

3

In order to make possible a detailed performance analysis, algorithms for a number

of vision tasks were developed for a particular massively parallel machine, called

NON-VON. The 53-processor NON-VON 1 prototype, which implements only

some ot the features of the full NON-VON architecture, was developed at

Columbia University, and has been operational since January, 1985 An 8,191-

processor prototype of a more recent version of the machine, called NON-VON 3,

is presently under construction. While the full architecture [171 supports other

mterconnectlOn topologies and execution modes, only its tree-structured

communicatlOn capabilities and its SThID mode of execution are used In the

algorithms described m this paper. The current paper thus provides an evaluatIOn

of the strengths and hmltations of a "pure" fine-grained SIMD tree machme, and

not of the full NON-VON machine, whIch contams additional features that mIght

be expected to offer significant performance enhancements in a number of vIsion

applications.

Several parallel Image understanding algorithms, spanmng different levels within

the process of Image understanding, have been developed and tested using a

functional Simulator, and in some cases, a NON-VON machine instructlOn level

simulator. In this paper, we describe S11ID tree algorithms for two commonly

used and representative tasks drawn from the intermediate levels of computer

vIsion. In particular, algorithms are presented for the Hough transform and for

mOVIng hght display applications. Novel algOrithmic techniques are described that

effectively explOIt the massive parallelism available in fine-grained S11ID tree

machines while avoiding communication bottlenecks.

Both algOrithms have been Simulated using a functional Simulator runmng on a

VA .. X 11/750 augmented with a Grinnell Image processor. Other Image

understanding tasks (not discussed in thiS paper) for which NON-VON algOrithms

have been developed and simulated include image correlation, histogrammmg,

thresholding, connected component labeling, and the computation of the area,

perimeter, center of gravity, eccentncity, and Euler number of connected

components [101. Based on simulation results, NON-VON's performance has been

compared with that of other highly parallel architectures for image analysis

Certain algorithms have been shown to execute faster on NON-VON than on other

highly parallel machines having a similar cost.

cost/performance advantages were seen to derive from
These performance and

1. The effective use of an unusually high degree of parallelism, made possIble
by the machine's very fine granularity.

2. The natural mapping of hierarchical and multi-resolutIon techniques
developed by other researchers onto NON-VON's tree structured topology

3. The extensive use of content-addressable matching and other asSOCIatIVe
processing technIques.

4. The use of the tree to perform algebraically associative operatIons such as
addition in time logarithmic in the number of pixels.

5. The slmphcity and cost-effectiveness with which tree-structured machines
can be Implemented using VLSI technology.

In other cases, certain limitations of SUvID tree machines for computer vIsion

applicatlOns were apparent. These problems fell Into two Lategories:

1. Situations in which multiple instruction stream, multiple data stream
(!\f~ID) techniques would be more effective than SllvID approaches.

I) Situations in which the root of the tree may become a signihcant
com m unlcation bottleneck In the absence of speCial measures.

These advantages and disadvantages are even more apparent In the case of

middle-level vIsion tasks considered in this paper. In the succeeding section, the

NON-VON architecture IS described, along With a Pascal-based parallel

programming language that will be used to express the algorithms presented in thiS

paper. In Section 3 and 4, we introduce the algorithms for implementing the

Hough transform and moving lIght display applications, respectively. Issues related

to the efficiency of both algOrithms are discussed. In the concluding sectlOn, we

attempt to characterize more abstractly the basis for NON-VON's speedup on

these tasks. Since some of the conclusions appear to derive from considerations

Intrinsic to middle-level vision, our conclusions should apply to other architectures

as well.

5

2 The NON-VON Architecture
The name NON-VON is used to describe a family of massively parallel machInes

10tended to provide high performance on anum ber of computational tasks, with

special emphasis on artificial intelligence, database and knowledge base

management, and other symbolic information processing applications The general

architecture 10cludes a massively parallel primary processing subsystem (PPS) based

on custom YLSI circuits, along with a secondary processing subsystem (SPS) based

on a bank of intellIgent disk drives. FIgure 1 depicts the top-level orgaDlzatlOn of

the general NON-VON architecture. However, only some of the sUbsystems

depicted in this Figure are directly relevant to the concerns of this paper 10

particular, we deal only with the "pure" tree subsystem.

The PPS is composed of a very large number (as many as a million, 10 a full­

scale "supercomputer" confIguration) of sImple, area-efficient small processlng

eJements (SPE's), which are implemented using custom VLSI circuits Each SPE

comprises a small local RAM, a modest amount of proceSSlOg logic, and an I/O

switch that permits the mach10e to be dynamically reconfigured to support various

forms cf inter-processor commUDlcatlon The most recently fabricated PPS chIp

contains eIght 8-bit processing elements In order to maXimize circuit Yield, each

SPE was fabrIcated wIth only 32 bytes of local RAM in the current worklOg

prototype, 10 a production versIOn of the machine, however, each SPE would

probably contaIn the maximum amount of local RAM supported by the instruction

set, which is 256 bytes

In the current version of the general NON-VON machine, the SPE's are

confIgured, as a complete binary tree whose leaves are also interconnected to form

a two-dimensional orthogonal mesh. Since the present paper considers only the

behavior ~f "pure" tree machines, however, the mesh connections will not be of

concern here. In addition to tree-structured communication, the I/O switches may

be dynamically configured in such a way as to support communication between

any pair of nodes that would be adjacent in an inorder enumeration of the actIve

memory tree; this is used in certain tasks requiring a linear array of processors.

The SPS is based on a bank of "intelligent" disk drives, which are connected to

Figure 1: Organization of the General NON-VON Machine

LPE Network

Leaf Mesh Connections

A Small Processing Element

o Large Processing Element

o Disk Head and Intelligent Head Unit

To
Host

6

7

all SPE'S at a particular, fixed level within the PPS tree, providing a high­

bandwidth path for parallel data transfers between the PPS and the SPS.

Associated with each disk head is a small amount of logic capable of dynamically

examining and performing certain simple computations (hash coding, for example)

on the data passing beneath it. Only the parallel I/O capabilities of the SPS/PPS

interface, however, will be relevant to the concerns of this paper.

NON-VON 1 and NON-VON 3, the first two members of the NON-VON famtly,

include a single special control processor (CP) at the root of the tree. The CP is

capable of broadcasting instructions to be executed sim ultaneously by all enabled

PE's. In contrast with the general architecture, NON-VON 1 and NON-VON 3

thus function for most part as S1110 machines, with all SPE's executmg

instructions "in lockstep". Algorithms that use this mode of execution are referred

to as S11ID algorithms. NON-VON 3 is expected to execute about four million

instructions per second [181· This number is used throughout the paper to

compute the time required to execute the developed algorithms.

The first member of the NON-VON family, NON-VON 1, is operational.

Constructed using chips containing only a single SPE, the NON-VON 1 prototype

was assembled primarily to evaluate certain electrical, timing, and layout area

charactenstics. NON-VON 3 [18] is based on modified chips containmg multiple

8-bit SPE's. The modified chip has less area per SPE, and the instruction set has

been m'ade more powerful by generalizing register-to-register data transfers and

adding more anthmetic processing power. Algorithms described in this paper are

based on the NON-VON 3 architecture and instruction set.

2.1 Inter-Processor Communication

Inter-PE communication in NON-VON IS supported by the I/O switch, a matnx of

pass transistors that routes uata between the two internal buses of the SPE and

its I/O ports. The NON-VON I/O switch supports three modes of

com m unication:

1. Global bus communication, supporting both broadcast by the CP to all
SPE's in the PPS, as required for SIMD execution, and data transfers
from a single selected SPE to the CP. No concurrency is achieved when

data is transferred from one SPE to another through the CP USlllg the
global communication instructions.

2. Tree communication, supporting data transfers among SPE's that are
physically adjacent within the PPS tree. Instructions support data
transfers to the Parent (P), Left Child (LC), and Right Chlld (RC) SPE's.
Full concurrency is achieved in this mode, since all nodes can
communicate with their physical tree neighbors in parallel.

3. Linear communication, in which the whole tree is reconfigured as a linear
array of SPE's. This mode of communication supports data transfers to
the Left Neighbor (LN) or Right Neighbor (RN) SPE's in the linear array.
Linear communication is useful for applications that require a predefined
total ordenng of data.

8

Special modes of communication are employed in the execution of two NON-VON

instructions. The RESOLVE instruction is used to disable all but a single SPE

chosen from among a specified set of SPE's. This is an example of a hardware

multiple match resolution scheme, in the terminology of the literature of

associatlve processors. Upon executmg a RESOLVE instruction, the CP is able to

determine whether the operation resulted in any SPE being enabled. The

REPORT instruction is used to transfer data from the single chosen SPE to the

CP using global bus comm unicatlOn.

The origInal ~ON-VON archItecture, which was not intended for computer VISIon

applicatIOns, dIffered from other proposed highly parallel hierarchical Image

understanding archItectures (for example, [191) in that it did not employ any extra

physical hnks to perform mesh neighbor commulllcation. The "pure tree" topology

of the ongmal NON-VON machme was assocIated with both advantages and

disadvantages. From a performance perspectIve, the absence of mesh connectIOns

slowed many local operations In which the output value at an image point depends

on its own image value and that of neighbonng points.

From the viewpoint of implementation, however, the strictly tree-structured

topology had certain advantages, permitting the use of a processor embeddIng

scheme that had a fixed chip pinout, independent of the number of embedded

SPE's (unlike those involving mesh connections, in which the number of reqUired

pins grows as the square root of the number of embedded SPE's). This made It

9

possible to increase the size of the tree with decreasing device dimensions by

simply embedding more SPE's on each chip; thus, the machine size could be

increased by simply removing the old SPE chips and inserting the new ones.

Algonthms for anum ber of computer vision tasks, with performance comparisons

assuming the presence and absence of mesh connections, are outlined in [10]. In

this paper, we restrict our attention to the strictly tree-structured topology

implemented in the original NON-VON 3 machine design, in the interest of

clarifying the strengths and limitations of "pure" tree machines. \Ve note that

NON-VON's other special hardware features have proven useful in overcoming that

residue of communication bottlenecks in "pure" tree machines that appear to resist

software amelioratIOn.

2.2 A Descriptive High-Level Language

To present the NON-VON algorithms presented in this paper, we use a PASCAlr

based parallel language, referred to as N-P AS CAL. It is a dialect of NY­

PASCAL, which was designed for use on SIMD architectures [1]. \Ve will now

briefly describe some features of N-P AS CAL that are relevant to the algonthms III

this paper One new data type and two extra constructs distlllguish It from

standard PASCAL. In addition, bullt-lll functions allow the program mer to

exphcltly make use of the NON-VON tree communication instructions.

The new data type vector ~'ariable IS used to express parallelism at the level of

the individual data element. Vector variables refer to a set of vanables, one

element of which is found in each SPE, which is addressed associatively; they wlll

be llldicated by upper-case letters in the N-P AS CAL procedures that follow

Standard PASCAL scalar variables reside in the CP and are sequentially

addressed; they will be indicated by Italics. Small bold letters will be used to

refer to the reserved keywords of the language.

There are two types of statements in N-P ASCAL: sequential and parallel The

sequential statements are those of standard PASCAL, while the parallel statements

are those that operate on vector variables. The assignment statement therefore

can be either sequential or parallel. The parallel assignment statement is executed

on vector variables, concurrently in all active SPE's in the machine.

10

The \VHERE statement IS a form of parallel conditional statement that operates

only on vector variables. The WHERE statement has the following syntax:

WHERE <conditional expression>
DO <statement>

[ELSEVv1iERE <statement> J ;

It is used to first select only those SPE's with vector variables that satisfy the

boolean expression. The statement following the DO is then executed in only

those SPE's. If the optional ELSE\At1IERE clause is included, the statement

following the ELSEWHERE keyword is executed in the subset of the SPE's that

failed to satisfy the original conditional expression.

Built-in functIOns based on the NON-VON instruction set are employed to

implement operations that use the tree communication modes of the machine.

Function names that start with 'N ' correspond to NON-VON machine

in~tructions, and their parameters correspond to the arguments of these

instructions. Names have been mnemonically chosen to suggest their semantics;

thus, N RESOLVE selects a single PE and N REPORT8 IS the subsequent 8-bit

Wide transfer of data from the selected PE to the control processor.

3 The Hough Transform
The Hough transform method is used frequently in image understanding tasks to

detect the shape of object boundaries described by parametric curves This

method is based on the mathematical duality between points on a curve and the

parameters of that curve. Since we will descrIbe two differing implementatIOns of

the method, we qUickly review it here in its simplest form. The methods and the

analYSIS WIll be based on this simple form, also, although the properties of the

implementations are easily extended to more complex versions of the transform

In his initial work, Hough [8] descrIbed a. method for detecting straight lines in an

Image USing the slope-intercept parameterization of the line. According to this

parameterizatIOn, the line equation is expressed as:

(1)
y = mx + c

11

Suppose that we have a set of image points (x y) (x) th t h l' I' ..., n'Yn a ave a
likelihood of being on linear boundaries. In this paper, we refer to these points as

boundary points. The Hough transform method organizes the boundary points into

a set of straight lines as follows.

Consider a boundary point (xj,Yj) 10 the image plane. The parameters of all lines

passmg through this point must satisfy the equation:

Yj = mXj + C

This equation corresponds to a straight line in the m-c space (the parameter

space). Thus, the set of boundary points in the image plane corresponds to a set

of lines in the m-c plane. If two bounda.ry points are on a line AB in the image

plane with parameters m1 and cI ' then the two lines corresponding to these two

points in the m-c plane mtersect at the point (ml,cJ In fact, all boundary points

in the image plane on the same line AB map to lines in the m-c plane that

intersect at the point (m1,cJ Thus, the problem of finding the set of lines in the

image plane is reduced to that of finding common points of intersection of lines in

the parameter space.

!\1uch is known about this transform. A better parameterization of a straight lme

IS suggested by Duda [41. in which the parameters 8 and p are used, where 8 IS

the angle of the line normal and p IS the algebraic distance from the origin, the

advantage of this parameterization is that the values of 8 and p are bounded

The Hough transform can be extended to detect other curves of analytical

parameters [ll\, or to detect general curve shapes using edge orientation at the

image pOInts and a reference pOInt [2]. A memory-efficient implementation of the

Hough transform on sequentIal machmes IS deSCrIbed in [31 A parallel algOrIthm

based on the Hough transform for detectmg a general curve with speCIfIc

orientation has been developed by Merlin et al [141. Since we are prImarIly

interested in exploring the efficiency of NON-VON-like machines on thiS method,

we wIll'flOt need to attempt Its more refined forms.

The implementation of the Hough transform for detecting straight lines on a

sequential machine involves a quantization of the parameter plane into a quadruled

gnd. The grid size is determined by the acceptable errors 10 the parameter values,

12

and the quantization is confined to a specific regIOn of the parameter plane

determined by the range of parameter values. A two-dimensional array (the

accumulator array) is then used to represent the parameter plane gnd, where each

array entry corresponds to a grid cell. For each boundary point, the algorithm on

a sequential machine increments the counts in all accumulator array entries that

correspond to grid cells along the straight line in the parameter plane. After this

step, grid cells corresponding to the accumulator array entries where the count

exceeds a certain threshold value are selected as the set of parameters for the

image straight lines being sought.

The process of incrementing accumulator array counts can be thought of as

<cvoting" by the boundary points for the parameter values of possible curves

passing through these points. The time required to execute this algorithm on a

sequential machine is proportional to the number m0 of boundary points times the

number of votes v of each point, plus the cost of scanning the grid of size 8 to

select the maximum: (O(s+mv)). Memory space required is proportional to the

size of the grid.

In what follows, we describe and contrast the efficiencies of two algorithms to

implement the Hough transform on NON-VON The first one is a direct parallel

implementatIOn of the standard sequential algorithm The disadvantages of thIS

approach are analyzed, and we descnbe a second approach that alleVIates these

problems. We assume that the boundary points have been detected by some other

procedures and that the SPE's which are holding them, one boundary POInt per

SPE, are marked using a speCIal flag. AgaIn, we assume the simplest case In

order to hIghlight the machine-dependent aspects of the problem. the curves beIng

sought are straight lines, whose equatIons are expressed using the slope and

intercept parameters.

3.1 The Hough Transform Algorithm - A Direct Approach

First, each NON-VON SPE IS associated with an accumulator grid cell In the

parameter space in the follOWing manner. The NON-VON tree SPEs are uniquely

enumerated using the inorder enumeration descnbed in [121. The number asSIgned

to each SPE is stored in the vector integer variable ADDR. If the parameter

1.3

space is m by c, then the address of the grid cell held by each SPE is the pair

(\1, C), where M is the remainder and C the integer quotient obtained when

ADDR IS divided by m. The N-PASCAL procedure to perform this

straightforward association is described in [10]' and executes in time proportIOnal

to the tree height. In effect, each grid cell is superimposed on the tree structure

by decoding its position in the linear ordering of the tree nodes.

A vector integer variable COUNT is initialized to zero in all SPE's before starting

the algorithm. The coordinates of boundary points in the image (still stored m

the SPE's) are then reported to the CP one point at a time using the RESOLVE

instruction. The reported point is then broadcast to all SPE's, which increment

their vector variable COUNT by one if it satisfies the parameter space curve

equation for their cell. Thus, image boundary points are retrieved sequentially

although accumulator grid points are updated in parallel (albeit slowly) for each

point. All boundary points have been reported when the vector variable HT is

universally false. In the selection phase, each SPE whose COUNT variable

exceeds a threshold value is marked, and the value of the grid cell associated with

it is reported to the CP using the RESOLVE and REPORT instructions. Final

selectIOn of a maximum is made in the CP. The N-PASCAL algorithm that

descnbes the procedure follows

Procedure bougbl(thr: integer);
var

x, y, m, c: integer;
vector var

COUNT. X, Y: integer;
P A.R~1 boolean;

begin
r 1 Initialize. * /

COUNT := 0;
PARM= raise;

/* 2. Enable all SPE's whose boundary points have not yet been reported.
Report the coordinates of a single boundary point using the RESOLVE instruction
and mark it as reported. Broadcast the point Increment COUNT in all SPE's
in which point satisfies the equation. Repeat Step 2 until all boundary pomts
have been reported. N Al is the special flag invoked by the RESOLVE
instruction. * /

N Al:= HT;

while N_RESOLVE(N_AI) = 1 do begin
where N _ Al = true do begin

HT := raise;
N_REPORT8(XADO, x);
N_REPORT8(YADO, y);

end;
X:= x;
Y:= y;
ir Y = (M * X + C) then

COUNT := COUNT + 1;
N Al = HT;

end;

14

/* 3. Mark all SPE's in which the count exceeds the threshold value and report
them. * /

where COUNT> thr do PARM := true;
N_AI := PARM;
while N_RESOLVE(N_AI) <> 0 do begin

end;

where N _ Al = true do begin
PARM := raise;
N REPORT8(M, m),
N REPORT8(C, c);

end;
N AI= PARM;

end;

, I

Step 2 is executed a number of times equal to the number of boundary points b)

Step 3 is executed a number of times equal to the number of curves found, whIch

is usually less than b. Thus, the algorithm takes time proportional to the number

of image boundary points (O(b)). The NON-VON 3 code for this procedure [10]

executes approximately 500 instructions to associate parameter values with PE's,

assuming that all possible values fit within the NON-VON tree. Step 2 executes

about 70 instructions, of which approximately 40 instructions implemer. t the

evaluation of the straight line equation. Step 3 executes about 12 NON-VON 3

instructions for each set of parameter values found. Thus, if the image contains

1000 boundary points, the execution time of the algorithm is approxImately 18

msec.

The number of SPE's required by this approach is equal to the number of gnd

---- - -

1.5

points. If the grid SIze IS larger than the machine SIze by a factor of k, the

parameter space is divided into k parts, and the above procedure IS executed for

each of these parts in turn. The time required to execute the algorithm in this

case IS O(kb), independently of how the k-fold division is mUltiplexed into the

existing time and space.

A major disadvantage of this approach is that it requires a NON-VON machine of

size comparable to the grid size, despite the fact that many of the SPE's never

increment their COUNT. Note also that each time a boundary point is broadcast,

the curve equation has to be evaluated in each SPE. (It does, however, exploit

the associative memory of the machine in searching both for boundary points and

for curves above threshold.) Our second approach alleviates these problems: it

uses a number of SPE's equal to the maximum number of total votes, and the

curve equation IS evaluated only once.

3.2 The Hough Transrorm Algorithm - A MSIMD Approach

Here, the NON-VON tree is configured as if it were an independent set of

subtrees, with each boundary point deciding to cast its vote only in its own

subtree. Votes are sequenced by broadcasting an enumeration of a cross-section of

the accum ulator array; in thIS problem, they are sequenced by broadcastmg all

possible quantized values of the parameter m in order. However, for each value

(of m), the voting process can be performed concurrently in all the subtrees,

requiring little inter-tree communication. (In analogy to uniprocessor data

structures, instead of the entIre tree representing the total array of grId points of

size m by c, many of which are empty, each subtree now represents a distrIbuted

array of voted-for grid points of size b by m, most of which are non-empty.)

Therefore, in time proportional to the quantizatIon of a cross-s~ction of the grid,

all votes are cast and stored throughout the tree. Because of the way the votes

are cast in this second approach, we refer to this algorithm as a multiple-SIMD

(MSIMD) algorithm. The problem of finding the parameter values that exceed the

threshold value is now eqUIvalent to that of finding the local peaks In a

distributed histogram; here the histogram is two-dimensional, m by c.

The size of these subtrees is determined by the maximum number of votes,

16

max _ num _ votes, cast by any boundary point. Boundary pomts are stored m

the roots of these evenly distributed subtrees. This storing can be performed by

several methods; the simplest (but not the most efficient) one is to report the

boundary points to the CP one by one using the RESOLVE instruction, and then

to broadcast them to be stored in the roots of the subtrees. This has complexity

O(b) as before, although the constant is much smaller. A far better way is a type

of parallel "elevation" method in which image boundary points in each subtree are

reported to the appropriate level, with only exce5S boundary points in any subtree

redistnbuted in serial fashion over the remaining free subtrees. Multiplexing may

occur, but is unlikely given that the number of boundary points tends to be a

small fraction of the image.

The SPE's in these subtrees are enumerated so that each is assigned a unique

address (stored in the integer vector variable ADDRESS) relative to the subtree, in

the range [0, max _ num _ votesl. This enumeration procedure is similar to the

address enumeration procedure described in the previous section, except that the

number assigned to each SPE is the computed address modulo the subtree size;

this can be done by simple shifting. Again, the time required by this procedure is

proportIOnal to the height of the subtree. In effect, the tree has become a dense

two-dimensional accumulator array, addressed by boundary point number and

sequential vote number

'We now describe the algorithm for storing the votes in the NON-VON tree. The

vector integer variables X and Yare used to store the value of the boundary

POInts, while the vector variables M and C are used to store the parameter values

voted for by the boundary points. A scalar variable 9 _ m stores the value of

parameter M to be broadcast, and the scalar constant delta m is the increment

used to change the value of 9 _ m. The scalar constant h subtree is the height

of the subtree. The N-PASCAL voting procedure follows:

Proced ure hough2;
var

i, j, 9 m: integer;
vector var

M, C, X, Y: Integer;

17

begin

1* 1. InItialize global variables. Enable all SPE's that are not the root of some
voting subtree. Propagate the X and Y values of the root of the subtree
throughout the subtree. * /

i= 0;

9 m.= 0,
where SUBTREE_ROOT = raise do begin

N_RECV8(P, XADD, X); N_RECV8(P, YADD, Y);
ror j= 1 to h 8ubtree-l do begin

end;

N RECV8(P, X, X);
N_RECV8(P, Y, Y);

end;

1* 2. Step through the subtree addresses, storing in them the increments of
M. Now compute all corresponding C's from the curve equation. * /

while i < max num votes do begin
where ADDRESS = i do M - 9 m;
i := i + 1;
9 m: = 9 m + delta

end;
C .- Y - M * X;

end,

m· ,

Step 1 is executed a number of times equal to the subtree height, log v, where v

is equal to the number of votes cast by each point. Step 2 is executed exactly v

times Thus, the procedure to store the votes in the subtree takes time of 0(v)

Note that the curve equation is evaluated only once.

In general, the evaluation of the "dependent" variables (here, c), depends on the

parameter space curve, which may produce multiple values for the dependent

parameters. (For example, the parameter space curve may be a circle, With two

values of its counterpart of c, one each for the top and bottom arcs)

Occasionally the parameter space curve is not separable, as it is in the case of

transcendental equations. It is no trouble to compute and store multiple values; In

general, this adds only a constant factor. In the second case, however, It may be

necessary to replace direct computation in the SPE's with the broadcast of a table

of valid pairs from the CP; each SPE passively waits for a match on Its first

parameter, and then stores the second. This process takes time proportIOnal to

the length of the table, but it too is executed only once.

18

The NON-VON 3 code for the voting procedure executes approximately 8v + 25

log v + 100 NON-VON 3 Instructions. For v equal to 32, the time required to

cast the votes in the tree is thus about 0 14 msec. If the number of required

votes exceeds the number of SPE's in the NON-VON tree, each SPE can be used

to store more than one vote. If each SPE stores k values, the time required to

execute the above procedure is O(kv).

\Ve now describe the manner in which those parameter values whose votes exceed

the threshold value are found. These values occur at the local peaks of the two

dimensional histogram of the votes for M and C. \Ve assume in the follOWing

diSCUSSion that there are few such local peaks, which is usually realistic. Figure 2

shows such a histogram.

A direct approach to the identification of these local peaks would require the

quantization of the two dimensional histogram space into grid cells, perhaps in a

coarser manner than by the original quantization. Then, for each new grid cell,

all SPE's with ordered pairs (here, of (m, e)) falling within it are marked and

counted. The time required to execute this simple procedure is O(sh), where 8 IS

the grid size and h is the r--;ON-VON tree height, with the latter coming from the

need to associatively add counts from subtrees into the root. Counts that exceed

a threshold value are the parameter values being sought. However, a large

percentage of the time in this procedure is spent counting votes in sparsely

populated cells

A more effective approach attempts to aVOId such areas. It first computes a one­

dimenSional histogram along one parameter (e, as shown In Figure 2.) A

plpelined-SThID algOrithm to compute the one-dimensional histogram IS described In

1101. Only those votes are marked whose parameter IS found among the small

num ber of local peaks expected to appear In the one-dimensional histogram A

second one-dimensional histogram of the second parameter (m) is then computed

for these marked votes only Values for which there eXist local peaks in the two

one-dimensional histograms mark regions of activity In the two-dimensional

histogram (If the converse is expected to fail, or if no such peaks are found, the

prior two-dimensional method must be used.)

One­
Dimensional
Histogram
Local Peaks

Figure 2:

19

c

A Voting

~ ___ --~ Activity
Area

L--________ .-ll--__ ~ ~i

The Two-Dimensional Histogram of Parameter Values

:20

This approach executes in time of O{bm + be + h), where bm and be are the

n urn ber of bins in the two one-dimensional histograms The com putatlOn of a 32-

bin one-dImensional histogram requires about 0.5 msec; peak-finding thus takes

about one msec. Total executIOn time for the MSTh1D approach is thus about

1.14 msec, which is considerably less than the time required by the direct Hough

approach (18 msec for 1000 boundary points).

The algorithms descnbed here can be extended uSing slight modificatIOns to deal

with parameter spaces of higher dimensions. For example, in the direct approach,

if we have an n-dimensional parameter space, then each SPE will correspond to a

n-dimensional grid cell In this space. In the MSIMD approach, the subtree size

will correspond to that of (n-l)-dimensional area of the parameter space, and each

SPE Will store parameter values that represent cells in this sub-parameter space

3.3 Simulation Results

The two algonthms descnbed In this section have been tested using the functional

siro ulator. Boundary points representing straight lines in a 32 x 32 binary image,

as shown In Figure 3, have been input to the simulator. The parameter space

grid is a 32 x 64 grid, with m taking the values -15 to 16 and c assuming the

values -10 to 53. The two-dimensional accumulator array of these lines are shown

in Figure 4-a.

In the second approach, 16 votes are cast in each subtree with m varying from -7

to 8 Figure 4- b depicts the two-dimensional histogram of the votes stored in the

tree. The second approach has computed the same set of straight hnes found by

the first approach.

3.4 Discussion

The MSIMD approach illustrates some of the advantages of duphcating data

throughout the tree in order to avoid communication costs within it No

additional time cost is incurred in broadcasting a value (here, one of the quanta of

m) throughout the entire tree over that of broadcasting it to one PE. The

presence of many local copies allows the true parallel computation of "dependent"

variables, now themselves distnbuted. Thus, as long as storage remains adequate

~1

111111111
1 1

1 1
1

1 1
11111111

1 1
1 1

1 1
1111 111

1 1

1 1
1
1 1

1
1 1
1

1 1
1

1
1

1

Figure 3: The Input Boundary Points

0000000000000000000000000000100000000000000001001000000000000010
0000000000000000000000000001000000000000000100100000000000010000
0000000000000000000000000010000000000000010010000000000010000000
0000000000000000000000000100000000000001001000000000010000000000

-D000000000000000000000001000000000000100100000000010000000000001
0000000000000000000000010000000000010010000000010000000000011000
0000000000000000000000100000000001001000000010000000000110000000
0000000000000000000001000000000100100000010000000001100000000100
0000000000000000000010000000010010000010000000011000000010000000
0000000000000000000100000001001000010000000110000001000000210011
0000000000000000001000000100100010000001100000100001110001110102
0000000000000000010000010010010000011000010010110000112111110200
0000000000000000100001001010000110001100110001012202031022011211
0000000000000001000100110001101100111000102222131212021112224111
0000000000000010010020021011110110011424221426021212121100000000
0000000000000101112121212020072228222290000000000000000000000000
0000000006001223621217232323250000000000000000000000000000000000
2111114232282221211212221000000000000000000000000000000000000000
2021132133112202021100
022113021211111000
121102013100
0012101100
0100101000
00100100
10001000
000100
001000
0100
1000
00
00
00

(a) The 32 X 64 Accumulator Array

0000000000000000000010000000010010000010000000011000000010000000
0000000000000000000100000001001000010000000110000001000000210011
0000000000000000001000000100100010000001100000100001110001110102
0000000000000000010000010010010000011000010010110000112111110200
0000000000000000100001001010000110001100110001012202031022011211
0000000000000001000100110001101100111000102222131212021112224111
0000000000000010010020021011110110011424221426021212121100000000
0000000000000101112121212020072228222290000000000000000000000000
0000000006001223621217232323250000000000000000000000000000000000
2111114232282221211212221000000000000000000000000000000000000000
2021132133112202021100
022113021211111000
121102013100
0012101100
0100101000
00100100

(b) The 16 X 64 Two-Dimensional Histogram

Figure 4: Some Hough Transform Simulation Results

2.3

and an efficient retrieval method can be found, input redundancy can alleviate the

need to precisely and uniquely distribute data (here, ordered pairs) It IS this last

step which becomes, in the worst case, purely sequential in a tree-based machme-­

as well as some other architectures).

Profligate duplIcation IS of no help, however, If data must be preCisely and

unIquely_ retrIeved (that is, sorted). It is useful only in those problems where

intermediate results can be suppressed because the final result relIes on an

associative operation, such as addition of partial results or the calculatIOn of a

global maximum. By delaymg or avoiding intermediate data transfer, tree-based

communication IS replaced by a final senes of RESOLVE-like requests for only the

most pertInent Information. ~10st data either remains in the tree (here, ordered

pairs that have sparse votes), or is only logically removed by arithmetiC

combInatIOn (here, the accumulated one-dimenSIOnal histogram). Agam, the

technique applies to other architectures as well

It appears that more than a few middle-level VISion tasks can be approached m

such a duplIcate-and-delay manner. A qualItatively different one follows.

4 Moving Light Displays

\Ve now deSCrIbe a ~00I-VON algOrIthm that Implements the correspondence step

m methods that interpret the motIOn of JOInted objects from binary moving light

displays (\110) An ~fLO system uses only informatIOn about the pOSitIOn and

velOCity of ItS pOInts for the perception of motion, and a sequence of such binary

Images (frames) are reqUired for the interpretatIOn of the object motion The

objects m these frames are typically represented by a relatively small number of

pOInts (typIcally less than one hundred). Rashid [161 has implemented a system,

which he calls Lights, that interprets Simple tvILO's. The input to this system IS a

set of coordinate pairs corresponding to the POInts of the ~fLD.

The correspondence step is concerned With mapping the points of one frame to the

next. The only informatIOn known IS the pOSition of frame points depicting parts

m relative motIOn and the average velOCity of these points based on prevIOus

frame Information. A fundamental assumption is that the velocity of MLO POints

vanes "smoothly" This assumption can be used to predIct the posItIOn of the

MLD points In the r.ext frame. The tracking algorithm computes the

correspondence that minimizes the sum of dIfferences between the expected positIon

of each point and the actual position of the corresponding POInt in the next frame

The XO:\-VO~ algonthm starts by computing an approximate solutIOn based on

the heunstic mentioned earlier Assume that the first frame contains m POInts and

the next frame contains n points; note that m and n may differ, SInce different

points may be occluded In the two frames. Since we wish only to hIghhght the

machine-dependent aspects of the computation, we assume that the number of

points in both frames IS equal. The imtial approximation IS performed by

ca.lculating for each point In the ftrst frame that POInt closest to its predicted

position, among those points that have not been selected yet In the second frame

This approach to compute the InItial solutIon is basically a greedy algonthm,

where the best local match among the ava!lable ones is selected. As In all greedy

algonthms, the order in which points In the first frame are ordered IS critIcal

We would hke pOInts In the ftrst frame that are near each other in the image to

also be ne3.r to each other In the ordered set This heuristic ordering is Important

to our algOrIthm, but It should be noted that In general a perfect linear orderIng

of a two-dImensIOnal graph IS not pOSSIble There are several ways to strengthen

thIS starting step, perhaps the easiest IS by USIng redundant first-frame orderIngs

That IS, If there are two POInts that are suffiCiently near each other In the two­

dimensional frame but are far from each other In the ordering, then an additional

startIng solutIOn IS computed by altering shghtly the method for obtaIning the

first-frame orderIng (which perhaps was Itself a greedy algOrithm) so that the

stranded nearby neighbor IS selected more Immediately. ThiS alteration can be

done In many ways, including purely stochastiC ones; like other heuristIC algOrithms

ItS effectiveness is hard to analyze. However, t.here is much redundancy In the

processing of any given starting correspondence in any case, as the rest of the

algonthm shows.

\Ve now apply the following procedure to each computed initial solutIOn, which IS

stored in the root SPE of the tree as a m-vector of pairs of points. In order to

concentrate on the SL\ID aspects of the problem, we wtll show its application to

only one Initial solution. The basic idea of the procedure is to qUickly gen~rate

from the Initial pairing other possible solutIOns to the correspondence problem, and

to store these additIOnal candidate solutions as m-vectors of pOint pairs In the leaf

SPE's Once in the leaves, the goodness of all correspondences can be calculated

in parallel and the one with minimal distance qUickly found uSing the tree

connections In O(h) time.

AdditlOQal candidates solutions are generated by permutmg some of th~

assignments of second-frame pOints to other first-frame pomts, but only If the ftrst­

frame pOints Involved in the permutation are near to each other In the image

Based on the ordenng of first-frame pomts, thiS can be done mechanically by

restricting the swapping of assignments to be among a lImited contIguous subvector

of a given m-vector of pairings As an example, we bnefly descnbe now how

pOSSIble solutIOns containing all permutations of a frame With three elements can

be computed The mitial solutIOn m the root SPE is passed to its two children

The left child keeps the parent's solution, whde the nght chtld performs a

permutatIOn on thiS solutIOn by swappmg the first two assignments, as shown In

Figure .=j

Agam the solution IS passed to the n~xt level SPE's The nght chtldren swap the

second and thIrd assignments in their solutIOn \Vhen the solution is passed to the

follOWing level, nght children swap the first and third assignments At thIS pOint

solutions contaIning all pOSSible permutatIOns of th~ first three elements are found

at the fourth level down the tree Note that at the fourth level we have two

SolutIons that are duplicated. ThiS will not affect the accuracy of the procedure,

but It IS meffIclent In general, thiS process would contInue untIl the leaf level IS

re.lched At thIS pomt we would have O(2h) pOSSible solutIOns stored In the leaf

SPE's of the NON-VON tree, some of them redundant, depending on the

sophistication of the control algonthm. Much work can be done on the finding of

optimal strategies for the chOice and order of the perm utatlons

\Ve argue that the selected solution using thiS algorithm IS a very satisfactory

match. The rationale for thiS IS two-fold. First, the initial solutIOn IS usually a

1~3 213.

12.3

/\
1·32

/\ J\ l\
1:23 3~1 132 ~.31 21.3 312 2.31 1.32

Figure 5: Perm utatlOns of the lmtlal SolutIOn FIrst Three Element~

good approximation of the desired solutlon, based on the heunstlc as.sumptlOn used

in computing it. Second, as much as possible the permutations on the Initial

solution are performed between points that are near to each other In the Image

frame That in turn insures that If there is a conflict resulting from two POInts

in the first frame selecting the same correspondence in the second frame, then

alternatives Including both selectIOns will be among the set of pOSSible solutIOns

The l\"-PASCAL procedure descnbing this algorithm for frames contaIning at most

16 POInts follows. It begInS with some ancillary routines whose purpose IS

straightforward

Procedure mId,
var

i, j, k, delta, disl sqr: integer;
801, x, y array [1.. 16] of integer,
x2, y2, xp, yp array[1..16] of integer;

vector var
Xl, Y1, lJ, V, X~, Y~: integer;
~lJ~1, DIST, TE~IP integer;
XP , YP, LEVEL_:\O integer,
S array!l 161 of integer,
RIGHTC, ROOT, Fl, F~, N boolean,

/* The followmg functIOn fmds the minimum value of a vector vanable ... /

runction min leaf(var ~1I~ integer) integer;
val'

j integer,
vector -val'
TE~IP integer,

begin
ror j = ~ to no let'eis do begin

~ REC\"8(LC, ~1I~, MI~),

N RECV8(RC, MI:"-i, TE~IP),

irTE~1P < t-.UN then ~n~ TE~IP.
end,

;-..; RECV8(LC, MIN, ~HN),
mIn leaf - N GG8;

end

Procedure swap so~i,) integer),
vector val'
TE~IP integer,

begin
where RIGHTC = true do begin

TE}'iP= S[ll;

end:

S[Jl= Sri]; S[i]·= TE~iP;
end;

begin

'o!8

/* 1. The first frame points (Xl, YI) and their corresponding velOCity
components (U, V) are stored m leaf SPE's whose Fl IS set to 1, and analogously
for the second frame pomts (X2, Y2). ~1..;1v1 holds the ordinal posltlOn of the
point in the frame. The time lapse between two frames IS stored m the vanable
delta. Compute the predicted solution (XP, YP) usmg delta '" /

XP .= 0;
)-p = 0;
mark _ rc(RIGHTC),
mark _ root(ROOT),
set level number(LEVEL ~O);

where FI = true do begin
XP = X + U Z delta,
YP = Y + V .. delta,

end,

/* Compute the Initial solutIOn This IS performed by reportmg the pomt m
the first frame, and for each reported pOint computmg the pomt nearest to
It In the second frame .. /

)I = F2,
i = I,
while (i <= m) do

begin
where (:\L~f = i) and (FI = true)

do begin
)I REPORT8(XP, xp[i]),
~-REPORT8(YP, yp[iJ),

end,
DIST = 0,
w_here ~ = true do

DIST = (xp[iJ - X2) .. (xp[iJ - X2)
+ (yp[iJ - Y2) ,. (yp[iJ - Y2),

disl sqr = mm leaf(DIST),
where (~ = true) and (DIST = disl sqr)

do begin

N = raise;
N _ REPORT8(NU;"!, so/[il);

end,
i .= i + 1;

end;

/* 2. Store the mitial correspondence m the root SPE. * /

where ROOT = true do
ror j = 1 to m do S[l1 = so/[;l,

29

/* 3. Perform the permutations on the lnItlal solution and stor~ these posslbl~
solutlOns in the leaf SPE's. ,. /

j= 2, i = 2;
while j <= no levels do begin

where LEVEL _ NO = j do begin
ror k = 0 to m do

N _ RECV8(P, S[kJ, S[kJ),
swap sol(i, (i-I)),

end,
j = j + 1.
where LEVEL ~O = j do begin

(or k = 0 to m do
~ RECV8(P, S[kJ, S[kJ);

swap ~ol(i, (i+l)),
end,

j = j + 1,
where LEVEL ~O = j do begin

(or k = 0 to m do
N RECV8(P, S[kJ, S[kj),

swap sol((i-l), (i+l)),
end,

j = j + 1, i = i + 2;
end,

/* 4 Compute the sum of dIfferences for each posslble solutlOn "/

DIST= 0;
(or j= 1 to m do begin

(or k . = 1 to n do
where S[;1 = k do begin

XP I2[k] - Ip[;1.
YP .= y2[k] - yp[;1.

end,
DIST = DIST + XP*XP + YP*"r:"P;

end,

30

/* .5 Find the value of the minimum sum of differences and recover the solutlOn
*j

disl _ sqr := min leaf(DIST);
where DIST = dist _ sqr do

ror j= 0 to m do
~ REPORT8(S[Jl, sol[;l):

end;

Steps 1 through 4 of the algorithm execute in time proportional to the product of

the number of points In the first frame and the tree height (O(mh)) On the

other hand, Step .5 of the algorithm takes time proportional to the product of the

number of points In the two frames (O(mn)) Actually, if the number of frame

points IS comparable to the tree height, then the initial solution can be computed

in the CPo This has the advantage of being able to overlap the computatIOn of

the initial solutIOn for the following frame with the computation of the solutIOn for

the current frame. Thus, the algorithm executes in O(max(h,n)m) time.

4.1 Simulation Results

The algorithm has been functIOnally simulated with frames having up to SIX POInts

and a tree of 10 levels, and has been found to produce optimal solutions The

first frame POInts have been used Instead of their predicted pOSItions They have

been ordered by starting at an arbitrary POInt and finding the nearest pOInt to It

This greedy algorithm IS continued until all POInts have been ordered.

The moving lIght display algOrithm has been coded In NON-VON 3 machIne

instructIOns to obtain an accurate instructIOn count. Step 3 executes ~5

instructIOns plus six Instructions per frame POInt for each level In the tree, while

computIng the mInimum solutIOn in Step S executes 32 instructIOns per tree level

For a tree of 15 levels and frames contaInIng 10 pOInts, the algOrithm computes

the correspondence between two frames In IS msec, Including computatIOn of the

initial solution.

.31

4.2 Discussion

This algorithm illustrates some of the same characterIstics of the duphcate-and­

delay algorithm shown in the t-.fSI1ID Hough. Here what IS duplIcated IS

essentially control mformation. The downward flow of candidate match

information is conflated with a relatively inexpensive way of generating additional,

though redundant, candidate matches. The one actual tree-wide computatlOn IS

that for the goodness-of-fit match measure, roughly analogous to the computation

of whether or not to vote in the Hough algorithm. Most comm UllicatlOn IS

avoided altogether. By delaying the reporting of the distrIbuted results until they

can be compared with their Siblings, the data can be easily RESOLVED Smce

what IS reqUired IS only a maXimum, it is mostly log!cal data that IS transferred

A Similar algOrIthm IS probably possible for other fine-grained architectures,

exhibiting Similar functlOnal characterIstics.

5 Conel usion

In thiS research, we have demonstrated the feasiblhty of using fine-grained tree­

structured SlliID machines for high-speed executlOn of two important intermedlate­

level Image understandIng tasks These tasks--a Hough transform, and the

correspondence portion of a moving light display algorithm--are ones for which

such architectures are generally assumed not to have the advantages they possess

for the more regular and communication-free algorithms of low-level signal

processing Nevertheless, these algOrIthms do manage to exploit the tree

orgallization of the machine, and to reduce the effects of through-the-root

commUllicatlon bottleneck assOCiated With tree architectures.

The two prInCipal novelties of the algonthms can be summarIzed as the use of

duphcatlOn of data (in the Hough) or of control (In the MLD), and the Judicious

aVOidance or delay of the commUlllcatlon of Intermediate results (In both). As

ever, comm unication up and down the tree in these algorithms is rapid, but

comm Ulllcation across IS slow, these two strategies both help avoid lateral

rr:essages Since the tree must be loaded anyway, the first strategy of redundancy

of problem subdivision has httle effect on time performance, and in fact enhances

SThID parallelism. SInce one usually desires only a Simple answer from an

Intermediate-level vision task, the second strategy can exploit the use of the

associative properties of the tree to quickly locate the best solution of the many

redundant ones (as In the ~1LDs), or can exploit the use of the logarithmic

combInatorial properties of the tree to aggregate dispersed information (as In the

~1SllvID version of the Hough).

NO)I-VO~'s performance on these two algorithms has been analyzed, Simulated in

various ways, and compared with that of other highly parallel image understandIng

architectures. A. functional simulator, implemented on a V~X 11/750 augmented

with a Grinnell image processor, has validated all of the algorithms descrIbed In

this paper A machine InstructIOn-level Simulator has also been used to execute

some of the image algorithms, and to prOVIde accurate measures of the executIOn

time of the machine-coded versions of our algorithms. Based on these

measurements, ~O~-VON's execution time for the two algonthms has been shown

to be considerably faster than other architectures (For details to substantiate this

claim, the reader IS referred to [101·)

References

1. Bacon, D, Ibrahim, H., ~ewman, R, Piol, A, and Sharma, S The NO~­
VON PASCAL. Columbia UnIversity, May, 1982.

2. Ballard. D H. "Generalizing the Hough Transform to Detect Arbitrary
Shapes" Pattern Recognition 19, 2 (1981), 111-122.

3. Bro\',;o, C M. Peak Finding with Limited Hierarchical Memory ProceedIngs
of the 7th. International Conference on Pattern Recognition, Montreal, 1984.

4. Duda, R 0, Hart, P E "Use of the Hough Transformation To Detect LInes
and Curves In Pictures" Communications of the AGAf 15, 1 (January 1972)

5. Duff. '~1 J 8. A Large Scale Integrated Circuit Array Parallel Processor
Proceedings of the lEE Conference on Pattern RecognItion and Image ProcessIng,
1976, pp, i28-733.

6. Dyer, C. R A VLSI Pyramid Machine for Hierarchical Paralle! Image
Processing. Proceedings of the IEEE Conference on Pattern Recognition and
Image ProcessIng, 1981, pp. 381-386.

7. Flynn, ~l 1 "Some Computer Organizations and Their Effectiveness" IEEE
Transactions on Computers 21, 9 (September 1972).

8. Hough, P V. C Methods and Means to RecognIze Complex Patterns. US
Patent 3069654, 1962

g. Ibrahim, H. A. H. Tree ~hchlnes' Architecture and Algorithms Columbia
l~nIyerslty, June, 1983

10. Ibrahim, H A. H. Image Understanding Algon'thms on Fine-Grained Tree­
Structured SIJfD Afachine. Ph D. Th, Columbia University, 1984.

11. Kimme, C, Ballard, D, and Sklansky, 1 "Finding Circles by an Array of
Accumulators" Communications of the ACAf 18, 2 (February 1975)

12. Knuth, D E.. The Art of Computer Programming, Addison \Vesley, 1973

13. Kushner, T., Wu, A. U, and Rosenfeld, A "Image Processing on ZMOB»
IEEE Transactions on Computers 81, 10 (October 1982).

14. Merlin, PM., and Farber, D 1 "A Parallel Mechanism for DetectIng
Curves in Pictures" IEEE Transactions on Computers 24, 1 (January 1975).

15. Potter, J L. "Image Processing on the Massively Parallel Processor.)) IEEE
Computer A-fagazine 16, 1 (January 1983)

16. Rashid, RF. "Towards a System for the InterpretatIOn of Moving Light
Displays." IEEE Transactions on Pattern Analysis and /\-fachine Intelligence 2,
6 (November 1980).

17. Shaw, D. E SL\ID and !--.1SL\ID Vanants of the NON-VO~ Supercomputer
Proceedings of the CO~1PCON Spring '84, February, 1984.

18. Shaw, D E, and Sabety T. M. An Eight-Processor Chip for a !--.1asslvely
Parallel tviachllle. Columbia UniverSity, July, 1984.

10. Tallimoto, S. L A Pyramidal Approach to Parallel Processing. Ulllversity
of \Vashington, January, 1983.

.34

