Early Jurassic magnetostratigraphy and paleolatitudes from the Hartford continental rift basin (eastern North America) . . .

Kent, Dennis V.; Olsen, Paul E.

To determine whether the ~200 Ma central Atlantic magmatic province (CAMP) coincides with a normal polarity bias and a purported abrupt change in polar wander at the J1 cusp, we collected samples for paleomagnetic study from 80 sites distributed over a ~2500-m-thick section of sedimentary units that are interbedded with and overlie CAMP lavas in the Hartford basin, which together represent the initial 2.4 Ma of the Jurassic according to cycle stratigraphic analysis. Characteristic directions carried by hematite were isolated by thermal demagnetization in 71 sites and define a coherent magnetostratigraphy supported by a positive reversal test and an interbasin fold test. Despite a pronounced overall normal polarity bias (only three relatively short reverse polarity intervals could be confirmed in the sampled section), normal polarity Chron H24n that encompasses the CAMP extrusive zone is no more than 1.6 Ma in duration. Elongation/inclination analysis of the 315 characteristic directions, which have a flattened distribution, produces a result in agreement with a published mean direction for the CAMP volcanic units as well as published results similarly corrected for inclination error from the Newark basin. The three data sets (CAMP volcanics, Newark corrected sediments, and Hartford corrected sediments) provide a 201 Ma reference pole for eastern North America at 67.0°N, 93.8°E, A_95 = 3.2°. Paleopoles from the Moenave and Wingate formations from the Colorado Plateau that virtually define the J1 cusp can be brought into agreement with the 201 Ma reference pole with corrections for net clockwise rotation of the plateau relative to eastern North America and presumed sedimentary inclination error. The corrected data show that apparent polar wander for North America proceeds directly toward higher latitudes over the Late Triassic and Early Jurassic with no obvious change that can be associated with CAMP.



Also Published In

Journal of Geophysical Research

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Biology and Paleo Environment
Published Here
February 3, 2012


Title continues: ". . . Testing for polarity bias and abrupt polar wander in association with the central Atlantic magmatic province."