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Abstract

Basal Dynamics and Internal Structure of Ice Sheets
Michael J. Wolovick

The internal structure of ice sheets reflects the history of flow and deformation experi-

enced by the ice mass. Flow and deformation are controlled by processes occurring within

the ice mass and at its boundaries, including surface accumulation or ablation, ice rheology,

basal topography, basal sliding, and basal melting or freezing. The internal structure and

basal environment of ice sheets is studied with ice-penetrating radar. Recently, radar ob-

servations in Greenland and Antarctica have imaged large englacial structures rising from

near the bed that deform the overlying stratigraphy into anticlines, synclines, and over-

turned folds. The mechanisms that may produce these structures include basal freeze-on,

travelling slippery patches at the ice base, and rheological contrasts within the ice column.

In this thesis, I explore the setting and mechanisms that produce large basal stratigraphic

structures inside ice sheets. First, I use radar data to map subglacial hydrologic networks

that deliver meltwater uphill towards freeze-on structures in East Antarctica. Next, I use

a thermomechanical flowline model to demonstrate that trains of alternating slippery and

sticky patches can form underneath ice sheets and travel downstream over time. The dis-

turbances to the ice flow field produced by these travelling patches produce stratigraphic

folds resembling the observations. I then examine the overturned folds produced by a single

travelling sticky patch using a kinematic flowline model. This model is used to interpret

stratigraphic measurements in terms of the dynamic properties of basal slip. Finally, I use a

simple local one-dimensional model to estimate the thickness of basal freeze-on that can be

produced based on the supply of available meltwater, the thermal boundary conditions, ice

sheet geometry, and the ice flow regime.
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Chapter 1

Introduction

1.1 Motivation

Continental ice sheets are Earth’s largest reservoir of fresh water. Greenland and Antarctica1

contain the equivalent of 7 and 58 meters of eustatic sea level rise, respectively (Bamber2

et al., 2013a; Fretwell et al., 2013). The former Laurentide, Cordilleran, and Fennoscandian3

ice sheets contained well over 100 meters (Peltier , 2004). The transfer of water between the4

solid ice sheets and the liquid ocean is governed by the mass balance of the ice sheets (Cuffey5

and Paterson, 2010). Ice sheets gain mass by the deposition of snow on their upper surfaces.6

They lose mass by surface melting at low elevations around their margins and by calving of7

icebergs into the sea. Internally, ice sheets exist in a state of constant motion, transporting8

material downhill from regions of net gain to regions of net loss (Figure 1.1). The dynamic9

flow of ice plays a crucial role in regulating the mass balance of ice sheets as a whole.10

Fast ice flow is usually caused by slip over the bed and deformation of subglacial sediment11

(Alley et al., 1986; Bentley , 1987; Kamb, 1987; Engelhardt et al., 1990; Cuffey and Paterson,12

2010). Ice sheet beds exert a strong control on both the dynamics and the thermodynamics13

of the overlying ice sheet (Waddington, 1987). The distribution and pressure of liquid water14

at the ice-bed interface control the rate of sliding and the drag that resists flow (Clarke,15

2005; Stokes et al., 2007). Subglacial water is generated by both surface and basal melting,16

and migrates under the influence of gravity and pressure (Rothlisberger and Lang , 1987).17

Water may accumulate in subglacial lakes (Oswald and Robin, 1973), may be removed from18

the system by basal freezing (Bell et al., 2002; Joughin et al., 2004a; Christoffersen et al.,19

2010), or may be transported to the ice sheet margin where it emerges as proglacial or20

grounding line discharge (Fricker et al., 2007; Chu et al., 2009; Le Brocq et al., 2009; Smith21

et al., 2015). Subglacial water discharged at the grounding line generates buoyant turbulent22

plumes beneath ice shelves and at calving fronts that encourage heat transfer and melting23

(Jenkins , 2011). Subglacial melt and hydrologic processes are intimately connected with24

the erosion, transport, and entrainment of subglacial sediments and thus play a key role25

in the generation of the geomorphic signatures left behind by retreating ice sheets (Hallet ,26

1979, 1996; Cohen et al., 2006; Rempel , 2008; Clark , 2010; Christoffersen et al., 2010; Creyts27

et al., 2013). My thesis focuses on the effect these subglacial processes have on the internal28

structure of ice sheets through melting, freezing, and variations in sliding.29

1



Figure 1.1: Antarctic surface velocity visualized as flow trajectories. Each line is 200 km long and colored by
the average velocity magnitude along the trajectory. Trajectories are overlain on hillshaded surface elevation.
Velocity data taken from Rignot et al. (2011) and surface elevation data taken from Fretwell et al. (2013).
A high resolution (3856x3840) version of the visualization is available by request.

In particular, most of my thesis is centered around explaining the observation of large30

basal structures in ice-penetrating radar data from Antarctica (Bell et al., 2011) and Green-31

land (Bell et al., 2014;MacGregor et al., 2015a). These folds are in the range of 5-20 km wide32

in the cross-flow direction, several 10’s of km long in the along-flow direction, and can be up33

to a kilometer high (Bell et al., 2011, 2014). The basal structures deform the surrounding34

stratigraphy into anticlines, synclines, and overturned folds. The recognition of the basal35

structures began when we analysed radar data collected during the Antarctica’s Gamburtsev36

2



Province (AGAP) survey in East Antarctica (Bell et al., 2011). Our understanding of the37

basal structures expanded when we observed similar features in NASA’s Operation IceBridge38

(OIB) data from Greenland (Bell et al., 2014). Older radar data from Greenland also imaged39

these structures, but at the time they were misinterpreted as off-axis hills (Legarsky et al.,40

1998). These structures reflect processes occurring either at or near the ice sheet bed. The41

three main explanations that have been put forward for these structures are basal freeze-on42

(Bell et al., 2011), travelling slippery patches at the ice sheet base (Wolovick et al., 2014)1,43

and rheological contrasts within the ice column (NEEM Community Members , 2013). This44

thesis presents a detailed theoretical analysis of the stratigraphic structures that can be45

produced by travelling slippery patches, travelling sticky patches, and basal freeze-on, in ad-46

dition to a detailed mapping of the water networks associated with the observed structures47

in East Antarctica.48

1.2 History49

In this section, I review some of the literature relevant to my thesis. First, I review the50

literature on ice-penetrating radar, with a special focus on subglacial water and internal51

layers. Next, I discuss some of the literature on basal sliding, followed by basal hydrology,52

and finally I give a brief overview of ice flow modelling.53

1.2.1 Ice-Penetrating Radar54

Ice-penetrating radar, also known as radio-echo sounding, uses measurements of reflected55

radio energy to generate an image of the subsurface structure of ice sheets. Deep ice radars56

generally transmit in the range of one megahertz to several hundred megahertz and may57

be mounted on either airborne or ground-based platforms (Gogineni et al., 1998). Ice-58

penetrating radar is used to image the internal structure and basal topography of ice sheets59

(Figure 1.2). In rare cases, reflections from below the ice base have been imaged as well (e.g.60

Gorman and Siegert , 1999).61

The basal reflection has generally received the most attention in ice-penetrating radar62

studies. The most important measurement derived from the basal return, ice thickness,63

has been made since the 1960’s (e.g. Bailey et al., 1964; Evans and Robin, 1966). Radar64

measurements of ice thickness are absolutely essential to our knowledge of the subglacial65

topography of Greenland and Antarctica (Jankowski and Drewry , 1981; Shabtaie et al.,66

1987; Hodge et al., 1990; Letreguilly et al., 1991; Lythe and Vaughan, 2001; Bamber et al.,67

2001, 2013a,b; Fretwell et al., 2013; Morlighem et al., 2014).68

1Chapter 3.
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Other characteristics of the basal return have been used to make inferences about the69

presence of water at the ice sheet bed. The brightness, morphology, and specularity of the70

basal return have been used to locate subglacial lakes since the 1970’s (Oswald and Robin,71

1973). Deep and wide subglacial lakes were easily identified in ice-penetrating radar data72

because they are hydraulically flat, highly reflective, and specular. Beginning in the 1990’s,73

a wide literature developed around radar-detected Antarctic subglacial lakes. Siegert et al.74

(1996) made an inventory of known subglacial lakes and revised it multiple times in response75

to new discoveries (Siegert et al., 2005; Wright and Siegert , 2012). Studies were made of the76

dimensions, setting, and depth of subglacial lakes (Dowdeswell and Siegert , 1999; Gorman77

and Siegert , 1999; Dowdeswell and Siegert , 2003). New surveys were conducted and new78

criteria for locating lakes were developed (Carter et al., 2007). Popov and Masolov (2007)79

introduced lakes that were originally detected by Soviet Antarctic surveys during the 1980’s80

into the English-language literature. Lake Vostok, by far the largest subglacial lake (Kapitsa81

et al., 1996), was the subject of a dedicated geophysical survey mission (Studinger et al.,82

2003).83

During the 2000’s, a new population of “active lakes” was discovered through satellite84

observations of surface elevation changes (Gray et al., 2005; Wingham et al., 2006; Fricker85

et al., 2007; Smith et al., 2009; Fricker and Scambos , 2009; Fricker et al., 2010). However,86

radar observations at the locations of the active lakes often failed to detect the flat, bright,87

and smooth signature of a classic subglacial lake (Langley et al., 2011; Siegert et al., 2014).88

Nonetheless, the active lakes were located in hydrologic minima that should trap water89

(Langley et al., 2011; Siegert et al., 2014). This discrepancy raises the question of how radar90

might be used to locate subglacial water that is not ponded in a classic (deep and wide)91

lake.92

Ice-penetrating radar has been used to identify subglacial water outside of the classic93

deep lake settings in a number of ways. The simplest is to correct bed-returned power for an94

assumed attenuation rate in order to identify highly reflective areas (Oswald and Gogineni ,95

2008; Jacobel et al., 2010). This method generally produces a distribution of bed reflectivity96

that can be represented by two overlapping bell curves, one for the dry bed reflectivity97

distribution and one for the wet bed reflectivity distribution. The presence of two normal98

distributions is evidence that water exists in the survey area, but unambiguously identifying99

specific regions of the bed as wet or dry is difficult if they fall within the overlapping range. In100

addition, englacial attenuation can complicate interpretations of basal reflectivity (Matsuoka,101

2011). More advanced phase-based analysis can be used to attribute basal reflectivity to102

specular and diffuse components in order to infer basal roughness (Peters et al., 2005).103

Combined with reflectivity analysis, these methods permit a more sophisticated classification104

of the basal interface according to material and morphology. Specularity analysis can even105

be used to distinguish distributed cavities from concentrated channels in the subglacial water106

system, or to constrain the orientation of bedforms if survey design permits the mapping of107

anisotropy (Schroeder et al., 2013).108

In addition to the basal return, the englacial returns have been a valuable source of109

information on ice sheet processes and boundary conditions. Englacial reflections occur at110

dielectric contrasts within the ice caused by variations in density, conductive impurities, and111

crystal orientation fabric (Clough, 1977; Millar , 1981; Matsuoka et al., 2004). Internal layers112

within the meteoric ice are generally assumed to represent isochrones, or sedimentary hori-113
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zons of constant age (Clough, 1977). Internal reflections also occur at the meteoric-accreted114

ice boundary (the boundary between ice derived from surface snowfall and ice derived from115

basal freeze-on) (Bell et al., 2002; MacGregor et al., 2009a). The lower portion of the ice116

column has historically been referred to as the “echo-free zone” because of the lack of in-117

ternal reflections detected there (Drewry and Meldrum, 1978; Drews et al., 2009). However,118

as radar technology has improved, an increasingly rich and stratigraphically complex envi-119

ronment has been revealed in the supposedly “echo-free” region near the bed (Bell et al.,120

2011).121

The isochronous assumption has allowed internal layers to be used to study ice flow,122

boundary conditions, and rheology. One of the most common uses of internal layers is to123

infer surface accumulation rates. Internal layers have been used to solve for surface accumu-124

lation rate in one-dimensional (Fahnestock et al., 2001), two-dimensional (Waddington et al.,125

2007; MacGregor et al., 2009b; Ng and King , 2011), or three-dimensional (Leysinger Vieli126

et al., 2011) models. Some models assume steady-state forcing (e.g. Ng and King , 2011),127

while others leverage the information contained in multiple layers to make inferences about128

temporal changes in accumulation (MacGregor et al., 2009b; Leysinger Vieli et al., 2011).129

Vaughan et al. (1999) used internal layers to identify a relationship between surface slope130

and accumulation, a relationship later reinforced with additional layer data (Arcone et al.,131

2012a,b; Das et al., 2013). Shallow layers have been used to constrain modern accumula-132

tion rates (Richardson et al., 1997), and internal layers have been used to make simultaneous133

inferences about changing accumulation and ice dynamics over time (Neumann et al., 2008).134

Internal layers have often been used to make inferences about ice dynamics and basal135

conditions. One of the earliest uses of internal layer data was to demonstrate that the136

Greenland Ice Sheet near Camp Century was approximately in steady state over the last137

millennium (Robin et al., 1969). Internal layers have been used to identify relict signatures138

of fast ice flow in slowly flowing areas, and thus to make inferences about changes in ice139

dynamics over time (Ng and Conway , 2004; Bingham et al., 2015). Buried crevasses with140

overlying internal layers were used to constrain the timing of the shutdown of Ice Stream141

C (Retzlaff and Bentley , 1993). A change in flow direction upstream of Ice Stream C was142

inferred based on fast-flow signatures in internal layers (Conway et al., 2002). Internal layers143

have also been used to constrain the long-term ice flow field over Lake Vostok (Tikku et al.,144

2004). Internal layers can be used to probe the ice sheet bed, both in terms of basal melting145

(Fahnestock et al., 2001; Dahl-Jensen et al., 2003; Catania et al., 2006, 2010) and basal146

traction (Weertman, 1976; Christianson et al., 2013; Keisling et al., 2014). Internal layers147

have been used to map the thickness and depth of climatic units within ice sheets (Karlsson148

et al., 2013;MacGregor et al., 2015a). The reflected energy from internal layers has been used149

to constrain ice attenuation rate and therefore temperature (MacGregor et al., 2015b). One150

of the most powerful ice dynamic uses of internal layers results from the stiffening of deep ice151

underneath a dome, known as the “Raymond effect” (Raymond , 1983). The Raymond effect152

has allowed internal layers to be used to constrain ice rheology, past thickness variations,153

dome migration, and grounding line history (Conway et al., 1999; Vaughan et al., 1999;154

Hindmarsh et al., 2011; Gillet-Chaulet et al., 2011; Kingslake et al., 2014).155

Internal layers have even proved useful on other planets. Internal layers detected using156

orbiting radars have been used to test for past flow of the Martian polar ice caps (Koutnik157

et al., 2009; Karlsson et al., 2011). Martian internal layers have also been used to identify158
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large deposits of carbon dioxide ice containing the equivalent of 80% of the mass of the159

Martian atmosphere (Phillips et al., 2011).160

1.2.2 Basal Sliding161

Theoretical descriptions of basal sliding can be broadly divided into two categories: hard bed162

models and soft bed models (Clarke, 2005). Hard bed models describe basal sliding as the163

result of three processes: regelation (melting on the upstream side of obstacles and freezing164

on the downstream side), viscous creep of the ice around obstacles, and the formation of165

water-filled cavities in the lee of obstacles (Weertman, 1957; Lliboutry , 1968; Clarke, 2005;166

Fowler , 2010). All of these processes strengthen as basal temperature approaches the melting167

point. Cavitation depends on subglacial water pressure. All of these processes also depend168

on bed roughness, a quantity that is generally unknown and that tends to evolve over time169

in response to bedrock erosion and sediment transport (Fowler , 2010). Regelation and creep170

take the form of power-law relationships between sliding velocity and basal drag (Weertman,171

1957), a quality that makes them appealing to ice-sheet modelers in need of a simple basal172

boundary condition (Cuffey and Paterson, 2010). However, cavitation produces a multi-173

valued sliding law and can also lead to a Coulomb-plastic description of drag, in which174

basal stress is proportional to the pressure difference between ice and water, unrelated to175

sliding velocity (Lliboutry , 1968; Iken, 1981; Schoof , 2005). A Coulomb-plastic description is176

conceptually simple but quite difficult to implement in an ice sheet model. With a Coulomb-177

plastic boundary condition, basal sliding cannot be determined locally and must be solved178

for across the entire domain simultaneously (Cuffey and Paterson, 2010).179

Coulomb-plastic behavior is also the most plausible model of soft-bed sliding (Tulaczyk180

et al., 2000a,b). For a long time, there was a dispute in glaciology between those who181

considered subglacial till to have a Coulomb-plastic rheology (e.g.Kamb, 1991) and those who182

considered it to have a viscous or quasi-viscous rheology (e.g. Boulton and Hindmarsh, 1987).183

The chief evidence for quasi-viscous behavior is the observation of deformation distributed184

with depth within till sequences. Perfect Coulomb behavior should lead to the generation185

of a localized shear band at the ice-till interface (Fowler , 2010). However, the material186

heterogeneity that is often present within till sequences where distributed deformation is187

observed (e.g. Boulton and Hindmarsh, 1987, Figure 2), together with vertically propagating188

waves of water pressure (Iverson, 1998; Tulaczyk et al., 2000a), may be sufficient to explain189

these observations. In addition, glaciological theories about till rheology must be consistent190

with the larger body of scientific knowledge about the behavior of granular materials, which191

are known to have yield stresses (Kamb, 1991; Clarke, 2005). Laboratory experiments on192

actual till samples support the Coulomb-plastic description of till rheology (Kamb, 1991;193

Iverson, 1998; Tulaczyk et al., 2000a).194

1.2.3 Basal Hydrology195

Subglacial water is crucial to both the hard-bed and the soft-bed descriptions of basal sliding.196

Subglacial water flow is controlled by the hydraulic potential, or the sum of gravitational197

potential and pressure potential (Shreve, 1972). The pressure potential of subglacial water198

is typically defined as the sum of the overburden pressure of the ice sheet and the effective199
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pressure (effective pressure being the difference between ice overburden and actual water200

pressure) (Shreve, 1972; Rothlisberger and Lang , 1987). This formulation is useful because201

most sliding laws are sensitively dependent on effective pressure and because overburden202

pressure is typically an order of magnitude greater than effective pressure for large ice sheets203

when surface melt is not available to drive the creation of an efficient drainage system (Iken,204

1981; Engelhardt et al., 1990; Schoof , 2010; Hewitt , 2013; Meierbachtol et al., 2013; Andrews205

et al., 2014).206

Subglacial water can have a variety of forms in addition to the deep subglacial lakes207

discussed above. Large (meter-scale) subglacial pipes with roughly circular or semi-circular208

cross-sections are commonly observed discharging water at the toe of alpine glaciers during209

the summer melt season (Rothlisberger and Lang , 1987; Cuffey and Paterson, 2010). These210

channels are controlled by the balance between inwards creep closure driven by the ice211

overburden pressure and outwards melting of the ice walls driven by viscous dissipation212

within the flowing water (Rothlisberger , 1972; Shreve, 1972; Nye, 1976). Channelized water213

flow has the special property that the water pressure drops with increasing discharge, causing214

the water system to naturally coalesce into a system of tributaries feeding a central trunk215

(Rothlisberger , 1972; Nye, 1976). An efficient channelized drainage system is thus capable216

of transporting large volumes of water without flooding a large area of the bed, reducing217

sliding velocity (Nye, 1976; Rothlisberger and Lang , 1987). Channelized drainage systems218

adjust their capacity on timescales of days to weeks and are capable of both steady-state219

flow and outburst floods known as jokulhaups (Nye, 1976).220

In contrast to concentrated channels, distributed subglacial cavities facilitate basal sliding221

(Walder , 1986; Kamb, 1987; Schoof , 2010). Distributed cavities, as discussed above, form in222

the lee of subglacial obstacles. Because distributed cavities cover a large fraction of the basal223

area, they greatly reduce basal drag and enhance basal sliding (Cuffey and Paterson, 2010).224

Distributed cavities are primarily opened by the formation of void space as ice slides over225

the lee of bedrock bumps (Walder , 1986), while channels are primarily opened by melting226

of the walls (Nye, 1976). There is a feedback in which faster sliding velocities promote the227

opening of cavities because the ice cannot flow quickly into the space behind the obstacles,228

and more cavities in turn promote faster sliding. This feedback is one of the mechanisms229

responsible for sudden glacier surges and gives rise to multi-valued sliding laws (Kamb, 1987;230

Fowler , 1987). A cavity system, unlike a channel system, has the property that increased231

flow rate tends to be associated with higher pressure, so that water tends to spread out rather232

than concentrate (Walder , 1986; Kamb, 1987; Schoof , 2010). Basal hydrologic systems can233

switch spontaneously between cavity and channel systems in response to variable melt input,234

producing simultaneous changes in basal drag and sliding velocity (Schoof , 2010).235

Subglacial water can also exist in thin sheets at the ice-bed interface (Weertman, 1969;236

Weertman and Birchfield , 1983a,b; Clarke, 2005; Creyts and Schoof , 2009) or in the pore237

space of subglacial sediments (Alley et al., 1986; Blankenship et al., 1986; Engelhardt et al.,238

1990; Tulaczyk et al., 2000a; Clarke, 2005; Christianson et al., 2014). Thin sheets cover239

small basal obstacles, partially lifting the ice off of its bed and concentrating drag at the240

remaining larger obstacles (Creyts and Schoof , 2009). Thin sheets are a logical extension of241

distributed cavities. Water-saturated subglacial sediments weaken the bed, facilitating basal242

sliding and reducing basal drag (Alley et al., 1986). Water-saturated subglacial “swamps”243

are one of the forms of subglacial water described in radar observations in addition to classic244
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lakes (Carter et al., 2007; Langley et al., 2011; Christianson et al., 2014).245

1.2.4 Ice Flow Modeling246

The fundamental equations used to determine the flow field in ice sheet models are the247

Stokes equations, which describe the conservation of mass and momentum in a continuous248

fluid moving by laminar flow (Cuffey and Paterson, 2010). The rheology of ice is typically de-249

scribed as a non-Newtonian fluid according to Glen’s law (Glen, 1953). However, the Stokes250

equations are computationally intensive: in three dimensions, they have four unknowns and251

four equations per grid cell. The unknowns are the three components of velocity plus the252

pressure. The equations are the conservation of the three components of linear momentum253

plus the conservation of mass (Gerya, 2010). In the “Full Stokes” treatment, all of these254

unknowns, in every grid cell in the model, must be solved for simultaneously (Gerya, 2010).255

This simultaneous computation must be repeated in every timestep. As a result, glaciologists256

have long utilized a number of simplified approximations to the Stokes equations.257

The oldest approximation is the Shallow Ice Approximation (SIA) (Fowler and Larson,258

1978; Hutter , 1981). This approximation makes the simplifying assumption that, because259

the ice sheet is much thinner than it is wide, the only stress component that matters is260

vertical shear. Under this assumption, the flow equations for ice reduce to local 1D vertical261

integrations: shear stress is determined by integrating down from the surface, and then262

velocity is determined by integrating up from the bed. The vertical profile in every horizontal263

grid cell can be solved for independently, completely eliminating the necessity for a large264

coupled solution. SIA models produce accurate solutions where the ice is moving mostly by265

internal deformation (MacAyeal , 1989).266

A complimentary approach to the SIA is the Shallow Shelf Approximation (SSA) (MacAyeal ,267

1989). This approximation also takes advantage of the fact that the ice sheet is much thin-268

ner than it is wide, but instead of considering local vertical flow columns, it only considers269

vertically averaged velocity and rheology. Under this approximation, the problem is still a270

system of coupled equations requiring a simultaneous solution of all grid cells, but the grid in271

question is only two-dimensional rather than three-dimensional. Longitudinal stresses and272

lateral shear are included in SSA models, but vertical shear is not. SSA models are valid273

where the ice flows rapidly via basal slip, such as ice streams and ice shelves (MacAyeal ,274

1989). Many ice sheet models use a hybrid approach between SIA and SSA flow equations,275

because SIA and SSA are valid in complementary regions of the ice sheet. In the hybrid276

approach, the velocity computed by the SSA model is either used as a sliding velocity for the277

SIA integration, or the two approximations are used in separate areas (Bueler and Brown,278

2009; Pollard and DeConto, 2009; Winkelmann et al., 2011).279

The last approximation short of full Stokes is the “Higher Order” model (Blatter , 1995;280

Pattyn, 2002). In the higher order model, all three dimensional grid cells must still be solved281

for simultaneously, just as they are in full Stokes. However, two simplifying assumptions282

are made about the vertical dimension: it is assumed that hydrostatic pressure completely283

satisfies the vertical force balance, and vertical velocity is determined by mass balance after284

the horizontal velocity is computed. As a result, the number of unknowns per grid cell285

is reduced from four to two. Chapter 3 uses a higher order model in a two-dimensional286

flowline.287
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Flowline (or flowband) models are a convenient way to reduce a three dimensional prob-288

lem into a two dimensional one (e.g. Nye, 1959; Reeh, 1988, 1989; Dahl-Jensen, 1989).289

Flowline models use a horizontal coordinate aligned in the flow direction in order to model a290

vertical plane through the ice sheet. The cross-flow dimension is either ignored or included291

via a variable flowband width derived from a known ice sheet geometry. Both Chapter 3292

and Chapter 4 use a flowline model. Chapter 4 simplifies the problem further by using a293

kinematic flowline model.294

Kinematic models derive the velocity field from mass conservation forced by surface295

and basal mass balance. The effects of momentum conservation, variable rheology, and296

variable basal slip are represented by varying distributions of ice flow with depth (Waddington297

et al., 2007). Kinematic models, whether in flowband or 3D, are extremely common in ice298

stratigraphy modeling because they capture all of the major influences on layer geometry299

in a computationally efficient manner (Waddington et al., 2001; Jacobson and Waddington,300

2004, 2005; Parrenin et al., 2006; Parrenin and Hindmarsh, 2007; Waddington et al., 2007;301

Leysinger Vieli et al., 2007; Hindmarsh et al., 2009; MacGregor et al., 2009b; Leysinger Vieli302

et al., 2011).303

As discussed above, stratigraphy models have been used in conjunction with stratigraphic304

data to infer flow, accumulation, melt, and rheology (Section 1.2.1). Stratigraphy models305

have been used to extend isotopic data away from core sites (Clarke et al., 2005), and predict306

temperature and attenuation within the ice column (MacGregor et al., 2012). Stratigraphy307

models have also been used in idealized domains to learn more about ice stratigraphy itself308

and clarify the relationships between stratigraphy and boundary conditions (Waddington309

et al., 2001; Jacobson and Waddington, 2004, 2005; Hindmarsh et al., 2006; Parrenin et al.,310

2006; Leysinger Vieli et al., 2007; Parrenin and Hindmarsh, 2007). All stratigraphy models311

are one of two basic types: either the model solves the age equation on a fixed Eulerian312

grid (e.g. Clarke et al., 2005), or the model tracks the age of Lagrangian tracers that it313

advects through the velocity field (e.g. Jacobson and Waddington, 2005). Eulerian models314

have the advantage of being easily added to existing model grids, but the disadvantage that315

fine structure in the stratigraphic geometry and local folds tend to be smoothed out by the316

artificial diffusion inherent in numerical advection schemes (Clarke et al., 2005). Lagrangian317

models have the advantage of representing fine structure and contorted folds without artificial318

diffusion, but the disadvantage of requiring a large amount of numerical “bookkeeping” in319

order to keep track of all the tracers. The stratigraphic models I used in Chapters 3 and320

4 are both Lagrangian models in order to resolve the structure of overturned basal folds321

observed in the radar data.322

1.3 Chapters323

The overall flow of the chapters moves from freeze-on, to traveling patches, and back to324

freeze-on. The thesis begins with an observational look at the water networks supplying325

basal freeze-on in Chapter 2, then moves to the development of the traveling patches model326

as an alternate explanation for the observed basal structures in Chapters 3 and 4, and then327

returns to freeze-on from a simple modeling perspective in Chapter 5.328

Chapter 2 identifies the water networks that feed freeze-on units in East Antarctica. The329
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networks are composed of numerous small subglacial lakes organized along bedrock valleys.330

Some of the networks terminate under the large basal units observed in radar (Bell et al.,331

2011), suggesting water transport towards freezing regions. Chapter 2 was published in the332

Journal of Geophysical Research: Earth Surface in 2013 (Wolovick et al., 2013).333

Chapter 3 proposes an alternate model for the production of large basal structures in334

continental ice sheets, particularly the structures observed in subdued basal topography in335

the interior of northern Greenland (Bell et al., 2014). I found that thermally controlled336

slippery patches at the ice sheet base can migrate downstream over time. Convergence337

produced by the gradient in basal slip around these patches produces uplift within the ice338

sheet. When the patches move with the ice sheet, this uplift can produce large stratigraphic339

structures that resemble the observations. This new feedback stresses the importance of340

time-variable basal slip and enlarges our understanding of the relationship between slip and341

stratigraphy. Chapter 3 was published in Geophysical Research Letters in 2014 (Wolovick342

et al., 2014).343

Chapter 4 generalizes the connection between basal slip and internal stratigraphy found344

in Chapter 3. Here I used a kinematic model in a moving reference frame to identify over-345

turning vortices that form in the lower portion of the ice column above a moving sticky346

patch. The dimensions of the vortex depends on the regional sliding velocity and on the347

propagation velocity of the patch. I used three example observed radar folds to constrain348

model parameters using data. This chapter has been submitted to the Journal of Geophysical349

Research: Earth Surface.350

Chapter 5 returns to basal freeze-on by exploring the conditions necessary to produce351

large basal freeze-on structures inside ice sheets. I explore the dominant factors controlling352

both conductive cooling and supercooling, as well as the ice flow conditions that encourage353

the formation of large basal structures from refrozen ice. I conclude with a discussion of the354

water supply and glaciological settings that promote basal freeze-on, as well as the settings355

where large basal structures are better explained by traveling patches. Chapter 5 is in356

preparation for publication.357
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Chapter 2358

Identification and control of subglacial359

water networks under Dome A,360

Antarctica361

Michael J. Wolovick, Robin E. Bell, Timothy T. Creyts, and Nicholas Frearson.362

Published in Journal of Geophysical Research: Earth Surface, Vol. 118, 1-15, 2013363

2.1 Abstract364

Subglacial water in continental Antarctica forms by melting of basal ice due to geothermal365

or frictional heating. Subglacial networks transport the water from melting areas and can366

facilitate sliding by the ice sheet over its bed. Water flows underneath an ice sheet mainly367

down gradients in ice overburden pressure and bed elevation. We identify small (median 850368

m) water bodies within the Gamburtsev Subglacial Mountains in East Antarctica organized369

into long (20-103 km) coherent drainage networks using a dense (5 km) grid of airborne370

radar data. The individual water bodies are smaller on average than the water bodies371

contained in existing inventories of Antarctic subglacial water and most are smaller than372

the mean ice thickness of 2.5 km, reflecting a focusing of basal water by rugged topography.373

The water system in the Gamburtsev Subglacial Mountains reoccupies a system of alpine374

overdeepenings created by valley glaciers in the early growth phase of the East Antarctic375

Ice Sheet. The networks follow valley floors either uphill or downhill depending on the376

gradient of the ice sheet surface. In cases where the networks follow valley floors uphill377

they terminate in or near plumes of freeze-on ice, indicating source to sink transport within378

the basal hydrologic system. Because the ice surface determines drainage direction within379

the bed-constrained network, the system is bed-routed but surface-directed. Along-flow380

variability in the structure of the freeze-on plumes suggests variability in the networks on381

long (10’s of ka) timescales, possibly indicating changes in the basal thermal state.382

2.2 Introduction383

Subglacial water networks transport mass and energy underneath continental ice sheets.384
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Their presence influences ice sheet thermal structure, rheology, and basal lubrication. Changes385

in basal lubrication are responsible for a wide range of dynamic ice sheet behavior, including386

streaming and surging (e.g. Cuffey and Paterson, 2010). Networks with widths greater than387

several times the ice thickness have been traced using the characteristic signature they leave388

in ice surface curvature (Remy and Legresy , 2004). Other water networks are active over389

timescales from months to years and have been traced by correlating the filling and draining390

cycles of active lakes identified using repeat-track analysis of satellite altimetry data (Gray391

et al., 2005; Fricker et al., 2007, 2010; Smith et al., 2009). Satellite altimetry has also been392

used to identify active linkages between individual subglacial lakes (Wingham et al., 2006)393

identified previously using Radio-Echo Sounding (RES) data (Siegert et al., 2005). Networks394

identified using satellite remote sensing tend to have lengths on the order of 10-100 km, while395

the most abundant individual water bodies identified using RES are on the order of a few396

km wide (Dowdeswell and Siegert , 1999, 2003). Other authors have located individual sub-397

glacial water bodies using RES measurements of reflectivity, morphology, hydraulic gradient,398

or basal roughness (e.g. Peters et al., 2005; Carter et al., 2007; Oswald and Gogineni , 2008).399

In this paper, we use a dense grid of RES data to identify hydrologic networks within the400

Gamburtsev Subglacial Mountains (hereafter, Gamburtsevs) in East Antarctica.401

The Gamburtsevs are a mountain range completely covered by ice and are located un-402

derneath Dome A, the highest point of the East Antarctic Ice Sheet (EAIS) (Figure 2.1 a403

and b). They were created by the rejuvenation of a Proterozoic orogenic crustal root during404

Permian and Cretaceous rifting (Ferraccioli et al., 2011). The morphology of the mountains405

is dominated by a dendritic valley network created by a pre-glacial fluvial system overprinted406

by alpine-style glacial features during the early growth of the EAIS (Bo et al., 2009). Ero-407

sion has been negligible since the EAIS was well established at 14-34 ma (Cox et al., 2010;408

Jamieson et al., 2010). The mountains have been shielded from subglacial erosion by low409

ice velocities (Rignot et al., 2011), the presence of cold-based ice (Pattyn, 2010), and by410

the widespread presence of basal freeze-on (“accretion”) that shielded the mountain peaks411

from contact with subglacial water (Creyts et al., 2014)1. Accretion processes appear to be412

active, producing what have been described as “valley head” and “valley wall” accretion ice413

reflectors (Bell et al., 2011). The valley head reflectors form organized plumes of accreted ice414

that are imaged up to 100 km from their source regions in the direction of ice flow. Five of415

the nine networks we identify terminate at or near the source regions of valley head accretion416

reflectors identified by Bell et al. (2011), indicating source to sink transport within the basal417

hydrologic system.418

1This reference has been changed from the published version, because Creyts et al. (2014) was in review
when this chapter was originally published.
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Figure 2.1: Geographic setting: (a) surface elevation relative to WGS84 from Bamber et al. (2009), smoothed
at a 5 km wavelength, with thin contours at 25 m and thick contours at 100 m, (b) bed elevation, gridded with
a minimum curvature algorithm and smoothed at a 5 km wavelength, with thin contours at 250 m and thick
contours at 1000 m. Blue lines show the locations of the radar echograms in Figure 3, (c) hydraulic head,
calculated from (a) and (b), with thin contours at 25 m and thick contours at 100 m, and (d) distribution
of the flight lines that were used for this study. Inset map shows survey area in relation to the Antarctic
grounding line.

2.3 Methods419

2.3.1 Survey420

The data presented in this paper were collected in December 2008 and January 2009 by421

the AGAP (Antarctic’s GAmburtsev Province) expedition as part of the International Polar422

Year 2007-2009. The main grid lines of this survey are spaced 5 km apart and oriented423

roughly parallel to local north, while the tie lines are spaced 33 km apart and oriented424

roughly parallel to local east (Figure 2.1d). The survey was conducted with two Twin425

Otter aircraft equipped with ice-penetrating radars, laser ranging systems, gravimeters, and426

magnetometers. The two planes were based at separate camps (AGAP-S and AGAP-N)427

that surveyed the southern and northern halves of the grid, respectively. The area surveyed428

from AGAP-S was located over the summit and southern flank of Dome A, while the area429

surveyed from AGAP-N included the transition from the northern flank of Dome A into the430

fast flowing Lambert Glacier. To avoid complications associated with interpreting data from431

different radar systems and glaciological regimes we simply report on data collected from432

AGAP-S in this paper.433

2.3.2 Radar System and Processing434

The Lamont-Doherty Earth Observatory radar system, based on designs from the Center435

for the Remote Sensing of Ice Sheets (Gogineni et al., 2001; Jezek et al., 2006), has a center436
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frequency of 150 MHz, a bandwidth of 10 MHz, and a transmit power of 800 W. The system437

transmits a low-gain 3 µs and a high-gain 10 µs pulse that are combined in post-processing.438

Before decimation, the average along-track trace spacing is 1.3 m and the range bin sample439

size is 0.7 m in ice. The data are pulse compressed and then migrated with a 1D Synthetic440

Aperture Radar algorithm assuming point scattering targets following Heliere et al. (2007).441

The time resolution of the pulse compression algorithm is 10−7 s, or 8.4 m of range in ice.442

We scale the matched filter of the migration algorithm to eliminate the effect of aperture443

size on echo power by dividing the filter by the number of bins over which it is applied.444

The along-track resolution of the SAR algorithm (reciprocal of the Doppler bandwidth)445

is depth-dependent but is 20 m for ice depths typical of the Gamburtsevs. The data are446

decimated by a factor of 10, resulting in a final resolution of 13 m in the horizontal and 7447

m in the vertical. The bed echo is picked with a hybrid manual-automatic system using the448

steepest vertical gradient or the rising edge of the signal to represent the bed depth. The449

bed returned power is the brightest pixel within 50 m of the bed depth. We low-pass filter450

the output of the picking algorithm along track at 60 m. The ice thickness measurements451

have an RMS crossover error of 69 m and the bed returned power measurements, corrected452

for geometric spreading, have an RMS crossover error of 6.0 dB. Of the 6.0 dB errors in bed453

returned power, 3.7 dB can be attributed to variability in transmitted power and system454

characteristics, as measured by the standard deviation of the direct arrival. Ice thickness is455

gridded using a minimum curvature algorithm and then smoothed using a Gaussian filter456

with a standard deviation of 2.5 km, corresponding to a nominal cutoff wavelength equal to457

the line spacing of 5 km. Ice thickness is converted to bed elevation using the surface Digital458

Elevation Model (DEM) from Bamber et al. (2009) smoothed in the same manner as the ice459

thickness grid.460

2.3.3 Water Identification461

We use the intersection of two methods to identify subglacial water bodies: reflectivity anal-462

ysis and manual digitization. In the reflectivity analysis we correct observed bed echo power463

for englacial attenuation to map reflectivity anomalies. We use high reflectivity anomalies464

to discriminate potential water bodies. In the manual digitization analysis an operator ex-465

amines the radar echograms and selects reflectors as potential water bodies on the basis of466

their morphological fit to specified criteria (Section 2.3.5). The output of the first method is467

a set of individual points exceeding the reflectivity threshold, and the output of the second468

method is a set of line segments corresponding to discrete reflectors that meet the criteria.469

We combine the outputs from both methods by taking those picked candidates that contain470

bright reflectivity anomalies within their horizontal extent to produce our highest confidence471

identification of water bodies.472

2.3.4 Reflectivity Anomalies473

To convert the observed echo power to basal reflectivity anomalies, we correct for geomet-474

ric spreading assuming spreading scales with the inverse squared power of the range. The475

observed echo power has a range of 119 dB. While the absolute magnitude of the geometric476

correction is large (mean=64.7 dB) the variability is small (range=9.2 dB, standard devi-477
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ation=1.38 dB). Most of the observed variability in echo power comes from sources other478

than geometric spreading. The radar equation we use, following the notation of Matsuoka479

et al. (2010), is480

[P ]dB = [K]dB − 2[L]dB − [G]dB + [R]dB, (2.1)

where square brackets represent quantities in the decibel scale ([X]dB = 10log10(X)), P is the481

observed echo power, K is a constant term including transmitted power, system gain, process-482

ing gain, birefringence and surface transmission, L represents one-way attenuation losses, G483

represents geometric spreading losses, and R represents basal reflectivity, the desired signal.484

We assume losses from birefringence and surface transmission to be constant. Correcting485

the received signal for geometric spreading losses produces geometrically corrected power486

P c, which is487

[P c]dB = [P ]dB + [G]dB (2.2)

where geometric spreading losses are [G]dB = 2[H +D/n]dB, H is the height of the aircraft488

above the ice surface, D is the ice depth, and n = ε1/2 = 1.78 is the index of refraction of489

ice.490

Anomalies in [P c]dB are caused by either changes in basal reflectivity [R]dB or changes491

in attenuation [L]dB. In order to remove the effects of attenuation, we perform a regional492

attenuation correction based on a linear best-fit to a plot of [P c]dB vs D (Jacobel et al.,493

2010). The regional attenuation correction is applied over the survey area seen in Figure 2.1494

(250 km x 500 km). For comparison, the Jacobel et al. (2010) correction applied to a single495

traverse line 1700 km long. The AGAP regional attenuation correction has a one-way slope496

of 11.7 dB/km and a correlation coefficient of -0.83 (Figure 2.2). This correction represents497

the mean dependence of total attenuation from all sources on ice thickness between separate498

sites, not the depth-averaged attenuation rate at any one site. Total attenuation is the499

integral of local attenuation rate over the ice thickness. Local attenuation rate depends500

weakly on the concentration of chemical impurities and strongly on ice column temperature501

(MacGregor et al., 2007) with temperature in turn depending on ice thickness and thermal502

boundary conditions (geothermal flux, accumulation rate, and surface temperature). The503

regional attenuation correction simply represents an empirical measure of the first-order504

dependence of geometrically corrected returned power on ice thickness (Figure 2.2) without505

considering the nonlinear dependence of attenuation rate on ice thickness. We address the506

robustness of our interpreted water networks to changes in attenuation rate in more detail507

in the discussion (Section 2.5.1). The residual to the best-fit correction is the reflectivity508

anomaly ∆[R]dB.509

We correct for horizontal deviations from the regional average attenuation rate by re-510

moving a long-wavelength signal from ∆[R]dB. Horizontal deviations in attenuation rate are511

expected based on variations in temperature caused by changing boundary conditions and512

ice thickness (Matsuoka, 2011). However, horizontal advection from ice flow acts to smooth513

out small scale changes in boundary conditions. On the one hand, consider the characteristic514

diffusive equilibration time t of an ice sheet with the average ice thickness in our survey area515

D=2.5 km: t = D2/κ 150 ka, with diffusivity κ = 1.3x10−6m2s−1. Equating horizontal516

advective timescales with vertical diffusive timescales, and assuming ice moves at a rate of517
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Figure 2.2: Distribution of geometrically corrected bed returned power with respect to ice thickness. White
contours represent the probability density function of the data. Red lines represent the best fit regional
attenuation cutoffs and 3σ, 4σ thresholds for comparison. In practice the thresholds are defined and applied
after the long-wavelength signal from Figure 2.4a is removed.

1ma−1 (1.7ma−1 measured at AGAP-S, (Bell et al., 2011)), this corresponds to a flowline518

averaging length of 150 km. On the other hand, horizontal velocity should be slower near519

the bed and near the dome, suggesting a smaller averaging length may be appropriate. We520

use an averaging window of 50 km with a Gaussian filter (standard deviation= 25 km), while521

acknowledging that the full solution to this problem would involve a 3D thermo-mechanical522

model of the ice sheet around Dome A. The reflectivity anomaly with the long-wavelength523

signal (Section 2.4.1) removed is called the short-wavelength reflectivity anomaly ∆[Rsw]dB.524

To preserve our ability to detect small water bodies we do not attempt to use a griding525

algorithm on ∆[Rsw]dB. Instead, we identify points with values of ∆[Rsw]dB exceeding one526

of two thresholds, discussed below.527

We aim to create a conservative list of reflectors we are confident are water bodies,528

rather than to make an exhaustive list of all possible water in the Gamburtsevs. Our goal in529

threshold selection is to minimize false positives at the expense of allowing false negatives. We530

use thresholds based on the statistics of the ∆[Rsw]dB dataset, 3 and 4 standard deviations531

(+19.4 dB and +25.9 dB, corresponding to probabilities of p < 0.13% and p < 0.0032%532

for an ideal normal distribution) to distinguish potential water bodies. We discuss how the533

number of points identified as potential water bodies changes with each threshold below534

(Sections 2.4.1, 2.4.3). Others authors have used a range of thresholds to delineate basal535

water. The expected reflectivity contrast between wet and dry beds is 10-15 dB (Peters536

et al., 2005) although this value is sensitive to basal roughness and the salinity of the water.537

MacGregor et al. (2012) and Matsuoka (2011) described 10 dB as the “nominal” threshold538
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for distinguishing wet and dry beds. Dowdeswell and Siegert (2003), used the range of 10-20539

dB. Jacobel et al. (2010) identified two overlapping normally distributed populations (wet540

and dry) with a mean difference of 7 dB. Oswald and Gogineni (2008) found two overlapping541

normal distributions with means separated by 10 dB. Peters et al. (2005) used a gradation542

of bed reflectivity spanning 24 dB to distinguish basal conditions with varying degrees of543

water coverage and saturation. Carter et al. (2007) used a threshold of 2 dB, relative to a544

water body’s immediate surroundings, as one of several criteria to define “definite lakes”.545

Our 19.4 dB and 25.9 dB thresholds are more conservative than previous studies to minimize546

the identification of dry bed as wet (false positives) at the expense of allowing some wet bed547

to go undetected (false negatives).548

2.3.5 Manual Digitization549

Visual inspection of radar echograms has been used extensively to identify subglacial water550

bodies (Oswald and Robin, 1973; Siegert et al., 1996, 2005). To minimize subjectivity, we551

established the picking criteria before digitization began. Our criteria are (1) brightness552

relative to surroundings at a similar depth, (2) location at or near a topographic minimum,553

(3) echo abruptness (vertical thinness), and (4) hydraulic flatness. Visible drawdown of the554

ice sheet stratigraphy indicates highly localized melt rates and can be supporting evidence555

for identifying basal water. Because basal water can flow away from melt sources and because556

melt rates must be large relative to horizontal ice velocity for drawdown to be visible, we557

have not used drawdown as a primary criterion for identifying water. We use the criterion of558

echo abruptness as a proxy for specularity, or basal smoothness (Oswald and Robin, 1973).559

A rough bed will reflect energy back towards the aircraft from a wider range of angles than a560

smooth bed, that appear at a greater range in an echogram than the nadir echo. We classify561

reflectors that unambiguously meet all of the criteria as “clear picks” and reflectors for which562

some of the criteria are absent or ambiguous “unclear picks” (Figure 2.3). Both types of563

picks are considered water “candidates”.564

During digitization, candidates are picked by an operator examining the radar data on565

a computer monitor and selecting endpoints of linear reflectors that meet the criteria. The566

operator has to make a subjective decision based on the criteria that a given reflector rep-567

resents a contiguous morphological feature. The distance between the endpoints represents568

the length of the candidate. To prevent differences in picking “style” from introducing a bias569

into the data, the same operator picked the entire dataset. The operator has to be able to570

see enough detail in the echogram to judge that the criteria have been met before selecting571

a candidate. In practice it is difficult for an operator to assess whether the criteria have572

been met for candidates less than two to three hundred meters long (∼ 20 pixels). To ensure573

we only pick candidates that are hydraulically flat, we discard candidates with a range in574

hydraulic head greater than the uncertainty in hydraulic head, described below.575
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Figure 2.3: Examples of clear and unclear picks encountered in the manual digitization process (both radar
echograms have been elevation-adjusted and returns above the surface have been blanked out; the color scale
has a range of 100 dB): (a) examples of clear manual picks and (b) an example of an unclear manual pick.
The clear picks in (a) are not only brighter than the other valleys in the image, they are brighter than the
peaks as well, even though valleys should experience more attenuation than peaks. There are small apparent
vertical offsets between the clear picks in (a) but individual water bodies are both flat and vertically thin.
In addition, drawdown of the ice sheet stratigraphy indicates basal melt here. The unclear pick in (b) is flat
in its right half and vertically thin throughout, but there are no nearby reflectors at comparable depth to
compare against. The bright reflector near 25 km in (b) is a clear pick with a length of 0.37 km, near the
limit of the resolution of manual digitization.

2.3.6 Hydraulic Head576

Subglacial water flows down the gradient of hydraulic head, a quantity calculated from both577

the ice surface and the bed elevation, although surface gradients are weighted roughly 11578

times more than bed gradients in driving water flow (Shreve, 1972; Clarke, 2005). Assuming579

water pressure is equal to ice overburden pressure, hydraulic head (h), is calculated from580

surface elevation (S), bed elevation (B), and ice thickness (D=S-B), via581
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h = (ρi/ρw)D +B, (2.3)

h = (ρi/ρw)S + (1− ρi/ρw)B, (2.4)

with ice density ρi = 917kgm−3, and water density ρw = 1000kgm−3 (Shreve, 1972; Clarke,582

2005). Hydraulic head is calculated both along flight lines and for the gridded DEM. To583

determine the uncertainty in hydraulic head along flight lines we propagate the crossover584

errors in bed elevation and the error in the surface DEM (mean value of 2.6 m within our585

survey area (Bamber et al., 2009)) through equation 2.4, assuming that the crossover error586

in ice thickness represents the error in bed elevation. The root-mean-square uncertainty587

in hydraulic head is 8.2 m. To determine drainage routes and catchment area, we apply588

a routing algorithm to the gridded hydraulic head after first filling closed basins. We use589

a multiple slope routing algorithm (Quinn et al., 1991). Hillslope routing algorithms have590

been used extensively to delineate subglacial flow paths beneath both glaciers and ice sheets591

(e.g. Flowers and Clarke, 1999; Le Brocq et al., 2009; Pattyn, 2010). Basins are filled by592

iteratively raising each grid cell a small spillover amount above its sill level. Less than 5%593

of the grid cells require basin fill, with a mean fill level of 4 m. The maximum basin fill594

required for any single grid cell is 24 m.595

2.4 Results596

2.4.1 Reflectivity Anomalies597

The long-wavelength reflectivity anomalies are characterized by an east-west gradient in598

the north of the survey grid, with the highest values occurring in the northeast corner599

(Figure 2.4 a). In the south of the survey grid, the long-wavelength reflectivity anomalies600

are characterized by a central high flanked by lows on the east and west edges. If the601

long-wavelength reflectivity anomalies represent thermal structure, the lows correspond to602

warm regions and the highs correspond to cold regions. Long-wavelength patterns in the603

thermal boundary conditions- geothermal flux, accumulation rate, and surface temperature-604

can produce a signal in thermal structure, as can long-wavelength patterns in ice thickness or605

strain heating. However, long-wavelength patterns in the impurity content of the ice or water606

distribution at the bed can also produce a signal in long-wavelength reflectivity (MacGregor607

et al., 2012). Further interpretation of the long-wavelength reflectivity signal will require608

studies of the ice sheet thermal structure, local climate history, and subglacial geology.609

The short-wavelength reflectivity anomalies contain 9073 points (0.44% of the total) at610

the 3σ level and 2682 points (0.13%) at the 4σ level. These percentages are 3 times and 40611

times as large, respectively, as would be expected for an ideal normal distribution. Previous612

studies (Oswald and Gogineni , 2008; Jacobel et al., 2010) show that basal reflectivity is well613

fit by two overlapping normal distributions (wet bed and dry bed). These results give us614

confidence that we are sampling a small wet bed distribution rather than the tail of the dry615

bed distribution. Both sets of points are generally located in local topographic minima, and616

several valleys contain distinct clusters of 4σ anomalies (Figure 2.4 b). The minimum ice617

thicknesses containing 3σ and 4σ anomalies are 1645 m and 1971 m, respectively. The raw618
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Figure 2.4: Reflectivity anomalies: (a) long-wavelength (50 km) reflectivity anomaly and (b) short-
wavelength reflectivity anomalies that passed the 3σ and 4σ thresholds overlain on bed elevation. Hill
shading for bed elevation is from two perpendicular light sources, one at the top of the page and one to the
right of the page, both at an elevation of 75◦ above the horizon. Large diamonds represent 4σ points and
small diamonds represent 3σ points. White lines are 100 m surface elevation contours.

distributions of ice thickness for both sets of points show broad maxima between 2500 and619

3500 m (Figure 2.5 a and b). When the distributions are normalized by the distribution of620

the overall ice thickness dataset they show a strong increase in the fraction of the basal area621

containing reflectivity anomalies with increasing ice thickness (Figure 2.5 c and d). However,622

even at large ice thicknesses the reflectivity anomalies are a small percentage of the total623

basal area. No single ice thickness contains more than 5% of 3σ reflectivity anomalies or 1%624

of 4σ reflectivity anomalies. Overall, these results are consistent with subglacial water that625

is generated by melting in deep valleys.626

21



Figure 2.5: Distribution of ice thickness for the reflectivity anomalies: (a) distribution of ice thickness for
3σ reflectivity anomalies. Black bars represent all anomalies, light blue bars represent anomalies contained
within unclear picks, dark blue bars represent anomalies contained within clear picks, and the red line
represents the distribution of ice thickness for the entire dataset, (b) same as (a), but for 4σ anomalies, (c)
distribution of ice thickness for 3σ anomalies, normalized by the distribution of ice thickness for the overall
dataset and plotted on semilogarithmic axes, and (d) same as (c), but for 4σ anomalies.

2.4.2 Manual Digitization627

Digitized candidates are found throughout the valley networks of the Gamburtsevs but often628

cluster in the valleys that also have clusters of reflectivity anomalies (Figure 2.6 a, cf. Figure629

2.4 b). There are 172 clear picks and 300 unclear picks, of which 161 and 254 (94% and630

85%) passed the hydraulic flatness criterion. These include 0.59% and 0.69% of all data631

points, respectively. Clear picks are rare in the southeast corner (lower left on all map632

figures) of the grid, where the thickest ice is located, although scattered candidates are633

present in valleys throughout the survey area (Figure 2.6 a). The absence of water in the634

southeastern portion of the study area may be because downhill flow limits ponding and635

prevents us from detecting basal water as discussed later (Section 2.4.4). It could also be636

because thermal boundary conditions are different and meltwater is not generated here. As637

with the reflectivity anomalies, the raw distributions of ice thickness within the candidates638

display broad maxima between 2500 and 3500 m (Figure 2.7 a and b), while the normalized639
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Figure 2.6: Manually digitized candidates: (a) all manually picked candidates overlain on bed elevation. Hill
shading is identical to Figure 2.4b. Large black circles represent clear picks and small black circles represent
unclear picks. White lines represent 100m surface elevation contours and (b) the subset of clear picks that
also contain 4σ reflectivity anomalies. This intersection set represents the candidates we are most confident
actually represent water bodies.

distributions show a strong increase in the fraction of the bed contained by candidates with640

increasing ice thickness (Figure 2.7 c and d). Manual digitization identifies a larger fraction641

of the deep ice as containing water than the reflectivity analysis does, at 23% for the unclear642

picks and 14% for the clear picks (Figure 2.7 c and d, cf Figure 2.5 c and d).643
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Figure 2.7: Distribution of ice thickness for points within manually digitized water bodies: (a) distribution
of ice thickness for unclear picks. Black bars represent the ice thickness of all unclear picks, light blue bars
represent unclear picks containing 3σ reflectivity anomalies, dark blue bars represent unclear picks containing
4σ anomalies, and the red line represents the distribution of ice thickness for the entire dataset, (b) same as
(a), but for clear picks, (c) distribution of ice thickness for points within unclear picks, normalized by the
distribution of ice thickness for the overall dataset and plotted on semilogarithmic axes, and (d) same as (c),
but for clear picks.

2.4.3 Overlap of Methods644

The candidates most likely to represent water bodies are those that are both clear picks645

and contain 4σ reflectivity anomalies, the intersection set (Table 2.1). A majority, 65%, of646

the clear picks fall into this category. In contrast, only 4% of the unclear picks contain 4σ647

reflectivity anomalies. The set of 4σ anomalies is nearly as exclusive as the intersection set,648

with 91% of its members contained within a clear pick as opposed to 62% for the set of 3σ649

anomalies.650

The lengths of water bodies we find in the intersection set are shorter than most of the651

subglacial lakes that have been found by previous studies (Figure 2.8). We compare the652

water bodies we find with those described by Carter et al. (2007) and Siegert et al. (2005)653

using kernel density estimation to approximate the underlying continuous distribution from654

our discrete sample of it (Bowman and Azzalini , 1997). The median value of our distribution655
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Figure 2.8: Size distribution of water bodies: (a) distribution of the logarithm of water body length for
the intersection set (clear picks containing 4σ reflectivity anomalies). Gray bars represent the histogram
and the red line represents a kernel density estimate of the underlying probability density function using a
Gaussian kernel and (b) comparison of the probability density function in (a) with similar functions derived
from published subglacial lake inventories.

is 850 m, substantially smaller than most previously discovered subglacial lakes. The Carter656

et al. (2007) inventory has a bimodal distribution with peaks at 4 km and 10 km, and the657

Siegert et al. (2005) inventory has a single broad peak with a maximum near 6 km. Our658

distribution may be skewed towards smaller water bodies because of the closer line spacing659

in the AGAP survey. The flight line spacing in the AGAP survey is 5 km, the Carter et al.660

(2007) inventory was drawn from three surveys with line spacings between 5-10 km, and661

the Siegert et al. (2005) inventory was drawn from many surveys with line spacings in the662

range of 5-50 km. However, while dense line spacing can explain why we do observe more663

small water bodies than previous surveys, it cannot explain why we do not observe any large664

water bodies. A more likely explanation is that rugged topography within the Gamburtsevs665

concentrates water within small bedrock depressions. The Gamburtsevs are considered to be666

among the roughest subglacial topography in Antarctica (Ferraccioli et al., 2011). Elsewhere667
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Table 2.1: List of Water Bodies in the Intersection Set, Clear Picks Which Also Contain 4σ Reflectivity
Anomalies.

Number Lat Lon
Length
(km)

Ice
Thickness
(m)

Network Number Lat Lon
Length
(km)

Ice
Thickness
(m)

Network

1 -79.705 71.957 0.74 3014 - 54 -80.330 80.000 1.07 3209 G
2 -83.940 66.754 1.78 3088 - 55 -81.746 80.312 0.79 3332 E
3 -80.789 71.284 1.17 3349 - 56 -81.784 80.314 0.68 3312 E
4 -82.889 69.453 1.25 3328 A 57 -82.888 80.721 1.09 3275 I
5 -81.673 70.990 0.64 2487 - 58 -81.740 80.935 0.79 3307 E
6 -83.155 69.424 0.61 2919 A 59 -80.677 80.830 0.94 3582 G
7 -82.949 69.735 3.05 3248 A 60 -80.280 80.796 1.82 3424 G
8 -82.973 69.700 0.63 3208 A 61 -83.674 81.623 0.61 3340 -
9 -83.149 69.818 0.81 2960 A 62 -82.795 81.427 0.57 3151 I

10 -83.041 69.976 1.55 3141 A 63 -80.628 81.100 0.31 3547 G
11 -83.062 69.944 1.13 3096 A 64 -80.302 81.065 1.31 3423 G
12 -83.180 70.154 2.57 2927 A 65 -82.150 81.641 0.40 2787 E
13 -82.318 71.251 0.33 2720 - 66 -82.123 81.960 0.78 2861 E
14 -83.415 70.198 3.67 2461 A 67 -82.114 81.957 0.86 2842 E
15 -83.235 70.458 2.13 2871 A 68 -81.950 81.919 0.92 3130 E
16 -83.310 70.746 7.50 2699 A 69 -82.006 81.933 0.67 3021 E
17 -83.259 70.818 0.71 2740 A 70 -82.018 81.936 1.04 2990 E
18 -82.882 71.296 2.71 3287 B 71 -81.574 81.835 0.61 3434 F
19 -82.991 71.536 1.21 3192 B 72 -81.584 81.837 0.30 3425 F
20 -82.971 71.554 1.55 3225 B 73 -82.697 82.470 1.42 2891 I
21 -81.715 72.828 0.23 2934 - 74 -81.541 82.136 0.54 3447 F
22 -80.845 73.505 0.35 3143 H 75 -79.877 81.786 1.25 2999 -
23 -79.904 74.108 0.35 3207 - 76 -81.414 82.703 0.92 3546 F
24 -83.087 71.792 6.36 3065 B 77 -81.378 82.993 0.43 3536 F
25 -83.000 72.263 0.28 3156 B 78 -81.512 84.560 0.40 3356 F
26 -80.861 74.063 1.94 3272 H 79 -80.911 84.259 0.91 3577 -
27 -83.210 72.410 1.59 2881 B 80 -81.516 84.867 0.98 3321 F
28 -79.948 75.114 0.39 2995 - 81 -83.248 69.327 1.01 2848 A
29 -82.228 74.025 1.30 3297 C 82 -83.277 70.746 1.63 2739 A
30 -82.183 74.063 1.91 3279 C 83 -83.282 71.039 2.39 2767 A
31 -82.399 74.234 0.61 2906 C 84 -82.949 69.703 1.24 3261 A
32 -82.495 74.161 0.76 2776 C 85 -82.985 71.468 0.52 3176 B
33 -82.263 74.334 0.36 3150 C 86 -82.998 72.233 0.91 3161 B
34 -82.396 74.576 2.64 2914 C 87 -83.060 80.972 2.38 3316 I
35 -82.339 74.615 1.17 3038 C 88 -82.396 72.716 0.84 2962 -
36 -82.997 74.484 0.32 2806 - 89 -82.421 74.389 0.66 2932 C
37 -82.465 74.869 0.85 2793 C 90 -82.425 74.718 1.27 2899 C
38 -82.450 74.879 0.67 2821 C 91 -82.426 74.775 0.32 2873 C
39 -81.002 75.986 0.43 3080 - 92 -82.453 78.236 0.72 2343 D
40 -82.288 76.994 1.45 2974 D 93 -82.453 78.281 0.34 2373 D
41 -81.795 77.174 0.64 3058 - 94 -82.453 78.164 0.50 2332 D
42 -82.347 77.644 0.51 2795 D 95 -82.453 78.132 0.49 2329 D
43 -82.425 77.963 2.41 2421 D 96 -82.452 78.107 0.29 2339 D
44 -82.412 77.966 1.33 2457 D 97 -82.452 78.074 0.65 2325 D
45 -82.398 77.969 1.78 2564 D 98 -82.452 78.038 0.29 2310 D
46 -82.549 78.273 3.64 2164 D 99 -82.152 81.559 0.89 2765 E
47 -82.507 78.282 0.98 2267 D 100 -82.151 81.633 0.31 2799 E
48 -82.492 78.285 0.87 2327 D 101 -82.150 81.783 0.93 2779 E
49 -82.453 78.295 1.07 2359 D 102 -81.543 82.122 0.55 3431 F
50 -81.258 78.526 0.37 3030 - 103 -81.519 84.892 1.50 3324 F
51 -81.918 79.362 0.44 3038 E 104 -80.919 84.273 1.55 3548 -
52 -83.703 79.595 0.45 3375 - 105 -80.639 81.022 0.79 3542 G
53 -81.818 79.999 0.31 3244 E

Lat and Lon represent the location of the pick center, ice thickness represents the mean value of all points
within the pick, and a pick is counted as within a network if one of its endpoints is within 5 km of any of
the network paths. Length denotes along track length.

in Antarctica, broad subglacial basins trap large subglacial lakes, but the Gamburtsevs are668

dominated by prominent peaks dissected by deep valleys that only allow water to collect in669

small bedrock depressions.670

2.4.4 Water Networks671

Most of the water bodies in the intersection set are clustered into 9 distinct networks that672

we label alphabetically A-I (Figure 2.9). Seven of the nine networks (all except G and I)673
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Figure 2.9: Routing algorithm and interpreted networks (A-I) overlain on bed elevation with hillshading
identical to Figure 2.4b. Black dots from the routing algorithm represent all grid cells with catchment area
greater than 250 km2. Solid blue lines represent the main path of each network and dashed blue lines
represent tributaries or distributaries. The orange patches represent the “valley head” accretion plumes
identified by Bell et al. (2011). Note that the accreted ice bodies form at their upstream ends (upper right
in this figure) and are subsequently advected downstream by the ice flow. Some of the water networks
terminate at the start of the accretion plumes. The lake identified by Popov and Masolov (2007) in Russian
RES data taken in the late 1980s is lake 94 in the compilation by Siegert et al. (2005).

flow uphill towards shallower ice with conditions that favor conductive cooling of the bed.674

All 9 networks fall along parts of drainage pathways determined by the hydraulic routing675

algorithm, and all are located within bedrock valleys (Figure 2.9). The networks we observe676

have lengths ranging from 20 to 103 km and catchment areas ranging from 1700 to 8700 km2
677

(Table 2.2). Average hydraulic gradients in the networks are on the order of 10−4 − 10−3,678

while average ice thickness gradients are on the order of 10−3 − 10−2. Four of the networks679

that flow uphill terminate in the source regions for the valley head accretion ice imaged by680

Bell et al. (2011) (Figure 2.9). The networks may be terminated by loss of water through681

freeze-on to the overlaying ice sheet, or some of the water may pass through the freeze-on682

region and continue undetected (e.g. as narrow channels, thin films, or groundwater flow).683

One of the networks that does not terminate in a plume of valley head accretion ice, network684

B, terminates 20 km short of a valley head accretion plume. The separation between the685

end of the network and the start of the accretion plume suggests either episodic fluctuations686

in the network extent and accretion process, or that the water is undetected. One of the687

other networks that does not terminate in a plume of valley head accretion ice, network H,688

terminates near a plume of valley wall accretion ice. Network F flows out of the eastern edge689

of the survey grid. The remaining two networks, G and I, terminate within our survey grid690

without producing accretion plumes and are also the only two networks to flow downhill.691
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Figure 2.10: Network A: detail of 3 sequential flight lines. The first row (a1, b1, c1) shows the echograms
in the same color scale as Figure 2.3. The second row (a2, b2, c2) shows bed elevation and hydraulic head.
Note scale change of elevation in second row relative to first row, and of head relative to elevation. The
horizontal line shows the hydraulic head in the first picked water body in a2 extrapolated to the rest of the
network, and the shading represents the uncertainty in hydraulic head. The third row (a3, b3, c3) shows
short-wavelength reflectivity anomalies. The dark (light) blue regions show clear (unclear) manual picks,
and the solid (dashed) horizontal lines show the 4 (3) σ cutoff. 40 x 20 km inset map shows hydraulic head
with 10 m contours. Location of inset map given in Figure 2.9.

Our method is optimized for identifying ponded water rather than other morphologies, and692

downhill flow may be associated with higher hydraulic gradients (Table 2.2) that inhibit693

ponding of basal water and prevent us from detecting the full extent of these networks. As694

a result, the water networks we observe may be biased towards uphill flow. The difficulty in695

imaging downhill flowing networks may explain why we observe little water in the southeast696

corner of the survey grid (Figure 2.4, 2.6, 2.9) despite thick ice there. It is also possible that697

thermal boundary conditions are different and the bed is cold here. Overall, the networks are698

confined within bedrock valleys, and a majority flow uphill and terminate near the source699

regions of basal freeze-on ice.700

All of the water networks are composed of discrete individual water bodies with irregular701

shapes. In some cases the flight lines intersect multiple water bodies, in some cases they702

intersect only a single water body, and in a few cases no water bodies are observed despite703
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the presence of water bodies in adjacent flight lines crossing the same valley. Examples704

of this variable arrangement are shown in Figure 2.10. Where network A is subparallel to705

a flight line (Figure 2.10 a) we observe one unclear and four clear picks, three of which706

contain 4σ anomalies. Where network A is subperpendicular to a flight line (Figure 2.10 c)707

we only observed a single clear pick containing 4σ anomalies. Yet despite the variability in708

valley scale arrangement that we observe, all of the water bodies in this figure are within709

error margin of the same hydraulic head (Figure 2.10, row 2), suggesting that they are710

hydraulically connected to one another.711

As a whole, the networks are either hydraulically flat or sloping downwards in the direc-712

tion predicted by applying a routing algorithm to the gridded hydraulic head (Figure 2.11,713

cf. Figure 2.9). We determine the gradient of hydraulic head (Figure 2.11, Table 2.2) and714

ice thickness (Table 2.2 only) for each network by taking a best-fit line to the values for715

the individual water bodies within that network. Networks B, C, D, and H are flat and do716

not have statistically significant hydraulic gradients. We assign drainage direction for those717

networks based on the presence of freeze-on ice near one endpoint and the direction deter-718

mined by the routing algorithm. It is possible that on short timescales water can flow either719

uphill or downhill within these networks in response to minor changes in the ice surface or720

effective pressure (Wright et al., 2008). However, the large-scale structure of the hydraulic721

head is determined by the overall ice surface geometry of Dome A (Figure 2.1a,c). Over long722

timescales (<∼ 100 ka) the water must flow uphill and feed the freeze-on ice identified by723

Bell et al. (2011), assuming that Dome A has remained stable.724

Table 2.2: List of Water Networks.

Network
Length
(km)

Hydraulic
Gradient
(m/km)

Hydraulic Gradient
Uncertainty
(m/km)

Ice Thickness
Gradient
(m/km)

Ice Thickness
Gradient Uncertainty
(m/km)

Catchment
Area
(km2)

Number
Water
Bodies

Termination Style

A 75 -0.27 0.13 -13.0 1.2 4686 24 freeze-on
B 47 -0.28 0.34 -10.2 2.6 2501 9 short of freeze-on
C 44 -0.06 0.22 -13.8 2.1 3168 15 freeze-on
D 56 -0.21 0.25 -22.6 2.5 8656 16 freeze-on
E 103 -0.92 0.12 -5.3 2.1 3969 19 freeze-on
F 87 -0.53 0.12 -1.1 1.8 8367 9 exit survey area
G 58 -0.40 0.15 3.0 1.4 4097 6 unknown
H 20 -0.24 0.81 -12.9 6.9 1762 2 freeze-on
I 64 -1.50 0.22 7.9 3.4 2322 4 unknown

Length represents the length of the main path only, and both hydraulic head gradient and ice thickness
gradient represent best-fit slopes to the values at individual water bodies along the main path. Note that
some networks contain side-paths in addition to the main path. Catchment area represents the maximum
upstream area as computed by the multiple slope algorithm for any grid cell within any of the paths. The
number of water bodies represents the members of Table 2.1 within 5 km of any of the network paths.
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Figure 2.11: Hydraulic head of water bodies along the main paths (solid blue lines in Figure 2.9) of each
network. Hydraulic head is plotted relative to the mean value within each network so that all networks
can be plotted on the same scale. Only water bodies within the intersection set (clear picks containing 4σ
reflectivity anomalies) are shown.

2.5 Discussion725

2.5.1 Attenuation Rate726

We image subglacial hydrologic networks in the Gamburtsevs using RES. Because our results727

partially depend on using a linear best-fit to bed returned power as a function of ice thickness728

([P c]dB vs D) to estimate an attenuation correction, it is important to examine the weaknesses729
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of this method. A single regional attenuation correction can be inaccurate if basal reflectivity730

depends systematically on ice thickness. Matsuoka (2011) has demonstrated that when731

bed reflectivity depends on ice thickness a linear best-fit can underestimate the attenuation732

correction. If basal reflectivity has a systematic dependence on ice thickness that dependence733

will contaminate the best-fit slope, and the regional attenuation correction will remove part734

of the targeted reflectivity signal in addition to the attenuation signal. Basal reflectivity can735

depend systematically on ice thickness if there is a specific depth below which water is found736

and above which the bed is frozen.737

A single regional attenuation correction is, however, appropriate for the Gamburtsevs738

because ponded water occupies an extremely small fraction (< 1%) of the total basal area.739

Thus, the area-averaged basal reflectivity is primarily that of a rock-ice interface and is740

effectively independent of ice thickness. To test this, we have tried recomputing the best-741

fit without all potential water bodies (3σ, 4σ, unclear picks, clear picks). The best-fit one742

way attenuation rate only changes by 0.31 dB/km, corresponding to maximum reflectivity743

anomaly errors of 0.9 dB, substantially less than the crossover errors of 6.0 dB.744

Our interpreted networks are also robust against larger changes in attenuation rate.745

MacGregor et al. (2012) modeled englacial thermal structure and attenuation rate along the746

Vostok flowline, a glaciologically similar setting to Dome A. The depth-averaged attenuation747

rates in their model ranged between 5.8 and 11.8 dB/km, with the latter value being close748

to our best-fit regional attenuation correction. We calculate reflectivity anomalies using at-749

tenuation rates of 5.8 dB/km (near MacGregor et al.’s lowest value) and 17.4 dB/km (triple750

MacGregor et al.’s lowest value and 50% larger than our value). All of our interpreted net-751

works retain 3σ (+19.4 dB) reflectivity anomalies under both extremely high and extremely752

low attenuation rates, and six of the nine (all the networks except B, F, and H) retain 4σ753

(+25.9 dB) reflectivity anomalies as well.754

2.5.2 Valley-Scale Configuration755

The networks are formed from many kilometer-scale water bodies with a variable small-scale756

morphology. The vast majority of individual water bodies have along-track widths less than757

the mean ice thickness of 2.5 km. As a whole, the population of Gamburtsev water bodies is758

smaller than previously published populations, reflecting both a tight grid spacing that allows759

us to observe small water bodies and rugged basal topography that prevents the formation760

of large water bodies. The water networks occur within subsections of the dendritic valley761

networks that dominate the Gamburtsevs, and are between 20 and 103 km long.762

The water networks in the Gamburtsevs reoccupy a system of alpine overdeepenings763

formed by valley glaciers in the early growth phase of the EAIS. The overdeepenings form764

a series of bedrock depressions along valley floors where water generated by subglacial melt765

collects. This “string of beads” morphology (Benn and Evans , 1998) explains why flight766

lines that happened to be parallel to the water networks detected a large number of water767

bodies, whereas flight lines that were oblique to the networks detected few or none at all.768

We do not observe all the connections between these water bodies, but simple flow-routing769

algorithms and hydraulic head values between adjacent water bodies (Figures 2.9, 2.10, and770

2.11) suggest they exist. In addition, we observe relatively little water in the upper reaches771

of the main trunk valleys and in the southeast corner of the grid (Figures 2.4, 2.6, and 2.9)772
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despite thick ice in these regions. The lack of water in these regions may be because downhill773

flow encourages rapid evacuation and discourages ponding, or because the bed is cold here,774

and meltwater is not present. A cold bed could be caused by changes in geothermal flux or775

accumulation rate.776

The Gamburtsev water networks transport mass and energy along the bedrock valleys.777

Where water is generated by basal melt, both mass and latent heat are transferred from the778

ice sheet to the basal hydrologic system. The mass and heat are transported by the hydrologic779

networks to freeze-on locations and returned to the ice sheet, though some water may pass780

through the freeze-on locations. We do not observe water bodies downstream of the freeze-781

on locations, but because our methods are conservative we cannot preclude the possibility782

that water passes through the freeze-on locations. The Gamburtsev water networks form an783

alternate pathway for rapidly transporting mass and energy between widely spaced parts of784

the ice sheet.785

2.5.3 Drainage Pathways786

Drainage pathways in the Gamburtsevs are controlled by bed topography, but drainage787

direction is controlled by the ice sheet surface. The water networks in the Gamburtsevs fall788

largely on the bed-dominated side of the bed-dominated to surface-dominated continuum789

of subglacial water networks because they are confined to pre-existing bedrock depressions.790

However, the valley walls that confine the water to the pre-existing networks are steeper than791

the valley floors that determine drainage direction within those networks. Valley floor slopes792

are low enough that drainage direction within the bed-confined networks is determined by the793

ice sheet surface. The modern subglacial water system occupies the same set of morphological794

features as the pre-EAIS alpine glacial lake system, but it is free to move water either uphill795

or downhill through that system.796

We term drainage within the Gamburtsevs “bed routed, surface directed”, meaning that797

the flow is confined to pre-existing bedrock valleys but can move either uphill or downhill798

within those valleys depending on the ice surface slope. This style of subglacial drainage will799

occur wherever the ice sheet bed contains troughs unrelated to ice flow. The basal topography800

must be organized into valleys with wall slopes steeper than 11 times the ice surface and801

floor slopes shallower than 11 times the ice surface. This situation could arise in other areas802

of East Antarctica with rugged basal topography such as the Recovery Highlands, Ridge B803

or Dome C, but it could also arise in an area of relatively flat basal topography with valleys,804

such as interior Greenland (e.g. upstream of Petermann Glacier (Bamber et al., 2013b)2) or805

the beds of the former Laurentide and Fennoscandian ice sheets (Benn and Evans , 1998).806

This situation will not arise in places like the West Antarctic ice streams, where bed troughs807

are shallow enough that changes in the ice surface can cause water to jump between adjacent808

troughs resulting in lateral piracy by adjacent ice streams (Alley et al., 1994).809

2This reference has been changed from the published version. The original reference was to an AGU
presentation of our preliminary work on the basal bodies in the Petermann catchment. That presentation
included a map of basal topography showing the “Petermann canyon”. However, in the time since then a
paper has been published specifically on that canyon, so I have modified the reference accordingly.
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2.5.4 Possible Temporal Variability810

There is indirect evidence for long-term (10’s of ka) variability in the Gamburtsev water811

networks from the along-flow structure of the accretion plumes. The apparent separation812

(∼20 km) between the end of network B and a nearby accretion plume implies accretion813

has been inactive there for 20 ka, assuming a characteristic ice velocity of 1 ma−1, although814

other factors may explain the apparent separation (Section 2.4.4). In addition, the plume815

produced by network C displays substantial along-flow variability. Morphologically distinct816

reflectors within this plume can be traced coherently for ∼30 km over multiple flight lines817

before abruptly disappearing (Figure 2.12), implying a persistence timescale of ∼30 ka. Long818

term variability in the networks could be produced by surface climate changes propagating819

to the bed and causing changes in basal thermal state, or by internal dynamics of the ice820

sheet and hydrologic system.821

Short-term variability in the water networks may be caused by changes in drainage mor-822

phology. Water networks elsewhere in Antarctica with similar hydraulic gradients to the823

Gamburtsev networks episodically drain. Wingham et al. (2006) discovered active drainage824

connecting subglacial lakes separated by over 290 km near Dome C in East Antarctica along825

a hydraulic head gradient of 5.1x10−4, in the mid-range of the gradients along the Gam-826

burtsev networks (Table 2.2), and attributed that drainage to sudden discharge through827

subglacial tunnels. Fricker et al. (2007) found episodic drainage between active subglacial828

lakes underneath Whillans Ice Stream along a hydraulic head gradient of 3 − 6x10−4, also829

in the mid-range of the gradients along the Gamburtsev networks. Fricker et al. (2010)830

found episodic drainage between subglacial lakes underneath MacAyeal Ice Stream along a831

hydraulic head gradient of 1.7x10−3, on the high end of the gradients along the Gamburt-832

sev networks. On the other hand, Smith et al. (2009) made a comprehensive inventory of833

actively filling and draining lakes throughout Antarctica using repeat-track satellite laser834

altimetry and did not discover any near Dome A. However, the smallest lakes they could835

detect were 5 km long (Smith et al., 2009, Figure 5), and all but two of the Gamburtsev836

water bodies are smaller than this. Based on the similar hydraulic gradients of episodically837

connected networks elsewhere in Antarctica to the Gamburtsev networks, we speculate that838

the individual water bodies within the Gamburtsev networks are also connected by episodic839

discharge. A rigorous investigation of the time dependence of the connections within the840

Gamburtsev water networks will require repeat radar surveys in the future.841
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Figure 2.12: Sequential echograms crossing the accretion plume produced by network C. Color scale is the
same as Figure 2.3. Red arrows indicate the advection by ice flow of a morphologically distinct accretion
unit in first panel through the rest of the figure. This unit can be recognized by having distinct upper and
lower surfaces with a radar-transparent layer in the middle. Upstream of this figure the accretion plume has
a different morphology, but can still be traced coherently (not shown). Question mark in fifth panel indicates
that the accretion unit terminated abruptly somewhere between fourth and fifth panels. Because this is the
downflow end of the accretion plume, the termination could represent the time when the accretion process
activated in the past. Spacing between flight lines is 5 km. Inset map represents bed elevation with identical
color scale and hill shading as Figure 2.4b. Orange lines represent outline of Bell et al. (2011) accretion units
represented in Figure 2.9. Location of inset map given in Figure 2.9.

2.6 Conclusion842

We have identified subglacial water networks with lengths from 20 to 103 km within the843

Gamburtsev Subglacial Mountains using two methods to analyze radio-echo sounding data.844

Using both manual digitization and quantitative reflectivity anomaly analysis we have been845
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able to track the change of the network configuration with distance downflow. These net-846

works are characterized by a complex configuration containing a multitude of kilometer-scale847

water bodies in a manner similar to subaerial alpine lakes. The individual water bodies are848

smaller on average than water bodies that have been discovered by previous surveys (Siegert849

et al., 2005; Carter et al., 2007), reflecting both a tighter line spacing and rugged basal850

topography that prevents the formation of large water bodies. Based on this result we em-851

phasize the importance of high-resolution surveys for understanding subglacial hydrology.852

We cannot constrain the timing of the water flow between the individual water bodies in853

each network, but similarities in hydraulic gradient to other Antarctic water systems suggest854

drainage may be episodic. In addition, analysis of variability in the accretion plumes pro-855

duced by some of the networks suggests that the extent of the networks may reflect changes856

in the basal thermal state caused by either changes in the internal dynamics of the ice sheet857

and hydrologic system or changes in surface temperature and accumulation.858

The water bodies form in depressions created by alpine glaciers during the early growth859

phase of the East Antarctic Ice Sheet. These depressions are able to trap subglacial water860

at the present day because of the high bedrock relief in the Gamburtsevs compared to the861

surface relief. However, bedrock slopes along valley floors are lower than bedrock slopes down862

valley walls, allowing the ice surface to dictate the direction, but not the route, of subglacial863

water drainage. Subglacial water within the Gamburtsevs can flow either uphill or downhill864

along valley floors depending on the gradient of the ice surface. When the networks flow865

uphill, they feed organized plumes of accretion ice, indicating source to sink transport within866

the basal hydrologic system. The mountain valleys of the Gamburtsevs are pathways for the867

transport of mass and energy between widely separated parts of the ice sheet.868

We propose that subglacial water exists across a continuum of scales, from tens of kilo-869

meter giants like Lake Vostok through sub-meter scale linked cavities. There is no sharp870

physical threshold separating classic “subglacial lakes” from other forms of subglacial wa-871

ter, only a limit in detectability. In the Gamburtsev water networks, long distance (up to872

103 km) transport of mass and energy is accomplished through strings of small (∼850 m)873

discontinuous individual water bodies. The individual water bodies represent a step by ob-874

servational glaciology towards bridging the gap between small channels or cavities and large875

subglacial lakes.876
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Chapter 3877

Traveling slippery patches produce878

thickness-scale folds in ice sheets879

Michael J. Wolovick, Timothy T. Creyts, W. Roger Buck, Robin E. Bell880

Published in Geophysical Research Letters, Vol. 41, 2014881

3.1 Abstract882

Large, complex stratigraphic folds that rise as high as 60% of the local ice thickness have883

been observed in ice sheets on Antarctica and Greenland. Here we show that ice deformation884

caused by heterogeneous and time-variable basal sliding can produce the observed structures.885

We do this using a thermomechanical ice sheet model in which sliding occurs when the886

base approaches the melting point and slippery patches develop. These slippery patches887

emerge and travel downstream because of a feedback between ice deformation, vertical flow,888

and temperature. Our model produces the largest overturned structures, comparable to889

observations, when the patches move at about the ice column velocity. We conclude that890

the history of basal slip conditions is recorded in the ice sheet strata. These basal conditions891

appear to be dynamic and heterogeneous even in the slow-flowing interior regions of large892

ice sheets.893

3.2 Introduction894

Ice penetrating radar transects collected over several decades show nearly horizontal reflec-895

tions in the upper part of the ice sheet indicating layered strata of meteoric ice formed from896

snowfall (e.g. Bailey et al., 1964). In recent years, the collection of closely spaced tran-897

sects of high quality aerogeophysical data (Li et al., 2013) has allowed the identification of898

widespread irregular reflectors in the lower part of the ice sheet (Bell et al., 2011, 2014;899

NEEM Community Members , 2013). These reflectors form structures that do not conform900

to the bed or surface and that disturb the overlying stratigraphy into anticlines, synclines,901

and overturned folds (Figure 3.1). These folds normally have older, reflective ice surrounding902

a core of featureless ice. In some cases reflectors emerge from near the bed. The folds can903
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be quite large, with thicknesses up to ∼1000 m in ice that is about 2000 m thick, widths of904

∼10-20 km, and lengths on the order of 10-100 km (Bell et al., 2014).905

Figure 3.1: Radar image from northern Greenland depicting basal units and associated deformation.
Image comes from two separate flight lines stitched together near 150 km. Data are located at
ftp://data.cresis.ku.edu/data/rds/, and the identification numbers in Figure 3.1 (top) can be used to lo-
cate the data in question. (top) The radar data and (bottom) our interpretation of the data. Vertical
exaggeration is 25. Flight line is slightly oblique to flow.

Several hypotheses exist for the formation of these folds. In Antarctica, these features906

are closely associated with topographically confined water networks (Wolovick et al., 2013),907

and resemble the refrozen ice sampled and imaged over Lake Vostok (Jouzel et al., 1999;908

MacGregor et al., 2009a). In the interior of Greenland large-scale folds do not have a clear909

relationship to basal water networks, although the folds may originate near a warm to cold910

bedded transition (Aschwanden et al., 2012). Alternately, rheological contrasts within the ice911

column may create these folded features through a shear instability in the flowing ice (NEEM912

Community Members , 2013). Here we consider the possibility that this folded stratigraphy913

results from changing basal slip. We show how warm slippery patches at the ice sheet914

base travel downstream, and that the stratigraphic structures created by traveling slippery915
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patches can explain many of the radar observations.916

Stratigraphy deflects vertically where ice flow crosses areas with different basal slip rates917

(Weertman, 1976). Such gradients in slip rate cause either divergence or convergence of918

the horizontal flow field near the bed, depending on whether the bed becomes more or less919

slippery along flow, respectively. To maintain mass balance in the lower part of the ice sheet,920

there is a vertical flow component that lifts up or draws down the stratigraphy. In some cases,921

the vertical flow causes vertical motion of the surface (Sergienko et al., 2007). In other cases,922

deformation with one sign in the lower part of the ice sheet is compensated for by deformation923

with the opposite sign in the upper portion of the ice sheet, and the surface maintains a924

steady state (Hindmarsh et al., 2006). The latter case has been observed where ice flowing925

over Lake Vostok experiences thickening near the bed and thinning near the surface when926

it regrounds (Bell et al., 2002). However, stationary contrasts in slip rate produce small927

layer deflections compared with bed topography or surface accumulation, and basal slip rate928

has been considered a secondary factor in the analysis of ice sheet stratigraphy (Hindmarsh929

et al., 2006; Leysinger Vieli et al., 2007; Parrenin and Hindmarsh, 2007). Here, we consider930

slippery patches that travel downstream over time and produce a larger integrated deflection931

of the overlying stratigraphy.932

Basal slip rate can change in space or time because of a variety of factors, including basal933

temperature (Cuffey et al., 2000; Clarke, 2005; Stokes et al., 2007), till coverage (Tulaczyk934

et al., 2000b; Clarke, 2005; Stokes et al., 2007), subglacial water pressure (Creyts and Schoof ,935

2009; Hewitt , 2013), and till drainage (Tulaczyk et al., 2000b; Clarke, 2005; Stokes et al.,936

2007). While all these factors are capable of moving over time, for simplicity we focus on937

slip variations caused by basal temperature. We use a thermomechanical model described938

below to show that basal slippery patches are capable of migrating downstream, and that the939

resulting dynamic contrasts in slip rate create large and intricate stratigraphic structures.940

3.3 Methods941

We simulate ice flow using a higher order two-dimensional thermomechanical flowline ap-942

proach (Blatter , 1995; Pattyn, 2002; Cuffey and Paterson, 2010). Particle tracking allows943

us to follow englacial stratigraphy and model isochronous layers. A key feature of our model944

is that it allows for both water flow and longitudinally variable basal boundary conditions945

while conserving mass and energy at the ice sheet base. Basal temperature is coupled to946

water flow along the base as follows: temperature is held at the melting point where water947

is present while a geothermal gradient is prescribed elsewhere. The model can contain mul-948

tiple warm-based patches, each with an internal mass balance between melting and freezing.949

Basal slip rate falls off exponentially as basal temperature drops below the melting point950

(Fowler , 1986), consistent with field observations that suggest limited but non-zero basal slip951

at cold temperatures (Cuffey et al., 2000). Sub-freezing basal slip is due to a combination952

of pre-melt films at the ice-rock contact (Cuffey et al., 2000) and unresolved thermal hetero-953

geneity at the bed (Fowler , 1986); for our purposes it is not necessary to distinguish these954

mechanisms. The boundary conditions and model setup are shown schematically in Supple-955

mentary Figure 5.2 and a more detailed description is given in the supplement. The steady956

state initial condition is obtained by allowing the model to run unperturbed for 100 ka. We957
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performed resolution tests on the model and found that the error is inversely proportional958

to the number of grid cells (Supplemental Figure 3.7).959

Our model domain simulates a thick interior region with a warm base that transitions960

downstream into a thinner, cold-based region (Supplementary Figure 5.2). This setting was961

chosen to mimic conditions that may exist upstream of Petermann Glacier and in the flanks962

of the Northeast Greenland Ice Stream (Aschwanden et al., 2012), where many large folds963

are observed (Bell et al., 2014). Water flows along the smooth base from the warm interior964

region toward the cold downstream area.965

3.4 Results966

Figure 3.2: Close-up of the initial triggering of a traveling slippery patch. Plots represent four snapshots
of model output, taken 2ka apart. Time is measured relative to the peak in the water influx perturbation.
Color represents vertical velocity, lines represent stratigraphy. Red bars on the bottom of the plots represent
areas where the bed is at the melting point.
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When we perturb the upstream water flux, a warm slippery patch forms and travels967

downstream. At the leading edge of the slippery patch, a freezing front marks the boundary968

between an upstream, warm-based, water-rich, rapidly sliding patch and a downstream,969

frozen, slowly sliding region. We find that the perturbation must be sufficient to cause the970

freezing front to move downstream at approximately the column-average ice velocity in order971

to trigger a traveling slippery patch. The perturbation we used is equivalent to an increase972

in melt rate of only 0.05 mm/yr over the course of about 5000 years, assuming a cross-flow973

width of 10 km and an upstream catchment of 104 km2. This increase is small compared to974

geothermal melt rates, that are about 1 mm/yr.975

The position of the freezing front is determined by a balance between the water flux976

and the freezing rate. As the upstream water flux increases, the freezing front advances977

downstream as latent heat is released. Near the freezing front, basal slip rate drops and978

produces ice convergence that results in englacial uplift (Figure 3.2a,b). This uplift moves979

warm ice higher into the ice sheet, reducing the local temperature gradient. Eventually the980

conductive heat flux out of the basal interface does not match the geothermal heating and981

frictional heating from sliding, creating a local melt source just upstream of the freezing982

front. Once the uplift at the freezing front allows local melt, the slippery patch is no longer983

limited by the mass balance of the upstream water system. The patch detaches from the984

upstream water system and travels downstream without further forcing (Figure 3.2c,d).985

Figure 3.3: Schematic representation of the thermal feedback that causes slippery patches to move down-
stream. Englacial uplift at the front (downstream) edge of the patch produces advective warming of the
ice column, while subsidence at the back (upstream) edge of the patch produces advective cooling. Inset
temperature profiles are meant to be representative of the changes that take place at the margins of the slip-
pery patch. Black lines in the inset represent background temperature profiles, red and blue lines represent
changes due to uplift or subsidence, respectively.

The main part of a slippery patch is composed of a broad melting region that supplies986

water to a narrow but intense freezing region near the front (Supplementary Figure 3.6).987
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Water is assumed to flow downstream throughout the patch due to the gradient in ice988

overburden pressure. Lower temperatures behind (upstream of) the slippery patch reduce989

basal slip rate, leading to divergence in the bottom of the ice sheet. This divergence pulls990

cold ice downward, increasing the conductive heat loss across the basal interface and cooling991

Figure 3.4: Snapshots of the entire model domain showing the development of a mature train of traveling
slippery patches. Four snapshots are separated by 1ka each. Time is measured relative to the peak in the
water influx perturbation. Color represents vertical velocity, lines represent stratigraphy. Red bars on the
bottom of the plots represent areas where the bed is at the melting point.
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it below the melting point. Because water is driven downstream, freeze-on does not occur at992

the back of the patch. The combination of cooling at the back (upstream) and warming at993

the front (downstream) causes the entire slippery patch to propagate downstream (Figure994

3.3). Previous work has shown that perturbations to basal slip modify ice sheet thermal995

structure (Sergienko and Hulbe, 2011). Our model shows that closing the feedback loop996

from thermal structure back to slip can cause the slip perturbation to move. The front of a997

slippery patch propagates faster than the back because latent heat carried forward by basal998

water is transported faster than the ice flows. The difference in propagation speed causes999

the patch to grow over time.1000

A secondary patch can be generated as a consequence of the subsidence and cooling1001

behind an initial slippery patch. Subsidence immediately behind the slippery patch causes1002

cooling relative to the temperature far upstream. This subsidence produces a basal slip1003

rate contrast upstream of the initial slippery patch, leading to convergence and uplift there.1004

Eventually the upstream convergence warms to the melting point, creating a new, trailing1005

slippery patch (Figure 3.4d). Over time this sequence repeats, creating a train of patches1006

and deformation.1007

Patches in a train can combine when the fast-moving front of one patch overtakes the1008

slow-moving back of the next one. Basal temperatures in the intervening cold region rise1009

to the melting point. As temperatures rise, drag drops, and the entire ice sheet domain1010

responds with faster flow and surface lowering. The speed-ups can produce 20-50% increases1011

in ice flux with an overall duration on the order of 1000 a. These flux increases can have1012

rapid onsets (∼100 a) when the slippery patches merge.1013

3.5 Discussion1014

Our results show that traveling slippery patches can produce both significant uplift and1015

subsidence within ice sheets. The model produces folds (Figure 3.4) that are similar to the1016

deformed and overturned ice stratigraphy observed in Greenland (NEEM Community Mem-1017

bers , 2013; Bell et al., 2014) and Antarctica (Bell et al., 2011). The largest observed struc-1018

tures rise to over half the ice thickness. The model produces both anticlines and synclines,1019

mimicking the structures observed in the radar data (Figure 3.4, cf. Figure 3.1). The model1020

structures are much larger than equivalent ones produced by stationary patches (Supplemen-1021

tal Figures 3.8, 3.9). The model predicts overturning within the cores of the uplifted folds,1022

whereas radar data show no reflections within the cores (Bell et al., 2014). The lack of ob-1023

served features in the cores may be because of data limitations, such as difficulty in imaging1024

contorted layers, or because of processes not included in the model, such as dynamic re-1025

crystallization (Cuffey and Paterson, 2010). Additional work is required to understand how1026

traveling slippery patches will behave in a complex 3D environment, and how the patches1027

might be modified by bed topography and heterogeneous subglacial geology.1028

Other proposed mechanisms that can contribute to the deformed and overturned ice1029

stratigraphy include basal freeze-on (Bell et al., 2011) and rheological contrasts within the ice1030

column (NEEM Community Members , 2013). A combination of mechanisms likely operates1031

to produce the observed basal structures. For example, our modeled traveling slippery1032

patches contain a small amount (10’s of meters) of freeze-on ice. Melting and freezing in1033
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our model is limited to low volumes because of latent heat constraints and our choice of1034

boundary conditions. Nevertheless, traveling slippery patches amplify the size of englacial1035

structures beyond the volume of the freeze-on ice alone. Our model includes only variations1036

in ice rheology caused by temperature, but other variations, such as crystal size and fabric1037

(Cuffey and Paterson, 2010; NEEM Community Members , 2013), could be compatible with1038

our proposed mechanism.1039

Our model produces substantial variations in ice column temperature, and thus, rheology.1040

Vertical flow pushes warm ice upwards at the front of the traveling slippery patches and1041

pulls cold ice downwards at the back of the patches. This advection modifies the ice column1042

temperature, creating a heterogeneous distribution of warm, soft areas and cold, stiff areas1043

(Supplementary Figure 3.6).1044

Vertical motion associated with traveling slippery patches can uplift basal ice to about1045

50% of the ice thickness. The process moves basal debris and deep ice upwards. Uplift of1046

debris from ice near the bed (Lawson et al., 1998; Rempel , 2008) could delay debris melt-out,1047

including melt-out after iceberg calving. This would aid in the transportation of ice-rafted1048

debris long distances during Heinrich Events (Hemming , 2004). Additionally, recovery of old1049

ice normally found near the bed (Fischer et al., 2013) may be easier when that ice is uplifted.1050

However, repeated sections and age inversions may complicate ice core interpretation (NEEM1051

Community Members , 2013). Such complications could have produced the overturned and1052

repeated sections observed in the NEEM core (NEEM Community Members , 2013) and1053

potentially played a role in creating the difference between the GISP2 and GRIP cores near1054

Summit, Greenland (Grootes et al., 1993).1055

Our model makes several predictions about the relationship between the structures in1056

radar echograms and observations that could be made in boreholes. We predict that the1057

majority of the large basal units will have the gas content and geochemical signature of1058

meteoric ice, rather than that of refrozen ice (Souchez et al., 2003), and will be highly1059

deformed, with age inversions and repeated sections. If the structures are active, we also1060

predict that synclines mark boundaries in basal thermal conditions, with cold beds upstream1061

and warm beds downstream. This prediction contrasts with the typical assumption that layer1062

drawdown marks the location of concentrated basal melt driven by extreme geothermal1063

heat fluxes (Fahnestock et al., 2001). However, once the structures become inactive and1064

are passively advected with the flowing ice, they no longer represent variations in basal1065

conditions.1066

According to our model, stratigraphy responds strongly to moving variations in basal slip.1067

Inversions of basal slip (MacAyeal , 1993) from remote observations of surface velocity and ice1068

sheet geometry show heterogeneity in both Greenland (Sergienko et al., 2014) and Antarc-1069

tica (Sergienko and Hindmarsh, 2013), but the temporal variability is poorly constrained.1070

Critical factors for basal slip, such as water availability, sediment coverage and strength, and1071

basal temperature, are difficult to observe directly, but radar stratigraphy can be observed1072

relatively easily. Ice sheet interiors likely have heterogeneous and time-varying basal condi-1073

tions that leave a record in the ice sheet stratigraphy. Thus, the history of subglacial slip1074

may be estimated from analysis of englacial structures.1075

This history can include perturbations to basal water flux that trigger the traveling1076

slippery patches. Basal water flux perturbations can be caused by changes in the basal1077

thermal regime or changes in subglacial water routing. Either of these can be related to1078
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rapid changes in surface temperature and accumulation rate, or ice thickness changes that1079

propagate inland from the margins. These are often related to rapid climate change. We1080

speculate that some of the features observed today in Greenland could have been triggered1081

by sudden climate changes that occurred during deglaciation following the Last Glacial1082

Maximum.1083

3.6 Conclusion1084

Moving patches of subglacial slip create large stratigraphic folds within polar ice sheets as1085

shown in the thermomechanical model used here. These folds create large disturbances to1086

ice sheet thermal structure that feed back to basal temperature and cause the slip patch to1087

migrate. Traveling slippery patches can explain some of the dramatic recent observations1088

of large basal units in Greenland and Antarctica. Our results show that massive thickness-1089

scale folds in ice sheets can be explained with only small amounts of freeze-on. Borehole1090

measurements of ice provenance within the basal units could be used to confirm or disprove1091

our hypothesis. Englacial structures created by traveling slip patches record basal processes1092

and can be used to infer a time-variable history of basal slip. The wide variety of behaviors1093

in ice sheet interiors, including traveling slip patches, suggest that ice sheet interiors can1094

play a critical role expanding our knowledge of ice dynamics and discharge to the margins.1095

3.7 Supplemental Material1096

This text was published in the supporting online material for chapter 2, and can be accessed1097

along with the main text at:1098

http://onlinelibrary.wiley.com/doi/10.1002/2014GL062248/abstract1099

A supplemental animation showing 30 ka of model output can also be viewed at that site.1100

3.7.1 Thermomechanical Flowline Model with Basal Hydrology1101

We consider a two-dimensional flowline with coordinates x, positive along flow, and z, positive1102

upwards. The velocity components are u and w, with the same sign convention. Stresses in1103

the vertical dimension are assumed to be hydrostatic. The equations for the conservation of1104

mass, energy, and the horizontal linear momentum are (Blatter , 1995; Pattyn, 2002; Cuffey1105

and Paterson, 2010), respectively,1106

∂u

∂x
+

∂w

∂z
= 0, (3.1)

ρicp

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
= k∇2T + ε̇ · σ, and (3.2)

∂σxx

∂x
+

∂σxz

∂z
= −ρig

∂S

∂x
, (3.3)

where ρi is the density of ice, cp is the specific heat at constant pressure of ice, T is temper-1107

ature, k is thermal conductivity, ε̇ is the strain rate tensor, σ is the deviatoric stress tensor,1108
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Figure 3.5: Diagram depicting model domain, grid, and boundary conditions. Solid lines represent mass and
energy conservation grid cells, dashed lines represent momentum conservation grid cells.

g is the acceleration due to gravity, and S is surface elevation. Ice is assumed to deform1109

with a Glen-type flow law with index n=3 (Glen, 1953; Cuffey and Paterson, 2010) and a1110

temperature-dependent rate factor,1111

σij = 2µε̇ij, (3.4)

µ = 0.5A−1/nε̇(1−n)/n, and (3.5)

A = A0exp

[
−Q

R

(
1

T
− 1

T0

)]
, (3.6)

where µ is the effective viscosity, A is the rate factor, A0 is the value of the rate factor at the1112

reference temperature T0, Q is the activation energy, and R is the universal gas constant.1113

The value of the activation energy for creep increases with a step function above T0 = −10◦C1114

(Cuffey and Paterson, 2010). All temperatures in the above equation are corrected for the1115

pressure dependence of the melting point (Pattyn, 2002). Vertical velocity is obtained by1116

integrating equation 3.1 upwards from the bed, starting with a boundary condition given by1117

the basal melt rate. The above equations are solved using a finite-difference approximation1118

on a transformed coordinate system that follows the surface and the bed (Blatter , 1995;1119

Pattyn, 2002). The momentum conservation equation is solved on a staggered grid relative1120

to the mass and energy conservation equations (Figure 5.2) (Gerya, 2010).1121

The mass conservation boundary conditions are an imposed influx (104 m2/yr, equivalent1122

to a column-average velocity of about 3 m/yr) on the upstream margin of the domain, a1123

variable melt/freeze rate on the base of the domain, a constant accumulation rate (30 cm/yr)1124

at the top of the domain, and fixed ice thickness (1750 m) on the downstream margin of the1125

domain. The boundary conditions for energy conservation are steady-state one-dimensional1126

temperature profiles on the lateral margins of the domain, and an elevation-dependent surface1127

temperature (between -25 ◦C and about -32 ◦C, with a lapse rate of 7 ◦C/km) on the top1128

of the domain. At the base, temperature gradient is imposed in areas where water is not1129
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present (geothermal flux = 50 mW/m2), and temperature is held at the pressure-melting1130

point in areas where water is present. The boundary conditions for momentum conservation1131

are free surface on the top of the domain and a temperature dependent power-law sliding1132

rule on the base of the domain. At the lateral margins the momentum boundary conditions1133

are chosen so as to be consistent with the mass boundary conditions. At the upstream1134

boundary the same imposed inflow profile is used as was used for mass conservation, while1135

at the downstream boundary a fixed ice thickness is maintained by a prescribed vertical1136

strain rate profile that compensates surface accumulation and basal melting. We write the1137

temperature dependent sliding rule,1138

ub = u0exp

(
Tb − Tm

Ts

)(
τb
τ0

)r

, (3.7)

where ub is sliding velocity, u0 is a reference velocity, Tb is basal temperature, Tm is the1139

pressure-dependent melting temperature, T0 is the temperature dependence of sliding, τb is1140

the basal shear stress, τ0 is a reference stress, and r is the sliding index.1141

We choose a treatment of basal hydrology that is computationally efficient and thus1142

suitable for long model integrations. We assume the hydrologic system is in steady state1143

with the thermal forcing imposed by the ice sheet during any given time step, based on the1144

assumption that the basal hydrologic system operates on much faster timescales than the1145

overlaying ice sheet. Water is assumed to flow down potential within the flowline, so that1146

the equations of mass and energy conservation within the water layer are, respectively,1147

∂W

∂x
=

ρi
ρw

m, and (3.8)

G− ρiLm+ k
∂T

∂z
+ ubτb +W

(
ρwcpβ

∂P

∂x
− ∂Φ

∂x

)
= 0, (3.9)

where W is water flux, ρw is the density of water, m is the melt rate expressed in terms of1148

ice, G is the geothermal flux, L is the latent heat of fusion, cp is the specific heat at constant1149

pressure of water, β is the pressure dependence of the melting point, P is pressure, and1150

Φ is hydraulic potential. Equation 3.9 includes the effects of geothermal flux, latent heat,1151

conductive cooling into the ice, shear heating, sensible heat flux associated with a change1152

in the pressure melting point, and viscous dissipation within the water layer. Hydrostatic1153

pressure and hydraulic potential are given by, respectively:1154

P = ρigD, and (3.10)

Φ = ρigD + ρwgB, (3.11)

where D is ice thickness and B is bedrock elevation. Water flux is obtained by integrating1155

the melt rate from the upstream margin of the domain to the downstream margin, with the1156

additional constraint that water flux must always be positive. The water flux at the upstream1157

boundary is constant (10 m2/yr) during the spin-up period, then a Gaussian perturbation is1158

added to the water flux at the beginning of the experimental period (amplitude = 50 m2/yr,1159

standard deviation = 2.5 kyr). The solution procedure is to integrate downstream through1160
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the basal grid cells. Within any given grid cell, two possible melt rates are calculated, one1161

limited by the basal energy budget and one limited by the basal water budget. The larger1162

(more positive) of these melt rates is used to integrate the water flux into the next grid1163

cell. The more positive value is chosen because the basal water budget can only be the1164

limiting factor if there is insufficient water supply to allow for the energy-limited freezing1165

rate. If the water flux is not completely used up by freezing, the basal temperature is set1166

to the pressure-melting point. If all the water flux is used up, the basal temperature is set1167

to a value that closes the energy budget by balancing the conductive heat flux against the1168

other terms in equation 3.9. This allows both mass and energy to be conserved in the basal1169

hydrologic system, even at freezing fronts, but at the price of violating the condition that1170

liquid water cannot exist below the pressure-melting point. In the model, the leading grid1171

cell (farthest downstream) in a freezing front contains both water and freeze-on despite the1172

fact that its temperature is below the melting point. However, the “front condition” is only1173

one grid cell wide, so it vanishes in the limit that the grid size approaches zero. Generalizing1174

this solution procedure to a three-dimensional ice sheet model with a two dimensional bed1175

would require integrating water flux downhill in the hydraulic potential in a similar manner1176

to balance flux calculations that integrate downhill in the ice surface (Budd and Warner ,1177

1996).1178

3.7.2 Additional Model Output1179

The attached movie shows the output of the model starting 10 ka before the peak of the1180

Gaussian hydrologic forcing and ending 20 ka afterwards. The model spin-up begins 90 ka1181

before the start of the movie and is not shown. The movie advances at 25 year increments.1182

Top panel shows englacial stratigraphy overlain on vertical ice velocity. Bottom panel shows1183

basal temperature as a green line, sliding ratio as a black line, and melt/freeze rate as1184

red/blue patches. The movie is available under the “Supporting Information” tab at:1185

http://onlinelibrary.wiley.com/doi/10.1002/2014GL062248/abstract1186

Figure 3.6 shows a variety of model output fields at a single snapshot in time correspond-1187

ing to Figure 3.4b in the main text.1188
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Figure 3.6: Snapshot of key model fields at 7ka (Figure 3.4b in the main text). From top: stratigraphy,
with red bars denoting warm-based conditions; horizontal velocity; longitudinal strain rate (positive for
divergence, negative for convergence); vertical velocity; englacial temperature (corrected for the pressure
dependence of the melting point); basal temperature and melt rate (temperature in red, melt rate in blue);
basal sliding ratio, defined as the ratio of sliding velocity to column-average velocity; and finally basal drag
and surface driving stress.
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3.7.3 Model Tests1189

We performed two tests of the accuracy of our numerical model relative to known analytic1190

solutions. The first test considered the steady-state temperature solution for constant vertical1191

strain rate. The second test examined the stratigraphic amplitude as a function of depth for1192

a stationary slip contrast. In addition, we repeated the stratigraphic test for the case of a1193

moving slip contrast to demonstrate that moving contrasts are capable of producing larger1194

stratigraphic structures than the steady-state limit.1195

The temperature test uses the error function temperature solution that applies in steady1196

state to an ice sheet with constant vertical strain rate (Clarke et al., 1977). Assuming steady1197

state, constant vertical strain rate, negligible horizontal gradients, and basal temperature1198

below the melting point, the ice sheet temperature can be written as,1199

T = Tsurf +
GD

k

∫ 1

ẑ

exp(−0.5Peẑ
2)dẑ, (3.12)

where the over-hat on z indicates elevation normalized by the ice thickness, Tsurf is the1200

surface temperature, Pe is the Peclet number, defined by Pe = aD/κ, where a is the surface1201

accumulation rate and κ is the thermal diffusivity, defined by κ = k/ρicp. We set up the1202

test by prescribing a plug-flow horizontal velocity field to ensure a constant vertical strain1203

rate and constant ice thickness of 2000 m. The horizontal velocity increased linearly to1204

compensate the surface accumulation rate. We then allowed the thermal model to evolve for1205

100 ka to approximate a steady state and evaluated the temperature field at x=250 km to1206

compare with the analytic solution. We chose this point to get away from the influence of1207

horizontal advection from the upstream boundary without entering the conductive boundary1208

layer near the downstream boundary.1209

The numerical approximation tracks the analytical solution very closely (Figure 3.7a).1210

The root-mean-square (RMS) error is 0.044◦C at the vertical resolution used in this paper.1211

There is a systematic pattern in the error with lower temperatures near the bed and higher1212

temperatures in the middle of the ice sheet (Figure 3.7b). This pattern persists when we1213

varied the vertical resolution. We varied the vertical resolution by a factor of 4 above and1214

below the value used in the paper, and found that the error is inversely proportional to the1215

number of vertical grid cells (Figure 3.7c).1216
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Figure 3.7: Thermal test. We tested the model against the steady-state solution for simplified conditions
at a variety of grid sizes. Top plot shows all temperature profiles overlain on the analytic solution. Middle
plot shows the difference between the modeled profiles and the analytic profile. Numbers next to each curve
indicate the number of vertical grid cells in that model run. Bottom plot shows how the error scales with
the number of grid cells. Solid diagonal line indicates best-fit power-law and dashed lines indicate resolution
and error at which the model presented in the main body of the paper was run.

We tested the stratigraphy tracking aspect of our model using an analytic solution for a1217

stationary slip contrast, then against a prescribed traveling contrast. The traveling contrast1218

produced much larger stratigraphic structures than the steady-state limit for a stationary1219

contrast. Our model stratigraphy roughly tracked the analytic solution for the stationary1220

contrast, although there are complications related to the finite amplitude displacement of1221

tracers through a variable velocity field and the inclusion of surface accumulation1.1222

1To clarify: the analytic approximation is obtained by assuming that the vertical velocity is constant over
the trajectory of the tracer and by assuming that surface accumulation is zero. However, vertical velocity
varies with elevation within the ice column. Tracers in the upper two-thirds of the ice sheet are advected
upwards into a weaker velocity field, producing a stratigraphic amplitude less than the analytic approximation
in the upper two-thirds of Figure 3.9a. Tracers in the lower third of the ice column are advected upwards
into a stronger velocity field, producing a stratigraphic amplitude higher than the analytic approximation.
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For a stationary contrast in basal slip, we can specify a closed-form expression for the1223

vertical velocity within the ice sheet (Leysinger Vieli et al., 2007). We parameterize ice1224

sheet flow in terms of a sliding fraction, F = ub/ū, that defines the ratio of sliding velocity1225

to the column-average velocity. Assuming an isothermal ice sheet, the horizontal velocity1226

can be specified as the linear sum of plug flow and internal deformation, with the sliding1227

fraction giving the relative weighting of these two components. Under these assumptions,1228

and neglecting surface accumulation, the dimensionless vertical velocity can be written as,1229

ŵ = −∂F

∂x̂

1

n+ 1

(
1− ẑ − (1− ẑ)n+2

)
, (3.13)

where the over-hat on w indicates velocity normalized by the column-average horizontal1230

velocity and the over-hat on x indicates distance normalized by the ice thickness. If we1231

assume that F drops linearly from 1 to 0 over a finite distance, and that both components1232

of velocity do not change as a layer travels through the slip transition, then the vertical1233

displacement can be written as,1234

d̂ =
1

n+ 1

(
1− ẑ − (1− ẑ)n+2

)
, (3.14)

where d represents vertical layer displacement and the over-hat represents displacement1235

normalized by the ice thickness. Equation 3.14 represents a first approximation to a solution1236

for layer displacement as a function of depth for a stationary slip contrast.1237

To test our stratigraphy model, we set up a run with a flat ice surface at 2000 m and1238

column-average velocity that increases in balance with surface accumulation. We specified1239

the vertical distribution of velocity via a shape function, with plug flow in an upstream1240

sliding region and deformation flow (n=3) in a downstream sticky region. The transition1241

between the two was a linear ramp fixed at x=50 km and 2 km wide (ie, one ice thickness).1242

We allowed the model to run for 10 ka and then recorded the layers between 10 ka and 151243

ka. We then repeated the test specifing that the transition would travel downstream at 251244

m/yr beginning at 10 ka. As the transition travels downstream at a constant rate it passes1245

through an ice sheet whose column-average velocity is continuously increasing in balance1246

with surface accumulation, allowing us to sample a range of parameter space in normalized1247

velocity (transition velocity divided by column-average velocity).1248

The steady state stratigraphy for a stationary slip contrast roughly follows the analytic1249

approximation. Layer geometry is a simple linear step-up (Figure 3.8a). The profile of layer1250

amplitude as a function of elevation is mostly bounded by the analytic approximation (Figure1251

3.9a). However, the analytic approximation assumes that neither velocity component changes1252

over the trajectory of the layer. This assumption breaks down when layer displacement is1253

large relative to the gradient in vertical velocity. Layers near the bed are advected upwards1254

towards higher vertical velocities, resulting in numeric amplitudes larger than the analytic1255

approximation near the bed (Figure 3.9a); conversely, layers near the surface are advected1256

upwards towards lower vertical velocities, resulting in lower amplitude than the analytic1257

approximation (Figure 3.9a). When the transition travels downstream, the stratigraphic1258

amplitude is much larger than the steady-state solution (Figure 3.9b). The exact amplitude1259

Finally, the maximum amplitude is less than the analytic maximum because non-zero surface accumulation
produces vertical thinning within the ice column.
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and shape is influenced by inherited structures produced as the transition travels (Figure1260

3.8b-d), but in general stratigraphic amplitude peaks when the transition moves at the1261

column-average ice velocity (Figure 3.9b).1262

3.7.4 Symbols Used1263

3.7.5 Detail of Large Basal Structure1264

The large basal structure near the downstream margin of Figure 3.1 has an amplitude much1265

larger than the steady-state maximum (Figure 3.9). Figure 3.10 shows a close-up view of1266

the downstream basal structure, informally referred to as “Darth Vadar” in our internal1267

discussions.1268

Figure 3.8: Stratigraphic test. In this test, a slip-to-deformation transition was prescribed with a constant
ice surface. Top plot shows stratigraphic geometry after 10 ka of a stationary transition, other plots shows
stratigraphy as the transition travels downstream at a constant 25 m/yr. Indicated values of u above each
subplot denote transition velocity divided by column-average ice velocity.
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Figure 3.9: Stratigraphic test. Top plot shows stratigraphic amplitude as a function of elevation for 5 ka of a
stationary transition. The analytic approximation is overlain, although care must be exercised because the
analytic approximation assumes small layer displacements. Bottom plot shows how stratigraphic amplitude
varies with normalized transition velocity.
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Table 3.1: The following symbols and values were used in this chapter:

Symbol Value Units Meaning
a 30 cm/yr accumulation rate

A variable Pa−3s−1 rheological rate factor

A0 4.9x10−25 Pa−3s−1 value of rheological rate factor at reference temperature
B variable m bed elevation

cp 1900 for ice, 4200 for water Jkg−1K−1 specific heat at constant pressure
d variable m layer amplitude
D variable m ice thickness
F variable - sliding fraction

G 0.05 Wm−2 geothermal flux

g 9.8 ms−2 gravitational acceleration

k 2.4 WK−1m−1 thermal conductivity
L 333500 J/kg latent heat of fusion
m variable m/s basal melt rate
n 3 - rheological exponent
P variable Pa hydrostatic pressure
Pe variable - Peclet number
Q 139 above T0, 60 below T0 kJ/mol activation energy for creep
r 3 - sliding law stress exponent

R 8.314 Jmol−1K−1 universal gas constant
S variable m ice surface elevation
t variable s time
T variable K temperature
T0 263 K reference temperature
Tb variable K basal temperature
Tm variable K melting temperature
Ts 1 K e-folding temperature for sliding law
Tsurf variable K surface temperature
u variable m/s horizontal ice velocity
u0 10 m/yr reference value of sliding velocity
ub variable m/s sliding velocity

W variable m2s−1 water flux
w variable m/s vertical ice velocity
x variable m horizontal coordinate
z variable m vertical coordinate

β 7.4x10−8 KPa−1 pressure dependence of the melting point

ε variable s−1 strain rate
µ variable Pa*s effective viscosity

ρ 917 for ice, 1000 for water kgm−3 density
σ variable Pa deviatoric stress
τ0 60 kPa reference value of basal stress
τb variable Pa basal shear stress
Φ variable Pa hydraulic potential

κ 1.3x10−6 m2s−1 thermal diffusivity
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Figure 3.10: Inset of downstream stratigraphy in Figure 3.1. Top two plots as in Figure 3.1, bottom plot
is inset with picked stratigraphy overlain. Vertical red bar shows the maximum stratigraphic amplitude
for a stationary slip contrast (Figure 3.9). The base of the Holocene package (labeled) has a much larger
amplitude than this.
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Chapter 41269

Overturned folds in ice sheets:1270

Insights from a kinematic model of1271

travelling sticky patches and1272

comparisons with observations1273

Michael J. Wolovick, Timothy T. Creyts1274

In review at Journal of Geophysical Research: Earth Surface1275

4.1 Abstract1276

Overturned folds are observed in the Greenland ice sheet in regions where driving stress is1277

highly variable. Transitions in stress modulate the tradeoff in ice flow between basal slip and1278

internal deformation and deflect ice stratigraphy vertically. If these transitions move, the1279

slip–deformation tradeoff can produce large folds. The resulting folds record the integrated1280

effects of time–varying basal slip. To understand how dynamic changes in basal slip influence1281

ice sheet stratigraphy, we develop a kinematic model of ice flow in a moving reference frame1282

that follows a single travelling sticky patch. In this moving reference frame, the ice flow field1283

forms a vortex with backward flow near the base. The backward flow allows ice to be trapped1284

in the vortex as overturned folds develop. Sticky patches that travel downstream near the1285

regional surface velocity produce the largest folds. We use the model as an interpretive tool1286

to infer properties of basal slip from three folds of varying sizes. Our model suggests that1287

the sticky patches underneath these folds propagated downstream at rates between one half1288

and the full ice velocity. The regional flow regime for the smaller folds requires substantial1289

internal deformation whereas the regime for the largest fold requires significantly more basal1290

slip. Folds that overturn rapidly bring cold ice closer to the bed, influencing freezing and1291

loss of basal water and potentially strengthening basal drag. The distribution and character1292

of stratigraphic folds reflects the evolution and propagation of individual patches and their1293

effects on ice sheet flow.1294
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4.2 Introduction1295

Large irregular stratigraphic folds in the lower part of the ice sheet have been observed in1296

radar data from both Greenland (Bell et al., 2014; MacGregor et al., 2015a) and Antarctica1297

(Bell et al., 2011). The deformation in the lower part of the ice sheet disturbs the overlying1298

strata into anticlines, synclines, and overturned folds. The vertical amplitude of the folds1299

ranges from the lower limit of radar detectability to over a kilometer (Figure 4.1).1300

Figure 4.1: Overturned folds in ice-penetrating radar data from northern Greenland. a-c) Small, medium, and
large fold, respectively. Left column are radar echograms, right column are interpretations of the echograms.
The stratigraphic interpretation is shown on normalized coordinates. Elevation has been normalized using
a low-pass filtered bed pick with a wavelength three times the mean ice thickness. The angles between the
flight lines and the ice flow direction are 3◦, 19◦, and 9◦. Radar data come from NASA’s Operation IceBridge
(Li et al., 2013). Identification numbers at the bottom of the echograms can be used to locate the radar data
at data.cresis.ku.edu/data/rds. (c) was also included in Figure 3c of Bell et al. (2014). Inset map shows
location overlain on 100 m surface elevation contours.
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The overturned stratigraphic folds in Greenland occur in regions where surface driving1301

stress shows a repeating rib-like structure, and geophysical inversions show similar rib-like1302

patterns in basal drag (Sergienko et al., 2014). A series of ribs contains elongated patches of1303

strong bed oriented oblique to flow within a larger weak-bedded region. Individual patches1304

have widths of 2-6 ice thicknesses and lengths of 5-30 ice thicknesses. The exact locations1305

and dimensions of the basal ribs depend on details of the inversion process, but the ribbed1306

structure of surface driving stress is a robust result that depends only on ice sheet geometry1307

(e.g., Bamber et al., 2013a; Fretwell et al., 2013).1308

A consequence of patchy basal drag and driving stress is that the ice flow regime shifts1309

between internal deformation and basal slip. When basal drag is low but velocity is high, the1310

entire ice sheet slides in plug flow over the bed. Higher basal drag causes reduced sliding and1311

higher shear stresses within the ice column, leading to an increase in internal deformation.1312

Internal deformation produces a shear layer in the lower third of the ice column where1313

velocity varies rapidly with depth, and a thick mass of ice higher in the column moving1314

quickly downstream at a nearly uniform rate. Here, we show how the tradeoff between1315

basal slip and internal deformation associated with a sticky patch can produce overturned1316

stratigraphic folds when the sticky patch moves downstream over time.1317

There are two factors necessary to produce overturned folds, an initial stratigraphic1318

disturbance and englacial shear (Waddington et al., 2001; Jacobson and Waddington, 2004,1319

2005). The initial stratigraphic disturbance can be caused by a transition between basal slip1320

and internal deformation. The change in ice velocity profile across this transition induces1321

vertical flow that distorts ice sheet strata. This process, the “Weertman Effect” (Weertman,1322

1976; Hindmarsh et al., 2006), has been used to study stationary transitions between sliding1323

and internal deformation, such as those found on the shores of subglacial lakes (Hindmarsh1324

et al., 2006; Parrenin and Hindmarsh, 2007; Leysinger Vieli et al., 2007). When these1325

transitions move downstream, a dynamic Weertman Effect is capable of producing large1326

overturned basal folds (Wolovick et al., 2014). The second factor, englacial shear, is necessary1327

to turn an initial stratigraphic disturbance into an overturned fold. The increase in velocity1328

above the bed causes englacial disturbances to steepen and eventually roll over (Waddington1329

et al., 2001). In a train of travelling sticky and slippery patches (Wolovick et al., 2014), the1330

englacial shear is found above the sticky patches, where ice moves by internal deformation1331

rather than by sliding. Here, we focus on a single travelling sticky patch in order to better1332

understand stratigraphic overturn produced by travelling patches.1333

4.3 Theory1334

We use a kinematic model in a moving reference frame to systematically explore the relation-1335

ship between travelling sticky patches and the associated stratigraphic folds. We vary patch1336

propagation velocity and the slip contrast between the patch and the far field. The tradeoff1337

between basal slip and internal deformation is represented by using a linear superposition1338

of a plug flow profile and a shear profile for the horizontal flow field. Mass conservation1339

determines vertical velocity from the horizontal flow field.1340

We make several simplifying assumptions. Surface accumulation and basal melt are set1341

to zero. We use this simplification because travelling sticky patches are relatively short-1342
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wavelength features located away from a dome. Most of the mass flux moving through the1343

ice sheet above the sticky patches is horizontal flow coming from upstream, rather than local1344

snow deposition. For example, for a surface accumulation rate of 0.1 m a−1, an ice flow rate1345

of 10 m a−1, and a sticky patch 10 ice thicknesses long, 90% of the mass flux above the sticky1346

patch comes from upstream. Ice thickness is assumed to be constant. The shear profile we1347

use to represent internal deformation is a simple power-law with depth, neglecting the effects1348

of temperature, longitudinal stresses, and other variations in ice rheology.1349

4.3.1 Kinematic Modelling Strategy1350

Our model follows a single sticky patch in a moving reference frame as it travels downstream1351

along an ice sheet flowline. The kinematic model has a small domain (∼40 km) and operates1352

in a moving reference frame travelling at the same velocity as the sticky patch. By operating1353

in a moving reference frame that follows the patch, we are able to gain a better understanding1354

of the processes causing stratigraphy to fold and potentially overturn.1355

4.3.2 Mass Conservation1356

The mass conservation equation is expressed here in two dimensions as,1357

∂u

∂x
+

∂w

∂z
= 0, (4.1)

where x is along-flow distance, z is elevation, u is horizontal velocity, w is vertical velocity,1358

and cross-flow spreading has been assumed to be zero.1359

4.3.3 Nondimensionalization1360

Distance and elevation are normalized by the ice thickness,1361

x̂ =
x

D
,

ẑ =
z −B

D
, (4.2)

where D is ice thickness and B is bed elevation. Over-hats indicate nondimensionalized1362

variables.1363

Both velocity components are normalized by the column averaged horizontal velocity, ū,1364

while horizontal velocity is also measured relative to the velocity of the propagating sticky1365

patch, up,1366

û =
u− up

ū
,

ŵ =
w

ū
. (4.3)

The nondimensionalized mass conservation equation then follows as,1367
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∂û

∂x̂
+

∂ŵ

∂ẑ
+

û

ū

∂ū

∂x̂
= 0, (4.4)

where the additional term accounts for the gradient of the column velocity, and the gradient1368

of ice thickness is assumed to be negligible.1369

4.3.4 Flow Field1370

The linear superposition of sliding and internal deformation is,1371

û = ûb + (1− ûb)
n+ 2

n+ 1
(1− (1− ẑ)n+1)− ûp, (4.5)

where ûb is the normalized sliding velocity and n is the rheological exponent for ice, taken to1372

be 3 by convention (Cuffey and Paterson, 2010). Examples of this flow field with different1373

values of basal slip are shown in Figure 4.2a. When ûb = 1, the ice sheet moves by a vertically1374

uniform plug flow. As the sliding velocity ûb decreases, the shear profile in the lower part1375

of the ice sheet becomes more pronounced and velocity in the upper part of the ice sheet1376

increases to keep the average flow rate constant.1377

Figure 4.2: Velocity Functions. a) Horizontal velocity. b) Background vertical velocity, or the vertical flow
that balances surface accumulation in steady state. c) Weertman effect, or the vertical flow caused by the
variation in basal slip. Panel (a) can be redimensionalized by multiplying by the column velocity, ū, (b)
can be redimensionalized by multiplying by the gradient in total ice flux, −∂(ūD)/∂x (equal to surface
accumulation in steady state), and (c) can be redimensionalized by multiplying by the gradient in sliding
flux, −∂(ubD)/∂x. In the first two panels a range of values of basal slip are shown. Note the scale change
between (b) and (c).
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Once we have specified the horizontal component of velocity, we can use mass conservation1378

to derive the vertical velocity component,1379

ŵ =
−1

ū

∂ū

∂x̂

[
1− ûb

n+ 1
(1− ẑ)n+2 +

(
ûb + (1− ûb)

n+ 2

n+ 1

)
ẑ − 1− ûb

n+ 1

]
︸ ︷︷ ︸

background vertical flow

−∂ûb

∂x̂

1

n+ 1

(
1− ẑ − (1− ẑ)n+2

)
︸ ︷︷ ︸

Weertman effect

. (4.6)

In this equation, the background vertical flow is proportional to the gradient in column-1380

average velocity (∂ū/∂x̂), and the Weertman effect is proportional to the gradient in basal1381

slip (∂ûb/∂x̂). The background vertical flow (Figure 4.2b) is the term that balances surface1382

accumulation in a steady state. In a plug flow regime, the background vertical flow is simply a1383

linear gradient from the bed to the surface. When horizontal flow is by internal deformation,1384

the background vertical flow profile is curved. The Weertman effect (Figure 4.2c) is the1385

vertical velocity caused by the tradeoff between slip and deformation. The Weertman effect1386

is zero at the bed and the surface, with a maximum in the ice column at an elevation about1387

30% above the bed. The vertical flow drops to zero at both the bed and the surface because1388

the Weertman effect represents an internal rearrangement of mass within the ice column.1389

4.3.5 Stratigraphic Overturning1390

Stratigraphic overturn above a travelling sticky patch is caused by an overturning vortex.1391

In a reference frame that moves with the travelling patch, there is backward flow near the1392

bed and forward flow higher in the column. Shear between the forward and backward flows1393

produces the vortex. The ice column above a travelling sticky patch is split into three regions:1394

a lower throughflow, the overturning vortex, and an upper throughflow (Figure 4.3). In the1395

lower throughflow, ice that is moving backward relative to the travelling patch flows past the1396

patch and escapes into the far field. The lower throughflow only exists if the far-field slip rate1397

is less than the propagation velocity, because the lower throughflow cannot escape if there1398

is no backward flow in the far field. Above the lower throughflow is trapped ice inside the1399

overturning vortex. Within the overturning vortex, forward flow and backward flow balance1400

one another, causing the ice to rotate over time. Ice within the overturning vortex remains1401

above the travelling patch as the patch moves downstream rather than escaping into the far1402

field. Above the overturning vortex is the upper throughflow, where ice that is moving faster1403

than the patch escapes into the far field.1404

The boundaries between the overturning vortex and the two throughflows can be com-1405

puted based on mass conservation. The total flux in the far-field ice column must be the1406

same as the total flux across the sticky spot in all reference frames, regardless of the presence1407

of forward or backward flow. The forward flux in the upper throughflow must also equal1408

the forward flux in the far-field. Likewise, the backward flux in the lower throughflow must1409

equal the backward flux in the far field. The remaining flow above the sticky spot must1410

be evenly balanced forward and backward flux in the overturning vortex. The process of1411
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Figure 4.3: Schematic Explanation of Stratigraphic Overturn. a) Upstream velocity profile, b) sticky patch
velocity profile, c) downstream velocity profile. In this example the propagation velocity is 0.75 times the
column velocity, the center of the sticky patch has no slip, and the far-field flow regime has half slip. The
upper throughflow consists of ice flux moving faster than the sticky patch, the lower throughflow consists of
ice moving slower than the sticky patch, and stratigraphic overturn occurs for the vortex in the middle.

computing the boundaries of the overturning vortex begins with computing the magnitude1412

and thickness of the lower throughflow.1413

The magnitude of the lower throughflow, φ, is given by the integrated backward flow in1414

the far-field (Figure 4.3),1415

φ =

∫
ûff<ûp

(ûff − ûp)dẑ (4.7)

where ûff is the far-field velocity profile, and integration is over depths where the far-field1416

velocity is less than the propagation velocity. In Figure 4.3b, φ is the thin lightly shaded1417

area near the bed, while in Figure 4.3 a and c, φ is the lightly shaded triangle to the left1418

of the vertical line representing propagation velocity. All of the areas representing the lower1419

throughflow are the same in the three profiles. The bottom of the overturning vortex, ẑb, is1420

determined by the top of the lower throughflow in the sticky patch velocity profile,1421

φ−
∫ ẑb

0

(û− ûp)dẑ = 0, (4.8)

where the velocity profile û used in the integration is taken from the center of the sticky patch.1422

Equation 4.8 determines the boundary between the thin lightly shaded lower throughflow in1423

Figure 4.3b and the darkly shaded trapped ice. The top of the vortex, ẑt, is determined by1424

mass conservation as the elevation where forward and reverse flow balance one another,1425
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∫ ẑt

ẑb

(û− ûp)dẑ = 0. (4.9)

If there is no reverse flow in the far field, then the vortex sits on the bed and ẑb = 0. The1426

remaining ice flow above the top of the vortex is the upper throughflow. The magnitude of1427

the upper throughflow is equal to the forward ice flux in the far field.1428

We use Equations 4.7, 4.8, and 4.9 to solve for the top and bottom of the vortex as a1429

function of the propagation velocity of the patch and the regional slip rate (Figure 4.4). The1430

parameter space defined by those two variables is split into three separate regions depending1431

on where the vortex is located in the ice column (Figure 4.4d). When the regional slip rate1432

is greater than the propagation velocity, no lower throughflow forms. The lower throughflow1433

requires backward flowing ice to escape into the far field, which cannot happen if all of the ice1434

in the far field is moving faster than the travelling patch. When there is no lower throughflow1435

the top of the vortex is a function of propagation velocity only, indicated by vertical contours1436

in Figure 4.4a, and the bottom of the vortex rests on the bed (Figure 4.4b).1437

The two remaining regions of Figure 4.4 are separated by the line where propagation1438

velocity equals far-field surface velocity. When propagation velocity is greater than far-field1439

surface velocity (the upper right triangle in Figure 4.4), there is no upper throughflow. The1440

upper throughflow requires forward flow in order to escape to the far field, and there is no1441

forward flow when the propagation velocity is greater than the surface velocity. Without1442

an upper throughflow, the overturning vortex is in contact with the surface (Figure 4.4a).1443

Observations indicate that overturned folds are always in the lower portion of the ice sheet,1444

and never in contact with the surface.1445

When propagation velocity is greater than far-field slip rate and less than far-field surface1446

velocity both an upper and a lower throughflow exist. In this case the vortex forms in1447

the middle of the ice column (Figure 4.4). The lower throughflow is thin and the bottom1448

boundary generally is close to the bed (Figure 4.4b). In this region overturn geometry is a1449

function of both propagation velocity and regional slip rate, indicated by curved contours in1450

Figure 4.4 a and b. The total thickness of the overturning vortex is largest when the sticky1451

patch moves downstream at the far-field surface velocity.1452

We have assumed that the center of the sticky patch has no basal slip and ice moves1453

completely by internal deformation. When the sticky patch is weaker, greater propagation1454

velocities and far-field slip rates are required to produce the same thickness of overturn.1455

Weakening the sticky patch linearly shrinks the results in Figure 4.4 towards (1, 1), the1456

point where far-field slip rate and propagation velocity both equal the ice column velocity.1457

The shapes of the contours and the critical triangular regions in Figure 4.4 are unaffected1458

by the slip rate in the sticky patch itself, they are simply confined to an increasingly small1459

region of parameter space around (1, 1).1460
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Figure 4.4: Dimensions of the overturning vortex as a function of propagation velocity and far-field slip
rate. a) Top and (b) bottom of the overturning vortex. c) Schematic diagram of the important regions
of parameter space. The 1:1 line and the line where propagation velocity equals far-field surface velocity
separate parameter space into three separate triangles, where the overturning vortex is either in contact
with the bed, suspended in the middle of the ice column, or in contact with the surface. Thick curved line
indicates the approximate height of the tallest observed folds. White circles in (b) show the locations of the
model runs in Figure 4.6.

4.3.6 Numerical Methods1461

We use a particle tracking model to simulate ice sheet stratigraphy in a moving reference1462

frame. The velocity field is constructed using equations 4.1 and 4.5. Strata are initially hori-1463

zontal, and the boundary conditions at the edges of the domain are constant layer elevation.1464

We set accumulation to zero, so ice only enters or exits the domain on the side boundaries.1465
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The velocity field is interpolated linearly from an Eulerian grid onto the Lagrangian tracer1466

locations. The model tracks the connectivity between tracers in coherent layers. We plot the1467

stratigraphy using straight line segments connecting the tracers. We use a model domain1468

20 ice thickness long. We run the model to an elapsed time of 20 times D/ū. This is the1469

throughflow timescale, or the average time it takes ice to traverse the model domain. The1470

throughflow timescale for a sticky patch is also the characteristic overturn timescale for the1471

vortex above that patch (Section 4.5.2). To simplify the analysis, we choose to investigate1472

gaussian sticky patches. A gaussian function provides a smooth variation in slip that approx-1473

imates the averaging effects of longitudinal stress gradients that we do not include explicitly1474

(Kamb and Echelmeyer , 1986). The patch size is set to a standard deviation of 2.5 D, much1475

smaller than the model domain.1476

4.4 Results1477

We investigate the relationship between travelling sticky patches and ice sheet stratigraphy.1478

First, we show how the overturning vortex is reflected in velocity vectors in a moving reference1479

frame. Next, we show stratigraphic snapshots for nine combinations of far-field slip rate and1480

propagation velocity. We space the combinations to form a 3x3 grid in increments of 1/3 ū1481

(Figure 4.4b). Finally, we use this model to infer slip rates and propagation velocities based1482

on measurements of fold geometry.1483

4.4.1 Velocity Vectors1484

The propagation velocity has a strong control on the form of the velocity field and the1485

development of englacial vortices (Figure 4.5). When the propagation velocity is zero, the1486

velocity field above the sticky patch simply reflects a shear profile within the ice, while1487

velocity in the far field is uniformly forward (Figure 4.5a). The stationary Weertman Effect1488

produces only a small vertical deflection of the vectors in Figure 4.5a. When the sticky1489

patch moves downstream, a vortex forms near the bed. Figure 4.5 shows how the size of the1490

vortex responds to increasing propagation velocity when far-field slip rate is held constant.1491

When the patch is propagating at half the ice column velocity (Figure 4.5b), ice near the bed1492

moves slower than the propagation velocity. This basal ice flows backward in the moving1493

reference frame. Higher up, the ice moves forward. The backward flowing ice near the bed1494

and the lowest part of the forward flowing ice form a closed loop in an overturning vortex.1495

The vortex occupies roughly the lower quarter of the ice column, and flow vectors in the1496

overlying ice are deflected vertically around the vortex. When propagation velocity equals1497

the column velocity (Figure 4.5c), the overturning vortex expands to fill the entire ice column1498

and velocity vectors in the far field fall off to zero. The result is that the entire ice column1499

is trapped above the travelling sticky patch. Though vortices spanning the full ice thickness1500

are not observed, this end-member result suggests that time-varying basal slip can have a1501

very large impact on ice sheet stratigraphy.1502
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Figure 4.5: Velocity vectors in a moving reference frame. a-c) Relative velocity field for a travelling sticky
patch as the propagation velocity of the sticky patch increases from 0 to 1. Scale arrows in panel (c) show
relative scaling of horizontal and vertical components. Color scale at the bottom of the plots shows the
basal slip rate. The relative scaling of the horizontal and vertical components of the velocity vector and the
exaggeration of the figure itself are both 10. The far-field flow regime is plug flow in these plots, corresponding
to points along the upper border of the parameter space in Figure 4.4.

4.4.2 Stratigraphy1503

In order to better understand the stratigraphic structures produced by our simple model,1504

we present stratigraphy for a variety of parameter combinations based on our analysis in1505

Section 4.3.5. We vary far-field slip rate and propagation velocity to form a 3x3 grid in1506

parameter space (Figure 4.4b). Both far-field slip rate and propagation velocity vary by1507

1/3 of the column velocity. All of the model runs produce an overturning vortex in the1508
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lower part of the ice sheet and an anticline in the upper part (Figure 4.6). Vortex size1509

increases with both increasing far-field slip rate and increasing propagation velocity. Within1510

the vortex, stratigraphic order is reversed, with younger layers underneath older layers.1511

Because of our short model integration, we do not see any repeated overturns. When the1512

far-field slip rate is greater than or equal to propagation velocity (Figure 4.6a-e,g) no lower1513

throughflow forms, and layers within the vortex approach the bed. Conversely, when far-1514

field slip rate is less than propagation velocity (Figure 4.6f,h,i) a lower throughflow should1515

be present. The lower throughflow can be seen as a subhorizontal layer above the bed but1516

below the vortex (Figure 4.6i). Short integration times and a finite number of layers make1517

it difficult to identify the lower throughflow in Figure 4.6 f and h. The upper two plots in1518

the right-hand column (Figure 4.6 c,f) are outside the range of observed folds (Figure 4.4a),1519

while the others are within the range of observations. The stratigraphy models confirm the1520

existence of overturning vortices described earlier and provide us with a schematic picture1521

of what englacial stratigraphy produced by travelling sticky patches might look like. The1522

stratigraphy models also indicate the difficulty in identifying a thin lower throughflow near1523

the bed.1524

Figure 4.6: Model stratigraphy. a-i) Stratigraphic snapshots after an elapsed time of 20 times D/ū. Model
runs form a 3x3 grid in the parameter space of propagation velocity (horizontal axis) and far-field slip rate
(vertical axis). Labels above the plots give the coordinates of each model run in Figure 4.4. The first number
is propagation velocity, the second is far-field slip rate. Color scale at the bottom of each panel indicates
basal slip rate. Vertical exaggeration is 10.
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4.4.3 Interpretation of Observed Folds1525

We use this model to interpret three example stratigraphic folds (Figure 4.1) in terms of1526

moving sticky patches. All three overturned folds were sampled in radar lines subparallel1527

to flow. The accumulation rates are 14, 17, and 10 cm/yr. Basal topography is less than1528

10% of ice thickness, and basal melt rates are unknown. Additionally, ice in Greenland has1529

Figure 4.7: Measurements of the overturned folds in Figure 4.1, and corresponding constraints on parameter
space. a-c) Echograms with picks and measurements overlain. Images correspond to plots a-c in Figure 4.1.
Note scale change to zoom in on overturned folds. d-f) Parameter space corresponding to each fold. Red
lines represent the constraints provided by the top or bottom of the fold separately, red shading represents
the combined constraint.
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rheological contrasts resulting from impurities, differing crystal sizes, and warmer tempera-1530

tures near the bed. These environmental variables differ from the model assumptions of flow1531

perfectly along track, no surface accumulation, a flat bed, and a homogeneous power-law1532

rheology.1533

These overturned folds appear to have bottom boundaries above the bed based on the1534

presence of continuous reflectors underneath the overturned portions. These non-overturned1535

layers underneath the overturned units suggest the presence of a lower throughflow. A lower1536

throughflow can only be present if the propagation velocity is greater than the far-field slip1537

rate (Section 4.3.5). The larger two structures (Figure 4.1b,c) also deflect the upper layers1538

into anticlines.1539

Regional slip rate and patch propagation velocity can be constrained by measuring the1540

top and bottom boundaries of observed overturned folds. The “top” is defined as the highest1541

point of the highest layer that can be traced to an overturn. We use this definition because1542

it is compatible with the mass-conservation equations used to define the boundaries of the1543

overturning vortex (Section 4.3.5). By using this definition we obtain higher estimates of1544

fold amplitude than Bell et al. (2014). The “top” defined here is a meteoric layer, as opposed1545

to the lower disorganized scattering reflectors in the “basal units” (Bell et al., 2014). The1546

uncertainty of the top is the difference between the highest point of the uppermost overturned1547

layer and the next traceable layer overlying it. The “bottom” is defined in a similar way, as1548

the lowest point of the lowest layer that can be traced to an overturn. If a traceable layer1549

cannot be found below the lowest overturned layer, the uncertainty of the bottom extends to1550

the bed. Measurements of fold tops and bottoms are shown in Figure 4.7a-c. The large fold1551

in Figure 4.7c is big enough to have two bottom measurements, one each for the upstream1552

and the downstream sides.1553

The measurements of fold top and bottom define permissible combinations of regional1554

slip rate and patch propagation velocity (Figure 4.7d-f). The measurements of fold top and1555

bottom correspond to contours in Figure 4.4 a and b, respectively. The uncertainty in the1556

measurements corresponds to a set of parallel contours. When the fold is elevated above the1557

bed, contours of constant top elevation and constant bottom elevation cross each other. The1558

intersection of the contours defines a closed region in parameter space that is consistent with1559

the observations.1560

Larger folds are produced by faster sticky patches and higher regional slip rates (Figure1561

4.7 d-f). Increasing fold size correlates with both increasing far-field slip rate and increasing1562

propagation velocity. The dependence of fold amplitude on regional slip rate is weaker than1563

the dependence on propagation velocity, resulting in more overlap between the examples. All1564

three folds have a propagation velocity between approximately one half the column velocity1565

and the column velocity. Only the downstream margin of the large fold is consistent with a1566

propagation velocity greater than the column velocity (Figure 4.7f). The two smaller folds1567

and the downstream margin of the largest fold indicate relatively low far-field slip rates of1568

less than half the column velocity. The upstream margin of the largest fold is consistent1569

with high sliding rates in the surrounding region.1570

Our results are consistent with the interpretation of Bell et al. (2014) that the largest fold1571

(Figure 4.7c,f) is related to the freeze-on of basal water. Upstream of the fold, slip rates are1572

high, indicating the presence of basal water. The uncertainty in the upstream measurement1573

even allows for full plug flow. Underneath the center of the fold slip rate drops, consistent1574
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with loss of basal water, potentially due to freezing along the upstream margin of the fold.1575

Downstream of the fold, slip rate recovers to an intermediate value of about a quarter to1576

a half of the column velocity. In our interpretation, this entire system of basal processes1577

would be travelling downstream at 80-100% of the velocity of the overlying ice column as1578

the deformation continues.1579

4.5 Discussion1580

Basal traction and slip are highly variable underneath ice sheets (Sergienko et al., 2014). We1581

have shown that transitions between slip and stick produce large overturned folds for a wide1582

range of far-field slip rates and patch propagation velocities. While we have chosen a simple1583

power-law rheology in our model, our results can be generalized to other ice rheologies. The1584

transition between a shear profile and a plug flow profile produces folds. We expect folds to1585

be produced wherever basal slip gives way to internal deformation over short distances. If the1586

transitions between slip and stick migrate downstream, folds become large and overturned.1587

Our results have direct implications for ice streams and their tributaries, where variations1588

in driving stress and basal drag are especially pronounced (Joughin et al., 2004b, 2009;1589

Sergienko and Hindmarsh, 2013; Sergienko et al., 2014). If sticky patches in the tributaries1590

move, they will induce velocity vortices and folds. As ice flows into the main trunk of the1591

stream, velocities increase dramatically (Joughin et al., 2010; Rignot et al., 2011). If the1592

sticky patches cannot match the increase in flow speed, then the stratigraphic structures1593

become separated from the patches and are advected downstream. Longitudinal stretching1594

will thin the folds over time, while internal deformation (if present) would augment the folds.1595

Surface accumulation compresses the folds downward. If there is little deformation then1596

structures will advance as a package, crossing the grounding zone and potentially confounding1597

interpretations of englacial stratigraphy there (Christianson et al., 2013; Bingham et al.,1598

2015).1599

4.5.1 Thermal Overturn1600

Thermal structure near the bed exerts a critical control on ice flow, deformation, basal1601

melting, and water transport. If stratigraphic overturn happens more rapidly than thermal1602

diffusion, then the strata will carry their temperature structure with them as they deform1603

and the ice sheet will develop a temperature inversion. As layers fold in the overturning1604

vortex, initially horizontal isotherms will be advected and become overturned as well. The1605

balance between advection and diffusion is described by the Peclet number, Pe,1606

Pe ≡
ūD

L̂κ
(4.10)

where L̂ ≡ L/D is the normalized length of the sticky patch, and κ is the thermal diffusivity1607

of ice. For an ice sheet 2-3 km thick, with a sticky patch 5-10 ice thicknesses (10-30 km) long,1608

and a column velocity of 1-100 m/yr, the Peclet number ranges between approximately 5 and1609

1500. Values of the Peclet number much larger than one indicate that advection dominates1610
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Figure 4.8: Schematic diagram showing the thermal structure produced by stratigraphic overturn. Initially
horizontal isotherms are transported with the overturning ice and become overturned as well. Stratigraphic
geometry used to define the schematic thermal structure taken from Figure 4.6e.

over diffusion and thermal overturn is possible. Boreholes drilled through actively overturn-1611

ing stratigraphic folds should measure a temperature inversion, with cold ice underneath1612

warm ice in the lower third of the ice column.1613

Thermal overturn will reinforce a travelling sticky patch, creating a positive feedback. A1614

cold downwelling limb of an overturning vortex reaches its lowest point above the middle of1615

the sticky patch (Figure 4.8). This cold ice near the bed increases conductive cooling that1616

promotes basal freeze-on, loss of basal water, and a reduction in sliding. This progression1617

of processes allows a sticky patch to continuously dewater the bed as it travels downstream.1618

Thermal overturn compliments the mechanism for downstream propagation described by1619

Wolovick et al. (2014) and provides an explanation for how the patches strengthen over1620

time.1621

Ice sheet temperature and the distribution of basal water are difficult to constrain. The1622

most reliable results come from borehole measurements, but the distribution of these is1623

extremely sparse. Indirect estimates of temperature in the upper part of the ice column may1624

be made from measurements of radar attenuation rate (MacGregor et al., 2015b). Basal1625

water has been constrained by radar reflectivity estimates using column-average attenuation1626

rates that often do not account for variable thermal structure (e.g., Oswald and Gogineni ,1627

2008; Wolovick et al., 2013; Jacobel et al., 2010; Carter et al., 2007), even though attenuation1628

is highly sensitive to warm ice near the bed (MacGregor et al., 2012; Matsuoka, 2011). Our1629

model indicates that ice sheet thermal structure in the vicinity of overturned stratigraphic1630

folds may be extremely complex, with warm attenuating ice high in the ice column. Folds1631
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cause laterally and vertically variable attenuation in the ice column, making interpretation1632

of both englacial and bed echoes more challenging.1633

4.5.2 Folding Timescale1634

The time required to produce an overturned fold above a travelling sticky patch impacts1635

the distance the patch travels downstream while the ice is deforming. The time required to1636

produce the fold also impacts the potential range of processes that could be expressed in1637

the fold. The characteristic timescale t to produce a large overturned fold is proportional1638

to the throughflow timescale for the sticky patch, t ∝ L/ū. The constant of proportionality1639

depends on the amplitude and geometry of the sticky patch as well as the specific distribution1640

of velocity with depth. For an ice sheet 2-3 km thick, a sticky patch 5-10 ice thicknesses1641

(10-30 km) long, and a column velocity of 1-100 m/yr, the characteristic timescale ranges1642

between 100 and 30,000 years. In this time period, a sticky patch with ûp = 1 will migrate1643

10-30 km downstream. The distance travelled is independent of ū because the timescale1644

is inversely related to column velocity. Changing the patch propagation velocity ûp will1645

alter the distance travelled proportionally. The timescales and propagation distances are1646

reasonable given the environment of the observed folds in northern Greenland.1647

4.5.3 Ice Cores1648

Near the center of ice sheets, ice cores show disturbances near the bed. Strong variations1649

between isotope records from adjacent cores and the presence of flow microstructures suggest1650

deformational processes (Grootes et al., 1993; Dahl-Jensen et al., 1997; Faria et al., 2010;1651

Montagnat et al., 2014). Observations from the NEEM core in Greenland (NEEM Commu-1652

nity Members , 2013) and the differences in the cores between the GRIP and GISP2 records1653

(Grootes et al., 1993) suggest folding. Along the ice divide in Greenland, there are rib-like1654

variations in driving stress, suggesting variations in basal resistance (Sergienko et al., 2014).1655

These ribs could give rise to large overturned folds, but our mechanism alone cannot give1656

the exact results seen at NEEM because two inverted sections are observed there without1657

an intervening upright section. Our results are compatible with folds resulting from vis-1658

cosity variations (Dahl-Jensen et al., 1997) or steep topography (Hindmarsh et al., 2006;1659

Gudmundsson, 1997) as well as the presence of freeze on ice (Bell et al., 2014, 2011; Creyts1660

et al., 2014). We expect all these processes to be active in the deep ice environment, and1661

further work is necessary to understand their relative contributions in different regions.1662

4.5.4 Observational Constraints1663

The range of allowable parameter space for travelling sticky patches can be constrained by1664

comparing model stratigraphic structures with observed stratigraphic structures. Overturned1665

folds are always found nearer to the bed than the surface (Bell et al., 2011, 2014; MacGregor1666

et al., 2015a), indicating that propagation velocity is less than regional surface velocity1667

(Figure 4.4). The tops of the observed folds are usually less than half of the ice thickness1668

(Bell et al., 2014). The large example fold (Figure 4.1c) is approximately two-thirds of the ice1669

thickness and represents the extreme high end of the range of observed overturned folds. This1670
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upper limit is shown by the thick curved line in Figure 4.4a,c. All observed folds fall to the1671

left of this curve, indicating that the sticky patches usually propagate at a velocity less than1672

or equal to the ice column velocity. The uncertainty in the measurements of fold geometry1673

allows for the possibility that the fastest sticky patches could propagate slightly faster than1674

the column velocity (Figure 4.7f). Many of the observed folds have both distinct tops and1675

distinct bottoms (MacGregor et al., 2015a), implying that patch propagation velocity is in1676

between far-field slip rate and far-field surface velocity.1677

Observations of the bottom boundaries of overturned folds are crucial for interpreting1678

regional slip rates. Bottom observations are both difficult to acquire because of increasing1679

radar attenuation and geometric spreading deeper in the ice sheet, and difficult to interpret1680

due to the complexity of reflectors near the bed. The presence of reflectors beneath the1681

overturned folds suggests that a lower throughflow is present. The presence of a lower1682

throughflow implies that internal deformation is an important component of bulk ice flow in1683

the region surrounding the folds.1684

4.6 Conclusions1685

Travelling sticky patches produce overturning vortices in the lower part of the ice sheet when1686

viewed in a moving reference frame. The vortices produce overturned stratigraphic folds1687

that rotate over time. Ice within overturning vortices is trapped above the moving sticky1688

patch, allowing the thickness of the vortex to be calculated by mass conservation. The1689

overturning vortices are largest when the patch moves downstream at the regional surface1690

velocity. Travelling sticky patches can produce overturned folds at any elevation within the1691

ice column, from the bed to the surface, although folds near the bed are more likely. As a1692

result, measurements of the upper and lower boundaries of observed overturned folds can1693

be used to constrain the parameter range of real travelling sticky patches. Three example1694

folds were measured and all three could have been produced by sticky patches moving at a1695

velocity between 0.5 and 1.0 times the ice column velocity. The presence of subhorizontal1696

reflectors underneath many of the overturned folds implies that internal deformation is an1697

important contributor to bulk ice flow in northern Greenland.1698

The kinematic model presented here suggests an inverted thermal structure can form near1699

the bed underneath the overturned folds. Thermal overturn provides a positive feedback that1700

can make a travelling sticky patch even stickier by bringing cold ice from mid-depths closer1701

to the bed above the center of the sticky patch. The resulting conductive cooling produces1702

freeze-on and loss of basal water. Thermal overturn results whenever the strata rotate faster1703

than diffusion can erase their thermal structure. Recent work suggests that basal resistance1704

may be concentrated in narrow ribs (Sergienko and Hindmarsh, 2013; Sergienko et al., 2014),1705

and thermal overturn provides a mechanism to keep the ribs cold and strong-bedded if they1706

move downstream. Wolovick et al. (2014) explained how slippery and sticky patches can1707

migrate downstream. This work illustrates how patches can strengthen over time and how1708

a simple kinematic model can be used to understand observed folds in radar.1709
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Chapter 51710

Controls on the thickness of freeze-on1711

units beneath large ice sheets1712

Michael J. Wolovick, Timothy T. Creyts, W. Roger Buck, Robin E. Bell1713

This chapter is in preparation for publication.1714

5.1 Abstract1715

Liquid water underneath ice sheets is crucial for controlling the coupling between the sliding1716

ice and the bed. Freezing of this water to the base of the ice sheet can remove water and1717

sediment from the subglacial environment, modify ice rheology, and increase basal drag.1718

Recent ice-penetrating radar observations in Greenland and Antarctica have revealed large1719

basal units potentially composed of freeze-on ice. These observations have raised the question1720

of where freeze-on is likely to occur and of how much ice can be added by basal freezing. Here,1721

we use a simple model of basal energy balance and ice flow to determine what conditions foster1722

basal freeze-on and what thicknesses of freeze-on are likely to be produced. We compute1723

freeze-on thickness as a function of thermal boundary conditions, ice sheet flow and geometry,1724

and subglacial water flux. Conductive cooling is capable of producing freeze-on units up1725

to two hundred meters thick when surface temperature is low (≤ -45◦C), ice thickness is1726

small (≤ 2500 m), and the overlying ice sheet moves slowly (≤ 3 m/yr). Glaciohydraulic1727

supercooling can produce freeze-on units over a thousand meters thick when surface and bed1728

slopes are appropriately oriented and ample water flux is available to transport sensible heat1729

downstream. Large freeze-on units produced by supercooling are most likely to be found in1730

the ablation zone where water fluxes are high and surface slopes are steep. Observed basal1731

units in East Antarctica are likely to have been produced by basal freeze-on, while basal1732

units in the accumulation zone of northern Greenland are more likely to have been produced1733

by an alternate mechanism, such as travelling slippery patches or rheological contrasts in the1734

ice column. Around the margins of the former Northern Hemisphere ice sheets mountainous1735

topography and overdeepenings likely hosted freeze-on units produced by supercooling.1736
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5.2 Introduction1737

Large (100-1000m) basal structures have been imaged with ice-penetrating radar data from1738

Antarctica (Bell et al., 2011) and Greenland (Bell et al., 2014; MacGregor et al., 2015a).1739

These structures were originally interpreted to result from the freeze-on of subglacial water1740

(Bell et al., 2011). Recently, we proposed that some of the structures in Greenland may have1741

been formed from travelling slippery patches at the ice sheet base with only small volumes of1742

freeze-on ice (Wolovick et al., 2014). The NEEM Community Members (2013) proposed that1743

the Greenland structures may have been formed by rheological contrasts between glacial and1744

interglacial ice within the ice column. The size of englacial structures that can be produced by1745

basal freeze-on and the environmental conditions where they will develop remain unknown.1746

Here, we use a simple model to estimate the size of englacial structures that can be produced1747

both by conductive freezing and by supercooling of flowing subglacial water. We then use1748

this model to estimate where freeze-on is likely to happen based on known and inferred ice1749

sheet boundary conditions.1750

Subglacial water freezes onto the overlying ice sheet when heat is removed from the bed1751

either by conduction into the ice column (e.g. Joughin et al., 2004a) or by supercooling of1752

the flowing water (Rothlisberger , 1972; Hooke, 1991; Lawson et al., 1998; Alley et al., 1998;1753

Creyts and Clarke, 2010; Creyts et al., 2013). Freeze-on releases latent heat, warming and1754

softening the overlying ice sheet. Freeze-on ice may also have a different crystal size and1755

sediment content than meteoric ice (Jouzel et al., 1999), and hence a different rheology. If1756

a large fraction of the ice column is composed of freeze-on ice, the different properties of1757

freeze-on ice will be reflected in the flow of the overall ice sheet. Freeze-on removes water1758

from the subglacial hydrologic system, modifying the traction between the sliding ice and1759

the bed and potentially causing ice stream shutdown (Bougamont et al., 2003).1760

We use an idealized numerical model to investigate the boundary conditions and glacio-1761

logical parameters that control the distribution and size of basal freeze-on structures. This1762

analysis will enable us to determine which of the observed basal units can be attributed1763

to basal freeze-on rather than travelling slip patches or englacial rheological contrasts. By1764

considering the control that water flux has on the size and distribution of basal freeze-on,1765

we can gain insights into the subglacial hydrologic system.1766

5.3 Methods1767

We use a simple model to estimate freezing rate from local thermal forcing and upstream1768

water supply. Once we know the freezing rate, we estimate the steady-state thickness of1769

the freeze-on unit based on the flux of meteoric ice from local accumulation and horizontal1770

transport, the partitioning of ice flow between basal slip and internal deformation, and cross-1771

flow divergence.1772

We consider water flow that occurs in an area-averaged thin layer flowing along the basal1773

plane. Local heterogeneities in bed topography, sediment coverage, and water distribution1774

ensure that the ice sheet experiences drag as it slides over the bed and does not float. As1775

our analysis is focused on lengthscales of an ice thickness or greater, we use an area-averaged1776

approach to local heterogeneity in the basal hydrologic system. We represent the basal1777
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hydrologic system as an equivalent area-averaged sheet flow and consider the contributions1778

of that equivalent sheet flow to the energy budget of the basal plane. This treatment of1779

basal hydrology, where the water system is parameterized in terms of a water layer thickness1780

and a water velocity, is common in larger-scale ice sheet models (e.g. Le Brocq et al., 2009;1781

Sergienko and Hulbe, 2011; Aschwanden et al., 2012). An equivalent sheet-flow treatment is1782

appropriate when the temporal and spatial scales we are interested in are the scales of the1783

overlying ice sheet.1784

The freezing rate at the base of an ice sheet is determined by the heat fluxes into and1785

out of the basal plane. Conduction and supercooling act to cool the bed and promote1786

freeze-on. Conductive cooling is caused by the decrease of temperature from the bed into1787

the ice column. Supercooling is caused by changes in the pressure-dependent melting point1788

of flowing subglacial water. Supercooling occurs when water flows towards lower pressure1789

where the melting point rises. This liquid water is now below the melting point, and some1790

of this water freezes. The latent heat that is released by freezing warms the remaining water1791

up to the new melting point. The residual warmer water transports that heat away from1792

the freezing zone.1793

The processes that warm the bed are shear heating of the sliding ice, geothermal flux, and1794

viscous dissipation in the water system. Shear heating occurs when the drag of ice sliding1795

over the bed converts gravitational potential energy into heat. Similarly, viscous dissipation1796

arises from the energy released as water flows towards lower hydraulic potential. Geothermal1797

flux results partly from radiogenic heating in the crust and mantle and partly from secular1798

cooling of the Earth’s interior. Latent heat that is released by freezing or absorbed by1799

melting closes the basal thermal budget when water is available. When insufficient water is1800

available to close the basal energy balance by freezing, the basal temperature drops below1801

the melting point. This reduction in basal temperature reduces the conductive heat flux into1802

the overlying ice sheet until energy balance is achieved.1803

To compute freeze-on thickness from freezing rate, we consider ice flow in a closed volume1804

corresponding to a steady-state ice sheet above the freezing region. The ambient ice flow1805

regime affects the thickness of a freeze-on layer that forms at the bottom of this volume by1806

varying the flux of meteoric ice crossing the boundaries: horizontal flow enters the upstream1807

margin, surface accumulation enters the top margin, cross-flow convergence enters the side1808

margins, while basal freeze-on enters through the bottom margin. The entire package of1809

meteoric and freeze-on ice exits the downstream margin, where the thickness of the freeze-1810

on component is determined by comparing the volume of freeze-on ice with the volume of1811

meteoric ice. We also consider how the partitioning of ice flow between sliding and internal1812

deformation modifies the thickness of the freeze-on unit. This closed-volume integral treat-1813

ment of mass conservation is equivalent to a local differential approach because of Gauss’s1814

Theorem. We choose this approach because freeze-on thickness is determined by the inte-1815

grated volume of freeze-on ice added as the ice flows over the freezing zone, rather than1816

the local freezing rate at any given point. While the cross-flow width of the freezing zone1817

cancels out of the expression for thickness (Equation 5.12), the along-flow length remains an1818

important free parameter. We explore the influence of freezing zone length in Section 5.4.5.1819
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5.3.1 Heat Fluxes1820

Conductive Heat Flux1821

We estimate conductive heat flux using a steady-state one-dimensional vertical model of1822

advection and diffusion. This model should capture the first-order influences of surface1823

climate and ice thickness on conductive heat flow. The thermal structure of the ice sheet is1824

given by,1825

κ
∂2T

∂z2
− w

∂T

∂z
= 0 (5.1)

where κ is thermal diffusivity, T is temperature, w is vertical velocity, and z is the vertical1826

coordinate, with 0 being the ice base and D being the surface. The boundary conditions are1827

that temperature equals the surface temperature, Ts, at z=D, and the pressure-dependent1828

melting point, Tm, at z=0. Vertical velocity is determined by the surface accumulation rate,1829

a, and a dimensionless shape function defined by ŵ ≡ −w/a. The minus sign indicates that1830

positive surface accumulation produces downward flow within the ice sheet. If we define1831

normalized temperature to be θ ≡ (T − Ts)/(Tm − Ts), normalized vertical coordinate to1832

be ẑ ≡ z/D, and the Peclet number to be Pe ≡ aD/κ, then Equation 5.1 reduces to the1833

dimensionless form,1834

∂2θ

∂ẑ2
− Peŵ

∂θ

∂ẑ
= 0. (5.2)

The only remaining unknown is the distribution of velocity with depth, given by ŵ. We1835

approximate the velocity field using a linear superposition of sliding and internal deformation1836

(Wolovick and Creyts , 2015, in review), resulting in vertical velocity given by1,1837

ŵ(ẑ) =
1− ûb

n+ 1
(1− ẑ)n+2 +

(
ûb + (1− ûb)

n+ 2

n+ 1

)
ẑ − 1− ûb

n+ 1
(5.3)

where ûb ≡ ub/ū is the fraction of ice flow due to basal sliding and n is the rheological1838

exponent of ice, taken to be 3 by convention (Cuffey and Paterson, 2010). When ice flow1839

is by basal sliding (ûb = 1), then vertical strain rate is constant and vertical velocity varies1840

linearly from the bed to the surface. When ice flow is by internal deformation (ûb = 0), then1841

vertical strain rate is lower near the bed than near the surface, and the profile of vertical1842

velocity is curved (Figure 5.1a).1843

Once ŵ is known, we solve Equation 5.2 numerically to determine the temperature pro-1844

file (Figure 5.1b). The normalized conductive heat flux, Q̂ = ∂θ/∂ẑ, is determined by1845

evaluating the temperature gradient at the bed. The conductive heat flux is determined by1846

Qcond = Q̂Q0, where Q0 ≡ k(Tm−Ts)/D is the fundamental conductive flux. Basal heat flux1847

increases with increasing Peclet number for both basal slip and internal deformation velocity1848

profiles (Figure 5.1c). As the Peclet number rises, increasing surface accumulation pushes1849

cold surface temperatures deeper into the ice sheet, steepening the basal temperature gradi-1850

ent. When the Peclet number is negative (indicating surface ablation), vertical advection is1851

upwards, pushing warm basal temperatures higher into the ice column and creating a nearly1852

isothermal layer near the bed that reduces conductive heat flow.1853

1This is the “background vertical flow” in Equation 4.6.
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Figure 5.1: Thermal Model. a) Normalized vertical velocity (ŵ) as a function of normalized elevation (ẑ).
b) Normalized temperature (θ) at several values of Peclet number (Pe). c) Normalized basal heat flow
(Q̂) as a function of Peclet number. Negative values of Peclet number represent surface ablation. Vertical
velocity can be redimensionalized by multiplying by the negative accumulation rate (−a), elevation can
be redimensionalized by multiplying by the ice thickness (D), temperature can be redimensionalized by
pinning the top to the surface temperature and the bottom to the melting point, and heat flow can be
redimensionalized by multiplying by the fundamental conductive flux, Q0 = k(Tm − Ts)/D. Panel (a) also
shows the inverse function ŵ−1.

Supercooling1854

The melting point of water is dependent on pressure. As subglacial water flows along a1855

pressure gradient the melting point changes, resulting in liquid water that is either above1856

or below the melting point. If water is above the melting point, there is excess sensible1857

heat available to melt ice. If water is below the melting point, it is in a supercooled state1858

and some of the water must freeze. The freezing water releases latent heat that warms the1859

remaining liquid water until the new melting point is reached. This phenomenon is called1860

“glaciohydraulic supercooling” (Rothlisberger , 1972; Lawson et al., 1998; Alley et al., 1998;1861

Creyts and Clarke, 2010; Creyts et al., 2013). The supercooling heat flux is given by,1862

Qsc = ρwcpβ~φwater · ∇P (5.4)

where ~φwater is the specific water flux per unit cross-flow width, ρw is the density of water, cp1863

is the specific heat of water at constant pressure, P is water pressure, and β is the pressure1864

coefficient of the melting point. ~φwater is equivalent to the product of area-averaged water1865

layer thickness with area-averaged water velocity.1866

Viscous Dissipation1867

Heating from viscous dissipation occurs when water flows down the hydraulic potential gra-1868

dient, converting potential energy into heat. The viscous dissipation term is given by,1869

Qvisc = ~φwater · ∇Φ (5.5)
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where Φ is hydraulic potential. Hydraulic potential is given by the sum of gravitational1870

potential and pressure potential, Φ = ρwgB + P , where B is bed elevation. Pressure is1871

approximated by the hydrostatic pressure of the ice overburden, P = ρigD = ρig(S − B).1872

We neglect effective pressure in this analysis. We make the assumption that water flow and1873

ice flow are co-directional so that the vector water flux ~φwater can be replaced with water flux1874

magnitude, φwater. We represent the gradient of bed elevation in terms of the ratio to the1875

gradient in surface elevation, B’/S’, where the bed gradient is evaluated along the direction1876

of flow. Positive values of B’/S’ indicate that the bed is sloping downwards in the direction1877

of flow, while negative values indicate backsloping conditions where the bed rises out of an1878

overdeepening.1879

Because supercooling and viscous dissipation are both proportional to the subglacial1880

water flux, we group them together into a net hydrologic heating term. The net hydrologic1881

heating is,1882

Qhydro = ρigφwaterS
′
[
1 +

∆ρ

ρi

B′

S ′ + ρwcpβ

(
B′

S ′ − 1

)]
(5.6)

where ∆ρ = ρw − ρi is the density difference between water and ice. Qhydro is defined to be1883

positive when the hydrologic system is adding heat to the basal plane, promoting melting.1884

Because water flux and surface slope are always positive, the sign of Qhydro is determined1885

by the bed/surface slope ratio. Setting Qhydro = 0, we can solve for a critical slope ratio at1886

which supercooling overcomes viscous dissipation in the water system. The supercoooling1887

threshold is (Rothlisberger and Lang , 1987; Alley et al., 1998; Creyts and Clarke, 2010),1888

B′

S ′ =
ρwcpβ − 1

ρwcpβ +∆ρ/ρi
≈ −1.7. (5.7)

When bed slopes are more steeply backsloping than this ratio the basal plane will be1889

cooled by the hydrologic system, and when bed slopes are above this ratio the basal plane1890

will be heated by the hydrologic system.1891

Shear Heat1892

As the ice sheet slides over its bed, friction turns gravitational potential energy into heat.1893

The rate of shear heating, Qshear, is given by the product of slip rate, ub, and basal drag, τb,1894

Qshear = τbub. (5.8)

We approximate basal drag from the surface driving stress, giving τb = ρigDS ′. We1895

assume that all shear heating within the ice column warms the bed and we replace sliding1896

velocity with column-averaged velocity, ū.1897

Geothermal Flux1898

Geothermal flux, Qgeo is one of the least well-constrained boundary conditions for modern1899

ice sheets. Direct observations of geothermal flux require thermal measurements from bore-1900

holes drilled nearly to the bed. These observations are far too sparse to produce reliable1901
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large-scale heat flow maps. All existing large-scale estimates of geothermal flux rely on indi-1902

rect inferences from seismic tomography or satellite magnetic data with a resolution on the1903

order of several hundred kilometers (Shapiro and Ritzwoller , 2004; Maule et al., 2005). Mea-1904

surements of geothermal flux on non-glaciated terrain indicate that geothermal flux varies1905

substantially on much smaller distances due to shallow hydrothermal circulation, magmatic1906

history, variations in rock type, and heterogeneities in the distribution of radioactive elements1907

(Waddington, 1987; Jaupart and Mareschal , 2007). Temporal variations in geothermal flux1908

occur because of the diffusive response of the rock to climatic transients in the overlying ice1909

sheet (Waddington, 1987). We discuss the values of geothermal flux that we investigate in1910

Section 5.3.4.1911

5.3.2 Freezing Rate1912

The freezing rate is determined by the energy balance of the basal plane. The freezing rate1913

is given by,1914

f = −
(
Qgeo +Qshear +Qhydro −Qcond

ρiL

)
(5.9)

where L is latent heat. Equation 5.9 is equivalent to equation S9 of Wolovick et al. (2014),1915

with melting rate replaced by freezing rate and isolated on the left-hand side2. Equation1916

5.9 is also equivalent to Equation 4 of Sergienko and Hulbe (2011), although Sergienko and1917

Hulbe (2011) do not include the hydrologic heating terms. While Sergienko and Hulbe (2011)1918

make the assumption that geothermal heat delivered to the base of the water layer cannot1919

be used to melt the overlying ice, we assume that it can. The freezing rate also limits the1920

length of the freezing zone when water flux is low. We discuss the water supply limitation1921

for freezing zone length in Section 5.3.4.1922

5.3.3 Freeze-on Thickness1923

We compute the thickness of the freeze-on structure by comparing the flux of freeze-on ice1924

with the flux of meteoric ice. We consider a stationary zone of basal freeze-on with freezing1925

rate f (Figure 5.2). The freezing zone has an along-flow length l, an across-flow width W, an1926

ice thickness D, a column-average velocity ū, and a surface accumulation rate a. The total1927

flux of meteoric ice entering the domain is given by,1928

φmet = ūDW −DlWε̇yy + lWa (5.10)

where ε̇yy = ∂v/∂y is the cross-flow strain rate. The column-average velocity ū is defined at1929

the upstream margin of the domain. We assume that all ice entering or exiting the cross-flow1930

boundaries of the domain is meteoric ice.1931

By comparison, the total flux of accreted ice entering the domain is given by,1932

φacc = lWf. (5.11)

2Equation 3.9 in this thesis.
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Figure 5.2: Model domain for calculating the thickness of accretion ice, zacc. Black arrows around the outside
of the domain show inwards flux of ice from horizontal flow, surface accumulation, cross-flow divergence, and
basal freeze-on.

Both the meteoric and the accreted ice flux must leave through the downstream margin1933

of the domain. The thickness of the freeze-on unit at the downstream margin is determined1934

by the distribution of ice flux with depth. If the ice is flowing uniformly by basal sliding,1935

then the accretion thickness is given by the ratio of accreted ice flux to total ice flux. If1936

internal deformation produces an ice flow profile that is not uniform with depth, then the1937

accretion thickness is given by the point at which the fraction of ice flux passing under that1938

elevation is equal to the fraction of ice flux composed of accreted ice. The fraction of ice1939

flux passing underneath a given elevation is equal to ŵ, the normalized vertical velocity used1940

earlier (Section 5.3.1). Therefore, the thickness of the accretion unit is given by the inverse1941

of vertical velocity, ẑ = ŵ−1(x) (Figure 5.1a). The normalized thickness of the accretion unit1942

is given by,1943

ẑacc = ŵ−1

(
φacc

φmet + φacc

)
= ŵ−1

(
lf

ūD −Dlε̇yy + l(a+ f)

)
. (5.12)

The cross-flow width of the freezing zone cancels out of the expression for freeze-on1944

thickness but the along-flow length does not. Once the normalized thickness of the accretion1945
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unit is known, the thickness is calculated by multiplying by the ice thickness, zacc = ẑaccD.1946

1947

5.3.4 Parameter Choices1948

Our model incorporates a broad range of factors that control the thickness of freeze-on units,1949

including thermal boundary conditions, ice sheet geometry, subglacial water availability, and1950

ice flow conditions. There are 11 total input parameters in our model: surface temperature,1951

Ts, surface accumulation rate, a, ice thickness, D, geothermal flux, Qgeo, column-average1952

ice velocity, ū, water flux, φwater, surface slope, S’, bed/surface slope ratio, B’/S’, basal slip1953

fraction, ûb, freezing zone length, l, and cross-flow divergence, ε̇yy. We identify three param-1954

eter combinations to represent the three main regions where basal structures are observed.1955

These regions are the high East Antarctic plateau (Bell et al., 2011), the interior (accumu-1956

lation zone) of northern Greenland (Bell et al., 2014), and the margins (ablation zone) of1957

Greenland (Bell et al., 2014). Below, we explore the effects of varying key two-dimensional1958

slices through parameter space, with the other parameters held constant.1959

Surface Climate1960

Surface temperature over the modern ice sheets ranges between approximately -60 ◦C and1961

0 ◦C (Comiso, 2000; Noel et al., 2015). Accumulation rate varies between a few centimeters1962

per year and over a meter per year, while annually averaged ablation rate varies from zero to1963

several meters per year (Van de Berg et al., 2005; Arthern et al., 2006; Noel et al., 2015). For1964

the East Antarctic plateau, we choose values of -50 ◦C and 5 cm/yr (Comiso, 2000; Van de1965

Berg et al., 2005; Arthern et al., 2006). For the interior of northern Greenland, we choose1966

-28 ◦C and 12 cm/yr (Noel et al., 2015). For the Greenland ablation zone, we choose values1967

of -5 ◦C and -30 cm/yr (Noel et al., 2015), with negative values of accumulation indicating1968

surface ablation.1969

High accumulation rates are never found together with cold surface temperatures (Figure1970

5.3). The moisture capacity of air has roughly an exponential dependence on temperature1971

according to the Clausius-Clapeyron relationship. When surface temperature and accumu-1972

lation rate are plotted against one another on semi-logarithmic axes, the upper margin of1973

the observed climate forcing forms roughly a straight line. We manually fit a line with an1974

e-folding temperature of 12.5 ◦C to the upper envelope of the observed distribution (Figure1975

5.3). We use this line to represent the maximum observed accumulation as a function of1976

temperature.1977

Geothermal Flux1978

Globally, continental crust averages a geothermal flux of 65 mW/m2 (Jaupart and Mareschal ,1979

2007). Cold continental cratons, such as East Antarctica, average 40-50 mW/m2 based on1980

in situ measurements (Jaupart and Mareschal , 2007, Table 3). Remote inferences of East1981

Antarctic geothermal flux are also within the range of 40-50 mW/m2 (Shapiro and Ritzwoller ,1982

2004; Maule et al., 2005). Within individual cratons, heat flux may vary by 20-30 mW/m2
1983

(Jaupart and Mareschal , 2007, Table 4). Tectonically and volcanically active regions, such1984
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Figure 5.3: Observed distribution of surface temperature and accumulation rate for Antarctica and Green-
land. The black line represents an approximate upper limit of surface accumulation as a function of temper-
ature. The slope corresponds to an e-folding temperature of 12.5 ◦C. For Antarctica, surface temperature
is taken from Comiso (2000), and surface accumulation is the mean of Van de Berg et al. (2005) and Arth-
ern et al. (2006), all accessed via the ALBMAPv1 dataset (Le Brocq et al., 2010). For Greenland, surface
temperature and accumulation are both taken from RACMO2.3 (Noel et al., 2015).

as West Antarctica, may have higher heat flows well in excess of 100 mW/m2 Jaupart and1985

Mareschal (2007). Preliminary heat flow estimates at the WAIS Divide ice core suggest that1986

heat flow may be as high as 240 mW/m2 in central West Antarctica (Clow et al., 2012).1987

As regions with high heat flow are unlikely to host basal freeze-on, we investigate a central1988

value of 40 mW/m2 and a range of 30-100 mW/m2.1989

Ice Sheet Geometry1990

Ice thickness in the Gamburtsev Subglacial Mountains, where many of the East Antarctic1991

basal structures have been observed, ranges from 1000 m to over 4000 m (Bell et al., 2011;1992

Ferraccioli et al., 2011). Many of the structures, interpreted as freeze-on, originate where1993

water networks terminate in ice that is ∼2200 m thick (Creyts et al., 2014). We choose1994

2500 m as a central value for the East Antarctic parameter set, and investigate a range of1995

1000-4500 m. We choose 2200 m as the central value for the interior Greenland parameter1996

set, and investigate the same range. We choose 1000 m as the ice thickness for the Greenland1997

ablation zone parameter set.1998
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Ice sheet surface slopes are typically in the range of 10−4-10−2 (e.g. Fretwell et al., 2013).1999

Slopes are generally higher towards the margins, although substantial local variability exists2000

throughout the ice sheet. East Antarctica has a generally lower slope than northern Green-2001

land. We choose a central value of 10−3 for East Antarctica and 3x10−3 for both the interior2002

and the margins of Greenland, with a range of 10−4-10−2 for all three sets.2003

The range of bed to surface slope ratio that we consider is limited by the ability of water2004

to flow uphill. Water cannot flow up an adverse bed slope steeper than −ρi/∆ρ = −11 times2005

the surface slope. We investigate a range of bed/surface slope ratios of -10 to 10. To ensure2006

that we are investigating a moderate supercooling geometry, we choose a central value of -52007

for the bed/surface slope ratio in all parameter sets.2008

Water Flux2009

Our model uses specific water flux, with units of m2/yr. Studies of subglacial and supraglacial2010

water flows often use volume flux, with units of m3/yr. Specific flux is volume flux distributed2011

across the cross-flow width of the freezing zone; equivalently, it is also the product of area-2012

averaged water layer thickness with area-averaged water velocity. The specific flux is given2013

by,2014

φwater =
mA

W
(5.13)

where m is the average upstream melt rate, A is the catchment area, and W is the cross-flow2015

width of the freezing region. Observations indicate that basal units are in the range of 5-202016

km in the cross-flow dimension (Bell et al., 2011, 2014). For our model, we choose a range of2017

specific water flux between 100-106 m2/yr. This range captures the full spectrum of freeze-on2018

dynamics, from water-limited conductive cooling, through conduction-limited freeze-on, to2019

water-dominated supercooling (Section 5.4.3). We choose the geometric mean of this range,2020

103 m2/yr, as the central value for both accumulation zone parameter sets. We choose a2021

high value, 105 m2/yr, as the central value for the ablation zone to ensure that we are in2022

the supercooling regime and because the ablation zone has abundant surface melt. In the2023

discussion (Section 5.5.3), we compare this range of specific water flux with observations of2024

volume fluxes underneath Antarctica and Greenland.2025

Ice Flow Regime2026

Ice sheet surface velocities range from zero to over 10 km/yr (Joughin et al., 2010; Rignot2027

et al., 2011). Thick freeze-on units are more likely to be found where ice velocities are low2028

(Section 5.4.4). Near Dome A in East Antarctica, ice velocity measured by GPS at the2029

AGAP-S camp was 1.7 m/yr (Bell et al., 2011). In Greenland, many of the marginal units2030

are found in slow-flowing ridges between fast-flowing outlet glaciers (Bell et al., 2014), while2031

the interior units are located where ice flow is of order 10 m/yr. We choose a range of2032

0.3-3000 m/yr for ice velocity with a central value of 1 m/yr in East Antarctica and 10 m/yr2033

in the both Greenland parameter sets.2034

Basal slip ratio, ûb, varies between 0 and 1 by definition. We choose a central value of 02035

for both the accumulation zone and the ablation zone because the observed basal structures2036
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are more likely to develop in slow-flowing regions where ice flow is dominated by internal2037

deformation.2038

Cross-flow divergence varies depending on the geometry of the surrounding ice sheet.2039

When flow is away from a dome or along a ridge, the ice will be spreading in the cross-flow2040

dimension. When flow is becoming concentrated into an ice stream, the ice will by converging2041

in the cross-flow dimension (Ng and Conway , 2004). In the simple case of flow diverging2042

around a circular dome, cross-flow divergence is equal to half the vertical strain rate, a/D2043

(Nye, 1959; Reeh, 1989). We scale the cross-flow divergence with the vertical strain rate,2044

a/D. With that scaling, we investigate a range of +1 to -1 and a central value of zero.2045

Length2046

The along-flow length of the freezing region is determined by heterogeneity in basal to-2047

pography, geothermal flux, and other forcings. We choose lengths based on the observed2048

dimensions of the basal structures. The observed structures are on the order of 10-100 km2049

long, although part of that length results from passive advection away from the source (Bell2050

et al., 2011, 2014). We choose a central value of 20 km for both accumulation zone sets, 102051

km for the ablation zone set, and examined a range of 0-50 km.2052

Along-flow length can also be limited by the available water supply. When water supply2053

is low, length is limited to,2054

l ≤ ρwφwater

ρif
. (5.14)

If water supply is low enough to limit the possible length of the freezing zone, we replace2055

the assumed length in Equation 5.12 with the water-limited length.2056

5.4 Results2057

We use the simple model described above to examine the range of conditions that give rise2058

to basal freeze-on and to explore the parameters that control freeze-on thickness. First,2059

we explore how conductive cooling is affected by surface temperature and accumulation,2060

ice thickness, and geothermal flux. Second, we analyze supercooling in the ablation zone.2061

Third, we investigate how increasing water flux causes the freezing system to switch between2062

water-limited, conduction-limited, and water-dominated regimes. Next, we explore the in-2063

fluence of the ice flow regime on the freeze-on units produced by both conductive cooling2064

and supercooling. Finally, we examine how the lengthscale of the freezing region modifies2065

the thickness of the resulting freeze-on unit.2066

5.4.1 Conduction2067

Our model results indicate that conductive cooling can create freeze-on units up to 100-200m2068

thick in the accumulation zone (Figure 5.4). In the following sections we explore the effects2069

of surface temperature, accumulation rate, ice thickness, and geothermal flux on conductive2070

freeze-on.2071
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Surface Temperature2072

Surface temperature has a simple monotonic effect on the size of freeze-on units. Colder2073

temperatures always produce thicker freeze-on (Figure 5.4a,c). The effect of surface tem-2074

perature is monotonic because surface temperature only enters the problem once, by con-2075

trolling the conductive heat flux off of the bed. The fundamental conductive heat flux,2076

Q0 = k(Tm − Ts)/D, increases linearly with decreasing surface temperature.2077

Surface Accumulation Rate2078

Surface accumulation rate affects the size of basal freeze-on units in two ways, by modifying2079

both the conductive heat losses and the flux of meteoric ice. Increasing surface accumulation2080

increases the downwards advection of cold ice and the conductive heat losses from the bed2081

(Figure 5.1). Increasing surface accumulation also increases vertical thinning within the ice2082

column, pushing freeze-on units downwards. The thinning effect of surface accumulation is2083

represented in our model by an increasing flux of meteoric ice entering the domain (Figure2084

5.2), reducing the fraction of total ice flux composed of freeze-on ice.2085

The thermal effect of accumulation dominates at all of the observed temperature/accumulation2086

combinations (Figure 5.4a,c). At any given surface temperature, there is a value of surface2087

accumulation that will produce the thickest conductive freeze-on unit, with smaller units2088

found above and below that level. However, the “sweet spot” is higher than the observed2089

Figure 5.4: Freeze-on thickness, zacc, as a function of (a,c) surface temperature and accumulation rate,
and (b,d) ice thickness and geothermal flux. The observed upper limit of accumulation as a function of
temperature (Figure 5.3) is shown in (a) and (c), and model output above that line is set partially transparent.
Left column represents the East Antarctic parameter set and right column represents the North Greenland
parameter set. White stars indicate the parameter combinations used for the other accumulation zone figures.
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upper limit of accumulation rate as a function of temperature. For example, at -60 ◦C in2090

the East Antarctic parameter set the largest freeze-on units are found when accumulation is2091

roughly 20 cm/yr, but the highest observed accumulation rate at that temperature is only2092

4 cm/yr. Within the observed range of accumulation as a function of surface temperature,2093

increased surface accumulation always produces a larger conductive freeze-on structure.2094

Geothermal Flux2095

Geothermal flux affects the system in one way, by changing the balance of heat flows at the2096

bed. Increasing geothermal flux warms the bed, reducing the freezing rate and eventually2097

causing basal melting. As a result, freeze-on thickness monotonically decreases for increasing2098

geothermal flux (Figure 5.4b,d).2099

Ice Thickness2100

Ice thickness affects basal freeze-on in multiple ways. Increasing ice thickness reduces the2101

conductive heat flux by reducing the thermal gradient, Q0 = k(Tm − Ts)/D. Ice thickness2102

also increases the Peclet number, Pe = aD/κ, increasing the dominance of advection over2103

diffusion and increasing the conductive heat flux. A larger ice thickness increases the flux2104

of meteoric ice entering the domain from upstream (Figure 5.2), as well as increasing the2105

driving stress and shear heating. Finally, ice thickness controls the overall scale of all englacial2106

structures by affecting the conversion of normalized thickness (ẑacc) to thickness (zacc).2107

The impact of ice thickness on the fundamental conductive flux (Q0 = k(Tm − Ts)/D)2108

dominates. For most of the parameter range that we consider, increasing ice thickness2109

reduces the conductive heat flux off of the bed and reduces the thickness of the freeze-on2110

unit (Figure 5.4b,d). Only when ice thickness and geothermal flux are both small in the2111

East Antarctic parameter set does thicker ice leads to thicker conductive freeze-on units.2112

5.4.2 Glaciohydraulic Supercooling2113

Glaciohydraulic supercooling is dependent on subglacial water flow to remove latent heat2114

from the freezing region. The net hydrologic heat flux, Qhydro, depends on water flux,2115

surface slope, and bed/surface slope ratio.2116

In the ablation zone, surface temperatures are warm and advection within the ice column2117

is upwards. Conductive heat losses are negligible (Figure 5.1c). As a result, freeze-on in the2118

ablation zone requires supercooling. Freeze-on occurs when water flux is high, surface slope2119

is steep, and the bed is steeply backsloping (Figure 5.5). In those conditions, supercooling2120

is capable of producing very thick freeze-on units. If water flux is too low, if the bed slope is2121

not appropriately oriented, or if surface slope is shallow, then the ice sheet will be melting2122

at the base.2123

5.4.3 Water Flow2124

In the ablation zone, freeze-on is dominated by the ability of the hydrologic system to remove2125

heat via supercooling. In the accumulation zone, basal freeze-on can be divided into three2126
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Figure 5.5: Supercooling freeze-on thickness in the ablation zone. Thickness as a function of (a) water flux
and bed/surface slope ratio, and (b) water flux and surface slope. The bed slope threshold for supercooling
(Equation 5.7) is shown in (a). The white star represents the parameter combinations used for the other
ablation zone figures. Those parameter combinations are chosen to be within the supercooling regime.

regimes based on the subglacial water flux: water-limited, conduction-limited, and water-2127

dominated (Figure 5.6).2128

Water-Limited Regime2129

In the water-limited regime, all of the subglacial water is removed from the hydrologic system2130

by conductive freezing. Our model represents the water supply limitation by reducing the2131

along-flow length of the freezing region (Equation 5.14). The downstream margin of the2132

freezing zone in this regime is a freezing front, a line where the water supply is used up, the2133

water system seals off, and hydraulic conductivity drops to zero. Downstream of the freezing2134

front basal temperature drops below the melting point and sliding ceases. The water-limited2135

regime begins when water flux is in between 101 and 102 m2/yr in our model (Figure 5.6).2136
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Figure 5.6: Freeze-on thickness as a function of water flux in the accumulation zone. Thickness as a function
of (a) water flux and bed/surface slope ratio, and (b) water flux and surface slope. The bed slope threshold
for supercooling (Equation 5.7) is shown in (a). The white star represents the parameter combinations for
the other East Antarctic figures. Water-limited, conduction-limited, and water-dominated regions indicated.

Conduction-Limited Regime2137

In the conduction-limited regime, the freezing rate is controlled by the rate that heat is2138

conducted into the overlying ice sheet. The available water supply is not used up in this2139

regime and the bed downstream of the freezing zone remains at the melting point. The2140

downstream margin of the freezing region is marked by a change to melting conditions, rather2141

than by a freezing front. Sliding may continue downstream of the freezing region, although2142

less water will be available in the hydrologic system than was available upstream. Since the2143

water flux is still relatively low in the conduction-limited regime, viscous dissipation and2144

supercooling (Qhydro) are small compared to the other terms in the basal energy balance. In2145

the conduction-limited regime freeze-on thickness is insensitive to water flux, as represented2146

by a broad plateau in the center of Figure 5.6. In this regime, freeze-on thickness is controlled2147

by thermal forcing, ice thickness, and ice flow.2148
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Water-Dominated Regime2149

In the water-dominated regime, viscous dissipation and supercooling (Qhydro) are the dom-2150

inant terms in the basal energy balance. As water flux increases past 104 m2/yr, the other2151

terms in the basal energy balance gradually lose importance. Once water flux reaches 105-1062152

m2/yr, the freezing rate depends only on water flux, surface slope, and bed slope. When2153

the bed/surface slope ratio is greater than the supercooling threshold (Equation 5.7), Qhydro2154

is positive and basal melting occurs. When the bed/surface slope ratio is less than the2155

supercooling threshold, Qhydro is negative and basal freezing occurs. Freeze-on can reach2156

a kilometer thick in the water-dominated regime with sufficiently high water flux (Figure2157

5.6).2158

5.4.4 Ice Flow2159

The ambient ice flow regime exerts a strong control on the size of basal accretion reflectors.2160

Any increase in the flux of meteoric ice into the domain reduces the thickness of the freeze-on2161

unit. Internal deformation also increases the elevation at which the freeze-on unit will exit2162

the domain relative to basal sliding.2163

Ice Velocity2164

Fast ice flow affects the size of accretion units in two ways. First, fast flow carries newly2165

accreted ice away from the freezing zone before it can thicken. The second effect is shear2166

heating, where fast flow warms the bed and reduces the freezing rate. As both effects2167

have the same sign, freeze-on thickness monotonically decreases with increasing ice velocity2168

(Figure 5.7a,c). The effect of shear heating can be seen as freeze-on thickness decreases with2169

increasing surface slope (Figure 5.7a,c). Fast flow with a steep surface slope produces the2170

most shear heating and the least freeze-on, while slow flow with a shallow slope produces2171

the thickest freeze-on units.2172

Cross-Flow Divergence2173

Divergence in the cross-flow direction, as for ice flow along a ridge or away from a dome, pulls2174

accretion units up from the bed. Cross-flow convergence, as at the onset of an ice stream,2175

acts to push accretion units downwards. In our model, cross-flow divergence is represented2176

by a flux of meteoric ice through the side boundaries of the domain (Figure 5.2). Because2177

we have assumed that regions outside of the freezing zone are not also freezing, all of the ice2178

entering from the sides in a convergent regime is meteoric ice. We have also assumed that2179

all of the ice leaving the side margins in a divergent regime is meteoric ice, when some of it2180

should be accreted ice as well. This simplified treatment of cross-flow divergence means that2181

our thickness estimates are an upper limit when cross-flow divergence is positive. Cross-flow2182

divergence will monotonically increase the thickness of basal freeze-on units (5.7b,d).2183

Basal Sliding and Internal Deformation2184

Ice flow in our model is accommodated both by basal sliding and internal deformation. Both2185
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Figure 5.7: Ice flow effects on freeze-on thickness in the accumulation zone. Top row (a,c) shows thickness as
a function of ice column-average velocity and surface slope, bottom row (b,d) shows thickness as a function
of slip ratio (sliding velocity divided by column-average velocity) and cross-flow divergence. Left column
(a,b) is for the East Antarctic parameter set, right column (c,d) is for the north Greenland set. White stars
show the parameter combinations used for other figures.

processes can impact the thickness of basal freeze-on units. When basal sliding increases,2186

the conductive heat loss is enhanced because of increased downward advection near the bed2187

(Figure 5.1a,c). Increased conductive heat loss increases the freezing rate. When internal2188

deformation increases, thicker freeze-on units will form for a given freezing rate. Internal2189

deformation is associated with a lower vertical strain rate near the bed (Figure 5.1a), allowing2190

freeze-on to thicken before being exposed to stretching and thinning higher in the column.2191

The thickening due to internal deformation is the dominant process.2192

Basal freeze-on units are largest when the ice sheet moves by internal deformation. Inter-2193

nal deformation creates a slow-moving basal section where freeze-on units can grow before2194

being swept away by fast ice flow higher in the column. In contrast, basal sliding sweeps2195

freeze-on ice downstream before it thickens, like a plume of smoke in a strong wind. The ice2196

flow effect is represented in our model through ŵ−1, a function that depends on the distri-2197

bution of ice flow between sliding and deformation (Equation 5.3, Figure 5.1a). Increased2198

basal sliding monotonically decreases the thickness of freeze-on units (Figure 5.7b,d).2199

5.4.5 Length2200

The thickness of a freeze-on unit depends on the along-flow length of the freezing zone.2201

Freeze-on thickness, like all englacial stratigraphy, is sensitive to forcings that are integrated2202
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over time and space. Thickness responds to the integrated volume added to the ice column as2203

the ice flows over the freezing zone. Longer freezing zones add more volume to the ice sheet2204

and produce thicker freeze-on units (Figure 5.8). Internal deformation fosters the initial2205

formation of freeze-on units when length is small but restricts further thickening once the2206

freeze-on unit reaches faster flowing ice higher in the column. Freeze-on thickness for the2207

internal deformation profile increases rapidly when length is less than ∼10 km, but begins to2208

level off after that (Figure 5.8). Ice traversing a long freezing zone also experiences greater2209

vertical thinning due to surface accumulation. As length increases, the additional volume of2210

freeze-on ice comes to be balanced by surface accumulation and cross-flow divergence. The2211

limiting value of freeze-on thickness as length increases is given by,2212

lim
l→∞

ẑacc = ŵ−1

(
f

a+ f −Dε̇yy

)
. (5.15)

The limiting value of freeze-on thickness is independent of horizontal velocity, ū. As the2213

freezing zone lengthens, the influence of the ice flux entering from upstream declines.2214

At the other extreme, when the freezing zone is small the meteoric ice flux is almost2215

completely composed of upstream horizontal transport. In the limit that the length of2216

the freezing zone approaches zero, surface accumulation and cross-flow divergence can be2217

Figure 5.8: Lengthscale effects on freeze-on thickness for the East Antarctic parameter set. Plot shows the
thickness of the freeze-on units as a function of the along-flow length of the freezing zone for basal sliding
and internal deformation velocity profiles. White star shows the parameter value used for other figures.
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neglected from the meteoric flux. In that limit, freeze-on thickness is given by,2218

lim
l→0

ẑacc = ŵ−1

(
lf

ūD

)
. (5.16)

When the length of the freezing zone is small, the fraction of total ice flux composed of2219

freeze-on ice is proportional to the length of the freezing zone.2220

5.5 Discussion2221

Given the results described above, we discuss the implications of our model for the subglacial2222

water flow and internal structure of ice sheets. First, we compare the specific water fluxes2223

required to produce large conductively cooled or supercooled freeze-on structures with melt2224

rates and catchment areas in Antarctica and Greenland. We discuss the likely relationship2225

between large subglacial water fluxes and fast ice flow, and consider that exceptions to that2226

relationship might occur at flow bifurcations. We compare the water fluxes in our model with2227

known subglacial water fluxes from active lakes, moulins, and outburst floods. We discuss2228

model limitations. Finally, we apply our model to Greenland and Antarctica and discuss2229

locations that are favorable for basal freeze-on.2230

5.5.1 Subglacial Water Flow2231

Conductive cooling requires 102-103 m2/yr of water flux to build moderate accretion units2232

(∼100m). Here, we assume that the freezing zone has a cross-flow width of 10 km based on2233

the observed structures (Bell et al., 2011, 2014). Cross-flow width cancels out of our analysis2234

of freeze-on thickness (Equation 5.12), but cross-flow width is necessary to make comparisons2235

between specific water flux and volume water flux, melt rate, or catchment area. For flow2236

through a 10 km wide freezing zone, 102-103 m2/yr of specific flux is equivalent to 1 mm/yr2237

of melt from a catchment area of 103-104 km2. At Dome A in East Antarctica, the water2238

networks that feed the freeze-on units have catchments that are also in the range of 103-1042239

km2 (Wolovick et al., 2013, Table 2)3. The Dome A basal structures are on average 100-2002240

m thick. Conductive freeze-on of subglacial meltwater can produce these structures.2241

Supercooling requires 104-106 m2/yr of water flux to build accretion units thicker than2242

∼100 m. As supercooling is likely dominant in the ablation zone, we consider water flux2243

from surface melt in addition to basal melt. In the ablation zone surface melt rates are on2244

the order of 1 m/yr. This melt rate could produce sufficient water flux for supercooling2245

from a catchment area of 102-104 km2. For comparison, we estimate potential catchment2246

areas in the ablation zone of the Greenland Ice Sheet. The ablation zone along the western2247

Greenland margin is 50-100 km wide (Noel et al., 2015). We assume that half of this width,2248

25-50 km, is available to feed a potential freeze-on unit. Because of the strong influence of ice2249

surface slope on hydraulic potential gradient, we assume that the catchment region cannot2250

be elongated parallel to the coast. The maximum catchment area is therefore given by the2251

half-width of the ablation zone squared, or 625-2500 km2. This catchment area is within the2252

3Table 2.2 in this thesis.
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range of 102-104 km2 needed to produce large freeze-on structures from supercooled surface2253

meltwater. In contrast to surface melt, basal melt rates in the accumulation zone are on the2254

order of 1 mm/yr, requiring catchment areas of 105-107 km2 to build substantial freeze-on2255

units via supercooling. The high end of this range is the same order of magnitude as the2256

entire Antarctic continent, while the low end is similar to the catchment area of Pine Island2257

Glacier. Water from a single ice stream catchment basin could be funnelled to a single2258

freezing zone at an adverse bed slope within the trunk of the ice stream.2259

5.5.2 Correlation Between Ice Flow and Water Flow2260

Fast ice flow and fast water flow both tend to be concentrated in ice streams and outlet2261

glaciers. Because of the dominant impact of ice surface slope on hydraulic potential gradient,2262

water generally follows ice flow downstream. Just as ice streams collect ice from a wide2263

catchment area, ice streams also tend to collect water from a similarly wide catchment area.2264

Fast flowing ice streams also produce meltwater through shear heating, further increasing2265

the water flux. The greatest subglacial water fluxes in the accumulation zone are likely2266

to be found in fast flowing ice streams and outlet glaciers. Ice streams may be the only2267

locations where the water-dominated regime occurs in the accumulation zone. Supercooling2268

will be favored when ice streams flow up adverse bed slopes out of subglacial overdeepenings.2269

Because of fast ice flow and extensive basal sliding in these regions, freeze-on structures are2270

likely to be thin layers (≤10 m) near the bed. Where supercooling constricts water passages2271

up adverse slopes, water pressure tends to increase, causing water to spread out into a2272

distributed system and reducing basal drag (Rothlisberger , 1972; Hooke, 1991; Creyts and2273

Clarke, 2010).2274

Large water fluxes may be found in the accumulation zone outside of fast flowing ice2275

streams at water flow bifurcations. Subglacial water flow is not always coincident with ice2276

flow. In places, bed or surface topography may route subglacial water that was originally in2277

the trunk of a fast-flowing ice stream out of the ice stream. For example, there is evidence2278

that basal freeze-on occurs in the Shackleton Range at the margins of Recovery Ice Stream,2279

where water from a network of active lakes is routed out of a deep subglacial trough uphill2280

into a slower flowing thin ice region (Fricker et al., 2014). In these locations, high water flux2281

generated in a fast-flowing ice stream is transported into a region of slower ice flow, thin ice,2282

and uphill bed slopes. Flow bifurcations have the potential to produce thick freeze-on units2283

adjacent to ice streams.2284

5.5.3 Comparison with Known Water Fluxes2285

One of the only observational estimates of subglacial water flux in the accumulation zone of2286

large ice sheets comes from satellite records of the filling and draining cycles of active lakes2287

in Antarctica. These satellite-based estimates are at the high end of the range of subglacial2288

water fluxes that we have considered. Lower fluxes may not produce rapid surface changes2289

observable from space. Fricker et al. (2007) estimated water volume fluxes on the order of2290

1 km3/yr in the Whillans and Mercer Ice Streams, equivalent to 105 m2/yr if we assume 102291

km cross-flow width. Fricker et al. (2010) and Smith et al. (2009) found similar order of2292

magnitude volume fluxes. The observed active lakes have filling and draining cycles on the2293
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order of several years, although the short observational record cannot rule out longer cycles.2294

Many active lakes are in ice streams (Smith et al., 2009) where freeze-on structures will be a2295

small fraction of ice thickness, but supercooling freeze-on could still play an important role2296

in regulating basal drag.2297

In the ablation zone, water fluxes can be estimated from moulin inputs. Smith et al.2298

(2015) estimated volume fluxes for individual moulins in the range of 1-10 m3/s, or about2299

107-108 m3/yr. Using our assumed 10 km cross-flow width, this translates to 103-104 m2/yr2300

water flux per moulin. As supercooling requires 104-106 m2/yr to build large freeze-on units,2301

subglacial flow must collect the input from 1-1000 moulins to produce a large freeze-on unit.2302

For comparison, Smith et al. (2015) found a moulin density of approximately 0.1 per km2,2303

and McGrath et al. (2011) found a moulin density of approximately 1 per km2, implying2304

that large freeze-on units require catchments of 100-104 km2 during peak melt season. This2305

range represents subglacial catchments collecting the input from multiple moulins, while the2306

moulins themselves could have larger supraglacial catchments. The supraglacial catchments2307

must be in the range of 102-104 km2 (Section 5.5.1). Care is also required when considering2308

moulin inputs, because the melt season in Greenland is only part of the year and subglacial2309

water flux must be averaged over many years when determining the size of englacial freeze-on2310

structures.2311

Freeze-on thickness is a time-integrated quantity. Depending on the length of the freezing2312

zone and the ice flow rate, freeze-on structures may take several hundred to a thousand years2313

to form. During this time period, water flux and freezing rate may fluctuate wildly. In the2314

ablation zone, supercooling produces extremely high freezing rates during the melt season,2315

and no freezing at all during the rest of the year. In the accumulation zone, active lakes may2316

fill and drain on timescales of several years, producing wide swings in downstream water2317

flux. Small variations in ice sheet surface gradient far upstream may alter water routing,2318

causing variations in water flux through the freezing zone (Wright et al., 2008). In both the2319

accumulation zone and in the ablation zone, freeze-on ice that forms during times of high2320

water flux will be thinned and advected away by ice flow during times of low water flux.2321

If water flux varies on longer timescales than it takes to build a freeze-on structure, or if2322

a large amount of freeze-on ice is created all at once, then freeze-on thickness should fluctu-2323

ate as well. Short-lived subglacial outburst floods or jokulhlaups are capable of producing2324

temporary water fluxes greater than the water fluxes we have considered. Estimates of max-2325

imum discharge for historical outburst floods are as high as 3x105 m3/s (Roberts , 2005),2326

while geologic evidence from the Labyrinth on the margin of the East Antarctic Ice Sheet2327

indicates that outburst floods there during the Miocene had flow rates on the order of 1062328

m3/s (Lewis et al., 2006). The Labyrinth volume flux translates to 1013 m3/yr, or about2329

109 m2/yr for a 10 km cross-flow width. During such floods, supercooling could potentially2330

produce extremely high freezing rates in areas with favorable bed and surface geometry. In2331

the case of sudden outbursts through regions with favorable geometry, thick freeze-on units2332

would form immediately after a flood, while between floods the freeze-on units would be2333

thinned and transported down-flow.2334

5.5.4 Model Limitations2335

This simple model has a number of limitations. This analysis has not considered the negative2336
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feedback of upwards advection caused by freeze-on. Basal freeze-on produces upwards flow2337

near the ice sheet base, reducing the temperature gradient and limiting conductive heat2338

losses. Our simple temperature model (Section 5.3.1) assumes no vertical velocity at the ice2339

sheet base. When freeze-on structures are small, the difference between conductive heat losses2340

with and without upwards advection should also be small. When freeze-on structures are2341

large, upwards advection should become an important limiting feedback. Upwards advection2342

associated with large freeze-on structures will produce a nearly isothermal layer near the bed,2343

reducing conductive heat losses and limiting the rate of freeze-on.2344

Local one dimensional analyses are necessarily limited. Horizontal temperature advection2345

and longitudinal stress gradients cannot be included. A steady state model cannot account2346

for transient freeze-on events, ice flow disturbances, or surface climate variability. Despite the2347

limitations of a simple model, the relationships between the variables controlling freeze-on2348

structures can be highlighted.2349

5.5.5 Where is Freeze-on Likely to be Found?2350

To investigate where freeze-on can occur, we apply our model to Antarctica and Greenland.2351

We use ice sheet geometries from Fretwell et al. (2013) and Bamber et al. (2013a). Green-2352

land surface temperature and accumulation are taken from RACMO2.3 (Noel et al., 2015).2353

Antarctic surface temperature is taken from Comiso (2000) and accumulation is the mean2354

of Arthern et al. (2006) and Van de Berg et al. (2005). Geothermal flux for both ice sheets2355

is from Shapiro and Ritzwoller (2004). Antarctic surface climate and geothermal flux are2356

accessed via the ALBMAPv1 dataset (Le Brocq et al., 2010). Ice flow velocities are taken2357

from Joughin et al. (2010) for Greenland and from Rignot et al. (2011) for Antarctica. We do2358

not correct the velocity data for the difference between surface velocity and column-average2359

velocity. We assume that ice flow is by internal deformation because freeze-on is generally2360

found in slowly flowing areas. For the accumulation zone in both ice sheets, we assume the2361

freezing zone is 20 km long, we low-pass filter the input datasets at 20 km, and we assume2362

that 103 m2/yr of water flux is available everywhere. For the ablation zone in Greenland, we2363

assume the freezing zone is 5 km long, we low-pass filter the input datasets at 2.5 km, and2364

we assume that 106 m2/yr of water flux is available everywhere.2365

Many areas of East Antarctica are ideal for basal freeze-on (Figure 5.9). Surface temper-2366

ature and geothermal flux are both very low (roughly -50 ◦C and 40-50 mW/m2), favoring2367

conductive cooling (Comiso, 2000; Shapiro and Ritzwoller , 2004). Widespread slow ice flow2368

via internal deformation allows freeze-on to thicken. The areas around Dome A, Ridge B,2369

Dome C, and Dome F are all favorable for freeze-on. Thin ice regions near the margins in2370

between fast-flowing ice streams, such as the Shackleton Range (Fricker et al., 2014), are also2371

favorable for freeze-on. Smaller peripheral domes, such as Law Dome and Berkner Island,2372

are also favorable for freeze-on.2373

Pattyn (2010) estimated Antarctic basal temperature and melt rate using a three dimen-2374

sional steady-state model. Our model generally shows more extensive basal freezing than his2375

in East Antarctica. Both models predict cold conditions underneath Dome A, Dome F, and2376

in the Vostok Highlands underneath Ridge B, although the extent of cold-based conditions2377

in our model is larger for all locations (Figure 5.9, c.f. Pattyn (2010, Figure 3)). Pattyn’s2378

model shows small patches of cold-based conditions underneath Dome C, while our model2379
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Figure 5.9: Distribution of maximum freeze-on thickness, zacc, for Antarctica. A constant water flux of 103

m2/yr is assumed to be available everywhere. Surface contours are shown at 500 m intervals. Inset shows
the Gamburtsev Subglacial Mountains with Accretion Type 1 picks from Bell et al. (2011) in red.

shows more spatially extensive freezing conditions there. Both models place basal melting in2380

the deep subglacial troughs underneath Dome C, as well as cold-based conditions in the thin2381

ice in between the outlet glaciers on the back side of the Transantarctic Mountains, in Palmer2382

Land in the Antarctic Peninsula, in Berkner Island, in Roosevelt Island, and in the ice rises2383

of the Filchner-Ronne Ice Shelf. Both models show freezing conditions in downstream Kamb2384

and Whillans Ice Streams, even though neither steady-state model should be expected to2385

capture the transient dynamics at work there (Retzlaff and Bentley , 1993). Many of the dif-2386

ferences between the models can be attributed to different geothermal flux inputs; Pattyn’s2387
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model used a lower geothermal flux in West Antarctica and a higher geothermal flux in East2388

Antarctica, as well as a geothermal flux input that was locally tuned to produce melting2389

in the locations of known subglacial lakes (Pattyn, 2010, Figure 2). Other differences arise2390

because our model used an updated ice thickness map (Fretwell et al., 2013), while Pattyn’s2391

used a more advanced three dimensional thermal model.2392

While much of the Antarctic ice sheet has conditions favorable for freezing, the distri-2393

bution of freeze-on is limited by of the availability of subglacial water. Water flows down2394

the gradient of hydraulic potential, generally moving away from ice domes and becoming2395

concentrated in fast-flowing ice streams. Marginal domes such as Law Dome and Berkner2396

Island are likely to be cold-bedded rather than actively freezing because of the lack of water.2397

Borehole measurements of basal temperature at both locations indicate cold-based conditions2398

there (Morgan et al., 1997; Mulvaney et al., 2007). Underneath the larger domes, variability2399

in bedrock topography will modify the routing of subglacial water. Underneath Dome A,2400

the Gamburtsev Subglacial Mountains play a crucial role in directing water flow because of2401

low ice surface slopes (Wolovick et al., 2013). Deep subglacial valleys provide warm melting2402

catchments that funnel water up and over mountain ridges where freeze-on occurs (Creyts2403

et al., 2014). The highly incised bed topography concentrates water into a few narrow freez-2404

ing regions. Our simple model does not take into account the influence subglacial water2405

networks have on the distribution of basal freeze-on. While our Antarctic map (Figure 5.9)2406

shows where basal freeze-on is possible, water availability will limit the actual distribution.2407

We also compute potential freeze-on locations in Greenland for both a low water flux ac-2408

cumulation zone case and a high water flux ablation zone case. The conditions in the interior2409

of northern Greenland where large basal structures have been observed are not favorable for2410

conductive freeze-on (Figure 5.10). Warmer surface temperatures (Noel et al., 2015), faster2411

ice flow (Joughin et al., 2010), and steeper surface slopes (Bamber et al., 2013a) in most2412

of the Greenland accumulation zone make freeze-on difficult compared to East Antarctica2413

(Figures 5.4 and 5.7). The bed topography in the interior of Greenland is also relatively flat.2414

With little variability in ice thickness, it is difficult for warm catchments to coexist in close2415

proximity to cold freezing zones. An alternate explanation for the large basal structures ob-2416

served in the interior of northern Greenland is likely. Travelling slippery patches (Wolovick2417

et al., 2014) or rheological contrasts within the ice column (NEEM Community Members ,2418

2013) are likely to be active here. Only regions close to the margins where ice is thinner are2419

favored for conductive freeze-on in Greenland.2420

The margins of Greenland have high rates of surface ablation. Surface ablation produces2421

far more melt than basal melting, supporting supercooling where bed slopes are appropriately2422

oriented. Ridges in between outlet glaciers around the Greenland margin are ideal locations2423

for large supercooled freeze-on structures because ice flow is slow and water fluxes can be2424

high. Our model indicates that the basal structure observed near Eqip Sermia may be a2425

thin unit of freeze-on uplifted over meteoric ice (Figure 5.10b), while the structure observed2426

near Storstrommen may become a thick package of freeze-on ice at it’s downstream margin2427

(Figure 5.10c). A thin unit of freeze-on ice may be uplifted over meteoric ice if the freezing2428

front has advanced downstream over time. The marginal Greenland units (Bell et al., 2014)2429

are likely to have been produced by basal freeze-on. Our model indicates that many areas2430

around the Greenland margin in addition to the places where basal structures have already2431

been observed could also be favorable for super-cooled freeze-on. Water availability may limit2432
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Figure 5.10: Distribution of maximum freeze-on thickness, zacc, for Greenland. a) Low water flux, appro-
priate for the interior (103m2/yr), (b,c) high water flux, appropriate for the ablation zone (106 m2/yr). (b)
and (c) are shown zoomed in near the marginal units shown in Bell et al. (2014). Freeze-on thickness is not
plotted above the Equilibrium Line (dashed black line) in (b) and (c). Freeze-on length is assumed to be 20
km in (a) and 2.5 km in (b) and (c), so that short-wavelength adverse bed gradients are preserved. Surface
contours are shown at 500 m intervals.

the distribution of real freeze-on units, and undetected freeze-on units may be obscured by2433

the difficult radar environment near the ice sheet margin.2434

Freeze-on may also have been an important process in the former northern hemisphere2435

ice sheets. Mountainous nucleation sites near the ice sheet center, such as the Torngats2436

underneath the Laurentide Ice Sheet, would have been ideal locations for conductive freeze-2437

on analogous to the Gamburtsevs in East Antarctica (Creyts et al., 2014). Mountainous2438

topography around the ice sheet margin, such as the Adirondacks, White Mountains, and2439

Green Mountains, would have been ideal locations for adverse bed slopes that could have2440

produced large supercooled freeze-on structures. In addition, overdeepenings in fast flowing2441

regions could have hosted important freeze-on zones that helped control basal drag, even if2442

fast flow prevented the formation of large englacial freeze-on units.2443
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5.6 Conclusions2444

In the accumulation zone, conductive freeze-on is capable of producing freeze-on structures2445

100-200 meters thick. Conductive freezing rates will be highest when surface temperature is2446

low, accumulation rates are relatively high, and ice thickness and geothermal flux are both2447

low. Supercooling is capable of producing freeze-on structures up to a kilometer thick if water2448

flux is sufficiently high. Supercooling requires high water flux, a steep ice surface slope, and a2449

steeply backsloping bed. Both conductive freeze-on and supercooling build larger structures2450

in slow-flowing regions where shear heating and the flux of meteoric ice are low. If the ice2451

flow is by internal deformation rather than basal sliding, freeze-on structures can grow larger2452

in the slowly-flowing ice near the bed before being carried downstream by fast flow higher2453

in the column. Surface ablation acts to create upwards flow in the ice column, pulling basal2454

freeze-on units up off of the bed.2455

Conductive freeze-on likely produces the basal structures observed in East Antarctica2456

(Bell et al., 2011). Surface temperatures are very low in East Antarctica, increasing conduc-2457

tive heat losses. The deeply incised valleys of the Gamburtsev Subglacial Mountains funnel2458

water from deep melting regions to shallow ridges where freezing takes place (Wolovick et al.,2459

2013; Creyts et al., 2014). In addition, adjacent areas of the Vostok Highlands may also host2460

freeze-on structures. Our model suggests that basal freeze-on may be commonplace in slow-2461

flowing areas of East Antarctica. In contrast, the large basal units observed in the interior2462

of northern Greenland are likely to be explained by another mechanism, such as travelling2463

slippery patches or rheological contrasts within the ice column (Wolovick et al., 2014; NEEM2464

Community Members, 2013). Basal structures observed around the margins of the Greenland2465

Ice Sheet are likely to be produced by supercooling of surface meltwater. Similar supercool-2466

ing is also likely to have occurred in mountainous regions and overdeepenings around the2467

margins of the former northern hemisphere ice sheets.2468

Basal freeze-on releases latent heat, warming the ice column. Water flow transports2469

excess heat from the warm catchment region into the cold freezing region, rearranging mass2470

and energy underneath the ice sheet. Freeze-on ice is likely to have a different crystal size,2471

sediment content, and hence rheology from the meteoric ice that composes the rest of the ice2472

sheet. The injection of a different ice type near the base, where strain rates are highest, is2473

likely to have important effects on ice flow. Freeze-on also removes water from the hydrologic2474

system, reducing the amount of water available downstream and potentially dewatering2475

subglacial till and increasing basal drag. Alternately, closure of subglacial conduits may2476

increase water pressure and force water to spread out in a distributed system, reducing basal2477

drag. Through these combined influences, freeze-on may play a crucial role in regulating2478

basal drag, even in fast-flow ice streams.2479
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Chapter 62480

Conclusion2481

The flow and history of ice sheets is reflected in their internal structure. Climatic forcings,2482

internal deformation, and basal processes all leave their mark in the stratigraphic structure2483

of ice sheets. The stratigraphically complex layers near the bed provide an especially rich2484

environment for studying the processes that control the flow and sliding of ice sheets.2485

In 2009, during my first year of graduate school, we observed large-amplitude basal re-2486

flectors in ice-penetrating radar data from East Antarctica (Bell et al., 2011). Operation2487

IceBridge data collected beginning in 2010 detected similar structures in Northern Green-2488

land (Bell et al., 2014). These structures deform the overlying stratigraphy into anticlines,2489

synclines, and overturned folds. The vertical amplitude of the structures ranges from below2490

the limit of radar detectability to approximately a kilometer. These structures point towards2491

new processes at the ice bed or within the ice column.2492

Three explanations have been advanced to explain these structures: freeze-on of sub-2493

glacial water, traveling patches of slippery and sticky conditions, and rheological contrasts2494

within the ice column. Freeze-on was the mechanism we originally proposed in (Bell et al.,2495

2011). In Chapter 2 I identified subglacial water networks feeding the East Antarctic freeze-2496

on units, and in Chapter 5 I explored the conditions that are favorable for freeze-on. I2497

described the thermal feedback responsible for traveling slippery patches in Chapter 3, and2498

I explored the stratigraphic overturn caused by traveling sticky patches in Chapter 4. The2499

rheological contrasts mechanism was proposed by (NEEM Community Members , 2013). I2500

have not explored the rheological contrasts mechanism in this thesis. However, the rheolog-2501

ical structure of the ice sheet is likely to interact with both of the other two mechanisms.2502

The overturning that occurs above traveling sticky patches is caused by deformation within2503

the ice column, and freeze-on structures require an ice flow regime dominated by internal2504

deformation in order to grow large.2505

Different mechanisms likely dominate in different settings. In East Antarctica, freeze-on2506

is the most likely cause of the observed basal structures because of cold surface tempera-2507

tures, slow ice flow, and deep valleys that feed water to shallow cirques. In the interior of2508

northern Greenland, a combination of traveling patches and rheological contrasts produces2509

the observed structures. The interior of northern Greenland has warmer surface tempera-2510

tures, faster ice flow, and a much flatter bed than East Antarctica. The margin of northern2511

Greenland may contain freeze-on structures produced by supercooled surface melt.2512

Four main outstanding questions related to the large basal structures remain: the relative2513
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contributions of the three mechanisms, the interactions between the mechanisms, the role of2514

subglacial sediments, and the relationship between these mechanisms and basal conditions2515

inferred from remote sensing observations.2516

The relative contributions of the three mechanisms to individual folds remains unresolved.2517

Simple freeze-on models, such as the one used in Chapter 5, can give us an indications of the2518

general settings where freeze-on is an adequate explanation for the observed structures and2519

of the settings where freeze-on is not an adequate explanation. However, simple freeze-on2520

models cannot partition the remaining structures between traveling patches and rheological2521

contrasts, nor can these models reveal if the other two mechanisms are in play in addition2522

to freeze-on. Quantitative attribution of stratigraphic folds between the three proposed2523

mechanisms will require better models or new data.2524

The next major outstanding question is how the three mechanisms interact with one2525

another. All three mechanisms are likely to be operating to some degree in most of the2526

observed structures. For structures produced primarily by freeze-on, fluctuations in the2527

freezing front position will produce stratigraphic effects via the traveling patches mechanism.2528

If the freezing front advances downstream at a similar velocity to the overlying ice column,2529

the freeze-on structure will be much larger than if the freezing front is stationary or retreating2530

upstream. For structures produced primarily by traveling patches, freeze-on will be present2531

at the downstream edges of the slippery patches or within the sticky patches. The rheological2532

structure within the ice column will modify the boundaries of the overturning vortex that2533

forms above a traveling sticky patch. Rheological contrasts can operate independently of2534

the other two mechanisms in environments where the ice is completely frozen to the bed.2535

However, variable basal sliding and freeze-on will modify the stratigraphic folds produced by2536

the rheological contrasts. New feedback mechanisms may emerge when all three mechanisms2537

operate together, potentially producing effects that are difficult to anticipate.2538

The role of basal sediments is also unknown. The traveling patches models developed to2539

date (Chapters 3 and 4) do not include any representation of sediments. Soft, water-saturated2540

sediments are crucial for reducing basal drag and increasing basal slip. The presence of un-2541

saturated sediments has the potential to reduce the propagation velocity of traveling patches2542

by providing a storage capacity at the bed. Storage of subglacial water in porous sediments2543

will increase the response time of the basal system and therefore slow the propagation of2544

slippery patches at the ice base. Similarly, sediments that are already saturated provide2545

a reservoir of water that takes time to be removed by freeze-on, reducing the propagation2546

velocity of sticky patches.2547

The relationship between the basal structures and basal conditions inferred from in-2548

versions of remote sensing data remains to be explored. Regular “ribs” have been seen in2549

inversions of basal drag for both Greenland and Antarctica (Sergienko and Hindmarsh, 2013;2550

Sergienko et al., 2014). Similar rib-like structures have also been observed in the surface driv-2551

ing stress of both ice sheets. It is still unclear how these ribs are related to traveling patches2552

or to the internal structure of the ice sheets. If the ribs move downstream over time, they2553

could behave as traveling sticky patches and produce stratigraphic folds within the overlying2554

ice column. Thermal advection associated with this stratigraphic deformation could cool the2555

bed and keep the sticky ribs sticky. A detailed comparison of stratigraphic data with the2556

ribs would test the whether the observed ribs move over time and if they are associated with2557

large basal structures.2558
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Many of the outstanding questions related to the basal structures can be addressed2559

with additional field and modeling studies. A focused field program targeting an individual2560

structure could be used to understand the basal conditions and clarify the contributions2561

of the different mechanisms. A surface GPS grid could measure ice velocity, uplift rates,2562

and surface strain rates. If a traveling sticky patch is the primary mechanism responsible2563

for producing the fold, then the surface flow field should contain extension at the upstream2564

margin and compression at the downstream margin. This occurs because surface longitudinal2565

strain rates are opposite to basal strain rates. This strain rate field would be superimposed on2566

the regional extensive strain field produced to balance surface accumulation. Basal freeze-on2567

will be associated with additional surface extension, as the ice flows faster to accommodate2568

the input of mass from below. Rheological contrasts within the ice column should produce a2569

more complicated surface strain rate signature. Boreholes drilled through the basal structures2570

should be able to measure the relative components of meteoric and accreted ice. Downhole2571

temperature profiles could measure the thermal inversion characteristic of rapid stratigraphic2572

overturn, or detect the excess heat in the basal ice due to latent heat of freeze-on. Sampling2573

the basal conditions will provide insight into the relative role of slip, water, freeze-on, and2574

sediments. Phase-sensitive radar measurements could be used to measure englacial profiles of2575

vertical velocity. These velocity profiles will reveal the rates of uplift or subsidence associated2576

with the stratigraphic deformation, as well as the distribution of velocity with depth.2577

Both forward and inverse models could be used to better understand the processes that2578

produce basal structures. Forward models that incorporate all three mechanisms may reveal2579

new feedbacks. The addition of rheological contrasts in forward models will be used to inves-2580

tigate whether rheology enhances or mitigates the stratigraphic effects of traveling patches.2581

Inverse models using existing stratigraphic data could be used to solve for a history of basal2582

slip and ice flow in northern Greenland. The inversion would reveal how the distribution of2583

basal slip has propagated in the past, and how the deformation field within the ice has re-2584

sponded to changing rheology. Changing rheology occurs as rheological contrasts associated2585

with climatic transitions migrate downwards over time within the ice column. The inverted2586

flow history will enable a detailed examination of how the basal structures looked in the past2587

and a reconstruction of their growth and decay over time.2588

All three mechanisms have consequences for the larger dynamics of the ice sheet. Basal2589

traction and ice rheology control the flow of ice towards the margins and the dynamic2590

response of the ice sheets to perturbations in a changing climate. Weak-bedded water-rich2591

regions are vulnerable to rapid nonlinear changes, while strong-bedded frozen regions are2592

less responsive. Traveling patches and basal freeze-on both modify the distribution of water2593

at the ice sheet bed, creating a heterogeneous distribution of warm-based and cold-based2594

regions. The coupling between different regions of the ice sheet, as well as the local response2595

of cold-bedded regions, are determined by the rheological structure of the ice column. Basal2596

freeze-on releases latent heat, warming and softening the ice column. Freeze-on ice itself is2597

likely to have a different crystal size, sediment and impurity content, and hence rheology2598

from the surrounding meteoric ice.2599

Deformation and folding associated with the basal structures disturbs the stratigraphic2600

structure of the ice sheet. Stratigraphic disturbances alter the sequences observed in ice cores.2601

Anticlines and synclines push old ice from near the bed either higher or lower in the column,2602

respectively. Overturning vortices above traveling sticky patches can produce inverted and2603

103



repeated sections. Stratigraphic disturbances also modify the rheological structure of the ice2604

column. When the ice is deformed, rheological contrasts associated with changing impurity2605

concentrations at climatic boundaries are transported to new locations. Unusual flow and2606

deformation patterns modify the ice sheet thermal structure via advection, regardless of the2607

causal mechanism responsible for the deformation. If basal ice is uplifted into the middle2608

of the ice sheet, sediment may be entrained up to a kilometer above the bed. When this2609

sediment-rich deformed ice is later delivered to the calving front, such englacial debris may2610

be transported long distances in icebergs before melting out. Deformed sediment-rich ice2611

may contribute to far-flung deposits of ice-rafted detritus during Heinrich events (Hemming ,2612

2004). Flow speedups associated with the interaction of multiple traveling patches (Chapter2613

3) could be related to the triggering of Heinrich surges.2614

The internal structure of ice sheets gives us a window into the processes that control2615

ice dynamics and changes flow over time. The intriguing basal structures in Greenland and2616

Antarctica tell a story of melting and freezing at the base, time-variable sliding, and defor-2617

mation within the ice column. In different settings, different mechanisms operate to produce2618

the observed folds. Even within the same setting, different mechanisms may contribute to2619

individual folds to various degrees. For decades, the lower part of the ice column was hidden2620

in a featureless “echo-free zone” (Drewry and Meldrum, 1978). As the supposedly “echo-2621

free zone” has yielded to improved radar technology, a stratigraphic intricacy unmatched by2622

structures higher in the ice column as been revealed. Many processes are active at or near2623

the ice base, and these processes interact with each other over time to produce structures as2624

mysterious as they are beautiful.2625
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