Magnetic Hysteresis in Young Mid-Ocean Ridge Basalts: Dominant Cubic Anisotropy?

Jeff Gee and Dennis V. Kent
Lamont-Doherty Earth Observatory, Palisades, NY 10964

Abstract. Magnetic hysteresis data from young mid-ocean ridge basalts include samples with saturation remanence to saturation magnetization (Mrs/Ms) ratios greater than 0.5, the theoretical limit for an assemblage of single domain grains with uniaxial anisotropy. Under the usual assumption of dominant uniaxial anisotropy, the narrow single domain grain size distribution implied by these high Mrs/Ms values is difficult to reconcile with petrographic and remanence data that suggest the presence of larger multidomain grains. Dominant cubic anisotropy provides a plausible explanation for the high Mrs/Ms ratios, and if generally valid, requires reinterpretation of granulometric and domain state inferences made from hysteresis data.

The magnetic properties of a ferromagnetic material are strongly dependent on domain state and hence particle size. Although a variety of magnetic parameters have been used, hysteresis data are perhaps the most common means used to characterize the domain state and infer the average magnetic grain size. In particular, a plot of the ratio of the remanent coercivity to coercivity (Brc/Bc) versus the ratio of saturation remanence to saturation magnetization (Mrs/Ms) is widely used to determine the average domain state of titanomagnetite-bearing rocks [Day et al., 1977]. A single domain (SD) endmember with an Mrs/Ms ratio of ~0.5 is invariably assumed, based on the theoretical limit for uniaxial anisotropy [Stoner and Wohlfarth, 1948].

We have commonly encountered samples of young mid-ocean ridge basalts (MORB) with Mrs/Ms ratios significantly higher than the theoretical limit of ~0.5 (Fig. 1). The majority of our dredged samples are from the northern East Pacific Rise (near 12°N; Gee and Kent, 1994) although a smaller number of MORB samples from the Southeast Indian Ridge and Mid-Atlantic Ridge were also measured. The sample collection comprises fragments of pillow lavas and sheet flows collected generally within 5-10 cm of the chilled margin. Hysteresis parameters were determined on an alternating gradient force magnetometer (Micromag 2900) using a maximum field of 1.0 T. The Mrs/Ms ratios were calculated following the standard correction for the high field paramagnetic slope by least-squares regression of the data from 0.7-1.0 T. With this correction, the MORB samples typically have Mrs/Ms values of 0.35-0.65, with approximately half of the samples having an Mrs/Ms ratio > 0.5 (Fig. 1).

High Mrs/Ms ratios have also been reported in other studies of MORB samples. For example, hysteresis data (measured on a vibrating sample magnetometer) from a suite of basaltic samples collected during DSDP Leg 49 on the Mid-Atlantic Ridge [Day et al., 1978] show a large range in Mrs/Ms ratios and include values as high as 0.68 (Fig. 1). Although these authors did not comment on the significance of such high Mrs/Ms ratios, the trend of the combined data on a bilogarithmic plot (Fig. 1 inset) strongly suggests a range of grain sizes with a SD endmember having an Mrs/Ms ratio higher than the maximum value observed (best fit power law gives Mrs/Ms ~0.84 at Brc/Bc = 1.04).

The high Mrs/Ms ratios of our samples caused us to reexamine the slope correction used to determine the saturation magnetization. The paramagnetic slope may be independently estimated from the iron content of the rock and an estimate of the percentage of ferromagnetic material in the sample (Fig. 2). We used the FeO* (total iron as FeO) content of the glass and a Fe3+/Fe3+Fe2O3 total ratio of 0.15 suitable for MORB pillow interiors [Christie et al., 1986] to calculate the maximum paramagnetic slope (1 wt% FeO = 2.07 x 10^-8 m^3/kg; 1 wt% Fe2O3 = 2.26 x 10^-8 m^3/kg; Collinson, 1983). The saturation magnetization value determined from the standard slope correction was then used to estimate the volume percentage of titanomagnete (Fe3-xTixO4; 0<x<1), assuming a composition of x = 0.6 (TM60) with Ms = 27.4 Am^2/kg [Moskowitz, 1993]. The majority of samples have 0.5-1.5% equivalent TM60 grains.

Figure 1. Hysteresis parameters of mid-ocean ridge basalt samples. Bilogarithmic plot (inset) shows trend of basalt data toward SD Mrs/Ms value > 0.5. Box indicates hysteresis parameters of multidomain TM50-TM60 [Day et al., 1976]. Best fit power law for MORB data excluding two points in brackets (not shown in main figure): Mrs/Ms = 0.916*Brc/Bc^-2.27.
indicating that more than 90% of the iron is partitioned into paramagnetic phases. The high field slopes calculated with this method are invariably lower than the empirically determined slopes, resulting in lower calculated Mrs/Ms ratios (Fig. 2). Discrepancies between the two high field slopes, which differ more for finer grained samples, may reflect incomplete saturation although higher field data (to 5T; C. Hunt, pers. comm.) for the sample in Figure 2 yield only a slightly lower Mrs/Ms value (0.49). As any superparamagnetic contribution would result in understimation of the Mrs/Ms ratio, the Mrs/Ms values from these two slope correction methods likely bracket the true value in most cases.

Depending on the slope correction employed, ten to fifty percent of the present sample collection has Mrs/Ms ratios > 0.5. These Mrs/Ms ratios (up to 0.62-0.65) are comparable to or higher than the values obtained on well-sized (0.02-0.05 \(\mu \text{m} \)) synthetic SD titanomagnetites (Özdener and O'Reilly, 1981). Under the assumption of dominant uniaxial anisotropy, even Mrs/Ms ratios of 0.5 imply a grain size distribution entirely within the SD size range. Both theoretical (Moskowitz, 1980; Moskowitz and Halgedahl, 1987; Dunlop, 1990) and experimental (Soffel, 1971) studies suggest that the critical largest diameter for SD particles is on the order of 0.6 \(\mu \text{m} \) for stoichiometric titanomagnetite. For reasons outlined below, however, we suggest that the effective grain size distribution in these natural basalt samples is unlikely to be confined entirely within the narrow size range (0.08-0.6 \(\mu \text{m} \); Dunlop, 1990) for SD behavior.

Petrographic observations provide direct evidence of grains larger than the SD size range in even the finest grained basalt samples. For example, two basalt samples with Mrs/Ms ratios > 0.5 shown in Figure 3 both have abundant 2-5 \(\mu \text{m} \) skeletal grains, with rare grains as large as ~20 \(\mu \text{m} \) in size. In terms of magnetic properties, the effective grain size of such optically homogeneous quench crystals is undoubtedly smaller than the maximum linear dimension of these grains; however, a reasonable estimate of the effective magnetic grain size is provided by the dimension of equant areas (e.g., terminations of the cruciform titanomagnetite grains). There is an abundance of equant areas larger than 1x1 \(\mu \text{m} \), with areas as large as 5x5 \(\mu \text{m} \).
Table 1: Material Constants and Anisotropy Energies for Titanomagnetites

<table>
<thead>
<tr>
<th></th>
<th>TM0</th>
<th>TM60</th>
<th>ATM60</th>
<th>AMTM60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms (Am²/kg)</td>
<td>91.7 (3)</td>
<td>27.4 (3)</td>
<td>20.8 (2)</td>
<td>17.2 (3)</td>
</tr>
<tr>
<td>λ (10^{-6})</td>
<td>39.4-47.1 (3)</td>
<td>111.3 (3)</td>
<td>70.6 (2)</td>
<td>47.2 (3)</td>
</tr>
<tr>
<td>K' (10^4 J/m³)</td>
<td>-1.36 (1)</td>
<td>-0.41 (1)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Energy (10^4 J/m³)</td>
<td>--</td>
<td>0.2-0.5 (4,5)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E_{ms} (a/b = 1.5)</td>
<td>1.462</td>
<td>0.131</td>
<td>0.075</td>
<td>0.051</td>
</tr>
<tr>
<td>E_{me} (α = 50 MPa)</td>
<td>0.215</td>
<td>0.557</td>
<td>0.353</td>
<td>0.236</td>
</tr>
<tr>
<td>E_k</td>
<td>0.181</td>
<td>0.055</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>0.040-0.100</td>
<td>1.427, 2.290</td>
<td>1.015, 1.658</td>
<td></td>
</tr>
</tbody>
</table>

on titanomagnetite single crystals suggest low values (0.2-0.5 x 10^8 Jm^-3; Kakol et al., 1991; Sahu and Moskowitz, in press) for TM60, similar in magnitude (but of opposite sign) to those previously inferred for TM60 from Syono's classic study. The stress level in natural titanomagnetites has been correspondingly difficult to ascertain. Residual stress levels as high as 200 MPa (2 kbar) have been inferred for synthetic samples [O'Reilly, 1984]. However, stress values of <50 MPa (500 bars) have been reported for natural basalts [Appel, 1987; Halgedahl, 1987].

Özdemir and O'Reilly [1981] inferred K' values from hysteresis data on fine-grained (Al-substituted) titanomagnetites that are approximately an order of magnitude higher than those of Syono [1965]. These high K' values imply almost equal contributions from magnetoelastic and magnetcocrystalline energies for stress values as high as ~200 MPa and dominant magnetcocrystalline anisotropy for lower stress values similar to those inferred for natural basalts (Table 1). Indeed, the maximum coercivities (~100 mT) determined for our MORB sample collection are more than twice as large as the value predicted from stress anisotropy in basalts with residual stress values of ~50 MPa. However, these high coercivity values are readily explained by K' values only a factor of 4 larger than typically inferred for TM60 from the single crystal data of Syono [1965], Kakol et al. [1991], and Sahu and Moskowitz [in press], and well below the values reported on fine grained material by Özdemir and O'Reilly [1981].

The high Mrs/Ms values observed in the present sample collection (as well by Day et al., 1978) point to a SD endmember with Mrs/Ms significantly above 0.5. Under the assumption that shape and stress-induced anisotropy both have a uniaxial symmetry, these high Mrs/Ms values require a substantial contribution from multiaxial magnetocrystalline anisotropy. Given the strong compositional dependence, direct determination of K' for titanomagnetite compositions similar to those found in natural basalts (~Fe_{2.3}Al_{0.10}Mg_{0.05}Ti_{0.4}O_{4} for the present samples) would provide the necessary foundation for assessing the source of magnetic anisotropy in titanomagnetites, and hence a firmer basis for grain size/domain state inferences based on hysteresis data of titanomagnetcite-bearing rocks. In the interim, the K' values inferred from hysteresis data on synthetic Al-substituted titanomagnetites [Özdemir and O'Reilly, 1981] may provide the most appropriate estimate of the effective magnetocrystalline anisotropy constant for the variably oxidized natural titanomagnetites that account for the magnetic properties of fine-grained oceanic basalts.

Acknowledgments. We thank C. Langmuir, J. Bender, D. Christie for providing samples and major element geochemical data and D. Breger for assistance with SEM observations. D. Dunlop, A. Newell, B. Moskowitz, D. Schneider and S. Halgedahl provided helpful suggestions on the manuscript. C. Hunt provided high field data for selected samples. This research was supported by NSF grant OCE 94-02307. Lamont-Doherty Earth Observatory Contribution #5319.

References

Kakol, Z., J. Sabol, and J. M. Honig, Magnetic anisotropy of titanomagnetites Fe_{3-x}Ti_{x}O_{4}, 0 ≤ x ≤ 0.55, Phys. Rev. B, 44, 2198-2204, 1991.

Sahu, S., and B. M. Moskowitz, Thermal dependence of magnetocrystalline anisotropy and magnetostriiction constants of single crystal Fe_{2-x}Ti_{x}O_{4}, Geophys. Res. Lett., in press.

Syono, Y., Magnetocrystalline anisotropy and magnetostriiction of Fe_{3-x}Fe_{x}TiO_{4} series, Jpn. J. Geophys., 4, 71-143, 1965.

(Received October 7, 1994; revised December 22, 1994; accepted January 4, 1995.)

J. Gee, Scripps Institution of Oceanography, La Jolla, CA 92093-0215 (email: jsgee@ucsd.edu).

D. V. Kent, Lamont-Doherty Earth Observatory, Palisades, NY 10964 (dkv@ldo.columbia.edu).