Academic Commons

Articles

MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples

Rabadan, Raul; Trifonov, Vladimir; Pasqualucci, Laura; Favera, Riccardo Dalla

Background: Most tumors are the result of accumulated genomic alterations in somatic cells. The emerging spectrum of alterations in tumors is complex and the identification of relevant genes and pathways remains a challenge. Furthermore, key cancer genes are usually found amplified or deleted in chromosomal regions containing many other genes. Point mutations, on the other hand, provide exquisite information about amino acid changes that could be implicated in the oncogenic process. Current large-scale genomic projects provide high throughput genomic data in a large number of well-characterized tumor samples. Methods: We define a Bayesian approach designed to identify candidate cancer genes by integrating copy number and point mutation information. Our method exploits the concept that small and recurrent alterations in tumors are more informative in the search for cancer genes. Thus, the algorithm (Mutations with Common Focal Alterations, or MutComFocal) seeks focal copy number alterations and recurrent point mutations within high throughput data from large panels of tumor samples. Results: We apply MutComFocal to Diffuse Large B-cell Lymphoma (DLBCL) data from four different high throughput studies, totaling 78 samples assessed for copy number alterations by single nucleotide polymorphism (SNP) array analysis and 65 samples assayed for protein changing point mutations by whole exome/whole transcriptome sequencing. In addition to recapitulating known alterations, MutComFocal identifies ARID1B, ROBO2 and MRS1 as candidate tumor suppressors and KLHL6, IL31 and LRP1 as putative oncogenes in DLBCL. Conclusions: We present a Bayesian approach for the identification of candidate cancer genes by integrating data collected in large number of cancer patients, across different studies. When trained on a well-studied dataset, MutComFocal is able to identify most of the reported characterized alterations. The application of MutComFocal to large-scale cancer data provides the opportunity to pinpoint the key functional genomic alterations in tumors.

Files

  • thumnail for 13a6a25bd3723930921bb88e6f759d9e.zip 13a6a25bd3723930921bb88e6f759d9e.zip binary/octet-stream 844 KB Download File
  • thumnail for 1752-0509-7-25-S1.TXT 1752-0509-7-25-S1.TXT binary/octet-stream 1.81 KB Download File
  • thumnail for 1752-0509-7-25-S12.TXT 1752-0509-7-25-S12.TXT binary/octet-stream 9.62 KB Download File
  • thumnail for 1752-0509-7-25-S11.TXT 1752-0509-7-25-S11.TXT binary/octet-stream 8.27 KB Download File
  • thumnail for 1752-0509-7-25-S10.TXT 1752-0509-7-25-S10.TXT binary/octet-stream 10.2 KB Download File
  • thumnail for 1752-0509-7-25-S13.TXT 1752-0509-7-25-S13.TXT binary/octet-stream 3.13 KB Download File
  • thumnail for 1752-0509-7-25-S15.TXT 1752-0509-7-25-S15.TXT binary/octet-stream 230 Bytes Download File
  • thumnail for 1752-0509-7-25-S16.TXT 1752-0509-7-25-S16.TXT binary/octet-stream 251 Bytes Download File
  • thumnail for 1752-0509-7-25-S14.TXT 1752-0509-7-25-S14.TXT binary/octet-stream 664 Bytes Download File
  • thumnail for 1752-0509-7-25-S17.TXT 1752-0509-7-25-S17.TXT binary/octet-stream 179 Bytes Download File
  • thumnail for 1752-0509-7-25-S3.TXT 1752-0509-7-25-S3.TXT binary/octet-stream 1.28 KB Download File
  • thumnail for 1752-0509-7-25-S2.TXT 1752-0509-7-25-S2.TXT binary/octet-stream 1.26 KB Download File
  • thumnail for 1752-0509-7-25-S5.PDF 1752-0509-7-25-S5.PDF binary/octet-stream 15.6 KB Download File
  • thumnail for 1752-0509-7-25-S6.PDF 1752-0509-7-25-S6.PDF binary/octet-stream 15.5 KB Download File
  • thumnail for 1752-0509-7-25-S8.TXT 1752-0509-7-25-S8.TXT binary/octet-stream 9.14 KB Download File
  • thumnail for 1752-0509-7-25-S9.TXT 1752-0509-7-25-S9.TXT binary/octet-stream 4.19 KB Download File

Also Published In

Title
BMC Systems Biology
DOI
https://doi.org/10.1186/1752-0509-7-25

More About This Work

Academic Units
Biomedical Informatics
Publisher
BioMed Central
Published Here
September 8, 2014

Notes

Tumorigenic mutations, Driver genes, Data integration

Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.