Academic Commons

Articles

Human immunodeficiency virus type 1 efficiently binds to human fetal astrocytes and induces neuroinflammatory responses independent of infection

Li, Jinliang; Bentsman, Galina; Potash, Mary Jane; Volsky, David Julian

Background: HIV-1 infects human astrocytes in vitro and in vivo but the frequency of infected cells is low and its biological significance is unknown. In studies in vitro, recombinant gp120 alone can induce profound effects on astrocyte biology, suggesting that HIV-1 interaction with astrocytes and its functional consequences extend beyond the limited levels of infection in these cells. Here we determined the relative efficiencies of HIV-1 binding and infection in human fetal astrocytes (HFA), mainly at the single cell level, using HIV-1 tagged with green fluorescence protein (GFP)-Vpr fusion proteins, termed HIV-GFP, to detect virus binding and HIV-1 expressing Rev and NefGFP fusion proteins to detect productive infection. Results: Essentially all HFA in a population bound HIV-GFP specifically and independently of CCR5 and CXCR4. The dynamics of this binding at 37°C resembled binding of an HIV fusion mutant to CD4-positive cells, indicating that most of HIV-GFP arrested infection of HFA at the stage of virus-cell fusion. Despite extensive binding, only about 1% of HFA were detectably infected by HIV-RevGFP or HIV-NefGFP, but this proportion increased to the majority of HFA when the viruses were pseudotyped with vesicular stomatitis virus envelope glycoprotein G, confirming that HFA impose a restriction upon HIV-1 entry. Exposure of HFA to HIV-1 through its native proteins rapidly induced synthesis of interleukin-6 and interleukin-8 with increased mRNA detected within 3 h and increased protein detected within 18 h of exposure. Conclusion: Our results indicate that HIV-1 binding to human astrocytes, although extensive, is not generally followed by virus entry and replication. Astrocytes respond to HIV-1 binding by rapidly increased cytokine production suggesting a role of this virus-brain cell interaction in HIV-1 neuropathogenesis.

Files

More Information

Published In
BMC Neuroscience
Publisher DOI
https://doi.org/10.1186/1471-2202-8-31
Volume
8
Issue
31
Pages
1 - 12
Academic Units
Molecular Medicine
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.