutmg some of th~ 

assignments of second-frame pOints to other first-frame pomts, but only If the ftrst­

frame pOints Involved in the permutation are near to each other In the image 

Based on the ordenng of first-frame pomts, thiS can be done mechanically by 

restricting the swapping of assignments to be among a lImited contIguous subvector 

of a given m-vector of pairings As an example, we bnefly descnbe now how 

pOSSIble solutIOns containing all permutations of a frame With three elements can 

be computed The mitial solutIOn m the root SPE is passed to its two children 

The left child keeps the parent's solution, whde the nght chtld performs a 

permutatIOn on thiS solutIOn by swappmg the first two assignments, as shown In 

Figure .=j 

Agam the solution IS passed to the n~xt level SPE's The nght chtldren swap the 

second and thIrd assignments in their solutIOn \Vhen the solution is passed to the 

follOWing level, nght children swap the first and third assignments At thIS pOint 

solutions contaIning all pOSSible permutatIOns of th~ first three elements are found 

at the fourth level down the tree Note that at the fourth level we have two 

SolutIons that are duplicated. ThiS will not affect the accuracy of the procedure, 

but It IS meffIclent In general, thiS process would contInue untIl the leaf level IS 

re.lched At thIS pomt we would have O(2h) pOSSible solutIOns stored In the leaf 

SPE's of the NON-VON tree, some of them redundant, depending on the 

sophistication of the control algonthm. Much work can be done on the finding of 

optimal strategies for the chOice and order of the perm utatlons 

\Ve argue that the selected solution using thiS algorithm IS a very satisfactory 

match. The rationale for thiS IS two-fold. First, the initial solutIOn IS usually a 
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good approximation of the desired solutlon, based on the heunstlc as.sumptlOn used 

in computing it. Second, as much as possible the permutations on the Initial 

solution are performed between points that are near to each other In the Image 

frame That in turn insures that If there is a conflict resulting from two POInts 

in the first frame selecting the same correspondence in the second frame, then 

alternatives Including both selectIOns will be among the set of pOSSible solutIOns 

The l\"-PASCAL procedure descnbing this algorithm for frames contaIning at most 

16 POInts follows. It begInS with some ancillary routines whose purpose IS 

straightforward 

Procedure mId, 
var 

i, j, k, delta, disl sqr: integer; 
801, x, y array [1.. 16] of integer, 
x2, y2, xp, yp array[1..16] of integer; 

vector var 
Xl, Y1, lJ, V, X~, Y~: integer; 
~lJ~1, DIST, TE~IP integer; 
XP , YP, LEVEL_:\O integer, 
S array!l 161 of integer, 
RIGHTC, ROOT, Fl, F~, N boolean, 

/* The followmg functIOn fmds the minimum value of a vector vanable ... / 

runction min leaf(var ~1I~ integer) integer; 
val' 

j integer, 
vector -val' 
TE~IP integer, 

begin 
ror j = ~ to no let'eis do begin 

~ REC\"8(LC, ~1I~, MI~), 

N RECV8(RC, MI:"-i, TE~IP), 

irTE~1P < t-.UN then ~n~ TE~IP. 
end, 

;-..; RECV8(LC, MIN, ~HN), 
mIn leaf - N GG8; 

end 

Procedure swap so~i,) integer), 
vector val' 
TE~IP integer, 



begin 
where RIGHTC = true do begin 

TE}'iP= S[ll; 

end: 

S[Jl= Sri]; S[i]·= TE~iP; 
end; 

begin 

'o!8 

/* 1. The first frame points (Xl, YI) and their corresponding velOCity 
components (U, V) are stored m leaf SPE's whose Fl IS set to 1, and analogously 
for the second frame pomts (X2, Y2). ~1..;1v1 holds the ordinal posltlOn of the 
point in the frame. The time lapse between two frames IS stored m the vanable 
delta. Compute the predicted solution (XP, YP) usmg delta '" / 

XP .= 0; 
)-p = 0; 
mark _ rc(RIGHTC), 
mark _ root(ROOT), 
set level number(LEVEL ~O); 

where FI = true do begin 
XP = X + U Z delta, 
YP = Y + V .. delta, 

end, 

/* Compute the Initial solutIOn This IS performed by reportmg the pomt m 
the first frame, and for each reported pOint computmg the pomt nearest to 
It In the second frame .. / 

)I = F2, 
i = I, 
while (i <= m) do 

begin 
where (:\L~f = i) and (FI = true) 

do begin 
)I REPORT8(XP, xp[i]), 
~-REPORT8(YP, yp[iJ), 

end, 
DIST = 0, 
w_here ~ = true do 

DIST = (xp[iJ - X2) .. (xp[iJ - X2) 
+ (yp[iJ - Y2) ,. (yp[iJ - Y2), 

disl sqr = mm leaf(DIST), 
where (~ = true) and (DIST = disl sqr) 

do begin 



N = raise; 
N _ REPORT8(NU;"!, so/[il); 

end, 
i .= i + 1; 

end; 

/* 2. Store the mitial correspondence m the root SPE. * / 

where ROOT = true do 
ror j = 1 to m do S[l1 = so/[;l, 
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/* 3. Perform the permutations on the lnItlal solution and stor~ these posslbl~ 
solutlOns in the leaf SPE's. ,. / 

j= 2, i = 2; 
while j <= no levels do begin 

where LEVEL _ NO = j do begin 
ror k = 0 to m do 

N _ RECV8(P, S[kJ, S[kJ), 
swap sol(i, (i-I)), 

end, 
j = j + 1. 
where LEVEL ~O = j do begin 

(or k = 0 to m do 
~ RECV8(P, S[kJ, S[kJ); 

swap ~ol(i, (i+l)), 
end, 

j = j + 1, 
where LEVEL ~O = j do begin 

(or k = 0 to m do 
N RECV8(P, S[kJ, S[kj), 

swap sol((i-l), (i+l)), 
end, 

j = j + 1, i = i + 2; 
end, 

/* 4 Compute the sum of dIfferences for each posslble solutlOn "/ 

DIST= 0; 
(or j= 1 to m do begin 

(or k . = 1 to n do 
where S[;1 = k do begin 

XP I2[k] - Ip[;1. 
YP .= y2[k] - yp[;1. 

end, 
DIST = DIST + XP*XP + YP*"r:"P; 

end, 
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/* .5 Find the value of the minimum sum of differences and recover the solutlOn 
*j 

disl _ sqr := min leaf(DIST); 
where DIST = dist _ sqr do 

ror j= 0 to m do 
~ REPORT8(S[Jl, sol[;l): 

end; 

Steps 1 through 4 of the algorithm execute in time proportional to the product of 

the number of points In the first frame and the tree height (O(mh)) On the 

other hand, Step .5 of the algorithm takes time proportional to the product of the 

number of points In the two frames (O(mn)) Actually, if the number of frame 

points IS comparable to the tree height, then the initial solution can be computed 

in the CPo This has the advantage of being able to overlap the computatIOn of 

the initial solutIOn for the following frame with the computation of the solutIOn for 

the current frame. Thus, the algorithm executes in O(max(h,n)m) time. 

4.1 Simulation Results 

The algorithm has been functIOnally simulated with frames having up to SIX POInts 

and a tree of 10 levels, and has been found to produce optimal solutions The 

first frame POInts have been used Instead of their predicted pOSItions They have 

been ordered by starting at an arbitrary POInt and finding the nearest pOInt to It 

This greedy algorithm IS continued until all POInts have been ordered. 

The moving lIght display algOrithm has been coded In NON-VON 3 machIne 

instructIOns to obtain an accurate instructIOn count. Step 3 executes ~5 

instructIOns plus six Instructions per frame POInt for each level In the tree, while 

computIng the mInimum solutIOn in Step S executes 32 instructIOns per tree level 

For a tree of 15 levels and frames contaInIng 10 pOInts, the algOrithm computes 

the correspondence between two frames In IS msec, Including computatIOn of the 

initial solution. 
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4.2 Discussion 

This algorithm illustrates some of the same characterIstics of the duphcate-and­

delay algorithm shown in the t-.fSI1ID Hough. Here what IS duplIcated IS 

essentially control mformation. The downward flow of candidate match 

information is conflated with a relatively inexpensive way of generating additional, 

though redundant, candidate matches. The one actual tree-wide computatlOn IS 

that for the goodness-of-fit match measure, roughly analogous to the computation 

of whether or not to vote in the Hough algorithm. Most comm UllicatlOn IS 

avoided altogether. By delaying the reporting of the distrIbuted results until they 

can be compared with their Siblings, the data can be easily RESOLVED Smce 

what IS reqUired IS only a maXimum, it is mostly log!cal data that IS transferred 

A Similar algOrIthm IS probably possible for other fine-grained architectures, 

exhibiting Similar functlOnal characterIstics. 

5 Conel usion 

In thiS research, we have demonstrated the feasiblhty of using fine-grained tree­

structured SlliID machines for high-speed executlOn of two important intermedlate­

level Image understandIng tasks These tasks--a Hough transform, and the 

correspondence portion of a moving light display algorithm--are ones for which 

such architectures are generally assumed not to have the advantages they possess 

for the more regular and communication-free algorithms of low-level signal 

processing Nevertheless, these algOrIthms do manage to exploit the tree 

orgallization of the machine, and to reduce the effects of through-the-root 

commUllicatlon bottleneck assOCiated With tree architectures. 

The two prInCipal novelties of the algonthms can be summarIzed as the use of 

duphcatlOn of data (in the Hough) or of control (In the MLD), and the Judicious 

aVOidance or delay of the commUlllcatlon of Intermediate results (In both). As 

ever, comm unication up and down the tree in these algorithms is rapid, but 

comm Ulllcation across IS slow, these two strategies both help avoid lateral 

rr:essages Since the tree must be loaded anyway, the first strategy of redundancy 

of problem subdivision has httle effect on time performance, and in fact enhances 

SThID parallelism. SInce one usually desires only a Simple answer from an 



Intermediate-level vision task, the second strategy can exploit the use of the 

associative properties of the tree to quickly locate the best solution of the many 

redundant ones (as In the ~1LDs), or can exploit the use of the logarithmic 

combInatorial properties of the tree to aggregate dispersed information (as In the 

~1SllvID version of the Hough). 

NO)I-VO~'s performance on these two algorithms has been analyzed, Simulated in 

various ways, and compared with that of other highly parallel image understandIng 

architectures. A. functional simulator, implemented on a V~X 11/750 augmented 

with a Grinnell image processor, has validated all of the algorithms descrIbed In 

this paper A machine InstructIOn-level Simulator has also been used to execute 

some of the image algorithms, and to prOVIde accurate measures of the executIOn 

time of the machine-coded versions of our algorithms. Based on these 

measurements, ~O~-VON's execution time for the two algonthms has been shown 

to be considerably faster than other architectures (For details to substantiate this 

claim, the reader IS referred to [101·) 
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