Academic Commons

Theses Doctoral

Continuous-Time and Companding Digital Signal Processors Using Adaptivity and Asynchronous Techniques

Vezyrtzis, Christos

The fully synchronous approach has been the norm for digital signal processors (DSPs) for many decades. Due to its simplicity, the classical DSP structure has been used in many applications. However, due to its rigid discrete-time operation, a classical DSP has limited efficiency or inadequate resolution for some emerging applications, such as processing of multimedia and biological signals. This thesis proposes fundamentally new approaches to designing DSPs, which are different from the classical scheme. The defining characteristic of all new DSPs examined in this thesis is the notion of "adaptivity" or "adaptability." Adaptive DSPs dynamically change their behavior to adjust to some property of their input stream, for example the rate of change of the input. This thesis presents both enhancements to existing adaptive DSPs, as well as new adaptive DSPs. The main class of DSPs that are examined throughout the thesis are continuous-time (CT) DSPs. CT DSPs are clock-less and event-driven; they naturally adapt their activity and power consumption to the rate of their inputs. The absence of a clock also provides a complete avoidance of aliasing in the frequency domain, hence improved signal fidelity. The core of this thesis deals with the complete and systematic design of a truly general-purpose CT DSP. A scalable design methodology for CT DSPs is presented. This leads to the main contribution of this thesis, namely a new CT DSP chip. This chip is the first general-purpose CT DSP chip, able to process many different classes of CT and synchronous signals. The chip has the property of handling various types of signals, i.e. various different digital modulations, both synchronous and asynchronous, without requiring any reconfiguration; such property is presented for the first time CT DSPs and is impossible for classical DSPs. As opposed to previous CT DSPs, which were limited to using only one type of digital format, and whose design was hard to scale for different bandwidths and bit-widths, this chip has a formal, robust and scalable design, due to the systematic usage of asynchronous design techniques. The second contribution of this thesis is a complete methodology to design adaptive delay lines. In particular, it is shown how to make the granularity, i.e. the number of stages, adaptive in a real-time delay line. Adaptive granularity brings about a significant improvement in the line's power consumption, up to 70% as reported by simulations on two design examples. This enhancement can have a direct large power impact on any CT DSP, since a delay line consumes the majority of a CT DSP's power. The robust methodology presented in this thesis allows safe dynamic reconfiguration of the line's granularity, on-the-fly and according to the input traffic. As a final contribution, the thesis also examines two additional DSPs: one operating the CT domain and one using the companding technique. The former operates only on level-crossing samples; the proposed methodology shows a potential for high-quality outputs by using a complex interpolation function. Finally, a companding DSP is presented for MPEG audio. Companding DSPs adapt their dynamic range to the amplitude of their input; the resulting can offer high-quality outputs even for small inputs. By applying companding to MPEG DSPs, it is shown how the DSP distortion can be made almost inaudible, without requiring complex arithmetic hardware.

Files

  • thumnail for Vezyrtzis_columbia_0054D_11561.pdf Vezyrtzis_columbia_0054D_11561.pdf application/pdf 5.92 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Tsividis, Yannis P.
Degree
Ph.D., Columbia University
Published Here
September 13, 2013
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.