Academic Commons

Theses Doctoral

Real-time Awareness and Fast Reconguration Capabilities for Agile Optical Networks

Ahsan, Atiyah Sayyidah

Ever-growing demand for speed and bandwidth coupled with increasing energy consumption in current networks are driving the need for intelligent, next-generation networking architectures that can overcome fundamental spectral and energy limitations. Metro-only internet traffic in particular is experiencing unprecedented growth rates and increasing twice as fast as long-haul traffic. The current quasi-static peak capacity pro- visioned network is ill-equipped to support this rise of unpredictable, high bandwidth but short-duration traffic flows. A promising solution to address the emerging networking challenges is agile optical networking. Agile optical networking leverages novel photonic devices and multi-layer switching capabilities along with network awareness and intelligence to allocate re- sources in accordance to changing traffic demands and network conditions. However, network agility requires changing the wavelength configuration in the optical layer in real-time to match the traffic demands. Rapidly changing the wavelength loading conditions in optical amplifiers result in debilitating power fluctuations that propagate through the network and can lead to network instability, a problem that is avoided in current networks by using long reconfiguration times encompassing many small adjustments. An agile optical network, once successfully implemented, will be characterized by unpredictable transmission impairments. Power levels along any path in an agile network is constantly fluctuating due to the continuously changing wavelength configuration; consequently, power dependent transmission impairments are also constantly fluctuating. Real-time knowledge of the state of the physical layer is thus critical for managing signal quality and reliability in an agile optical network, requiring the development of cost-effective, energy-efficient monitoring solutions that can support advanced modulation formats. This dissertation focuses on developing solutions for the two key requirements for a stable agile optical network. Techniques that allow wavelength reconguration on the order of seconds while maintaining stable network operation and minimal data loss are presented. Functionality of an existing advanced optical performance monitor is extended to include autonomous monitoring of both single and multiple channel systems, so that it can be used in agile optical network for real-time introspection of the physical layer.

Files

  • thumnail for Ahsan_columbia_0054D_12941.pdf Ahsan_columbia_0054D_12941.pdf binary/octet-stream 7.3 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Bergman, Keren
Degree
Ph.D., Columbia University
Published Here
October 2, 2015
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.