
Energy Exchanges: Internal Power Oversight for Applications

Melanie Kambadur Martha A. Kim
Columbia University

{melanie,martha}@cs.columbia.edu

Abstract

This paper introduces energy exchanges, a set of abstrac-
tions that allow applications to help hardware and operating
systems manage power and energy consumption. Using an-
notations, energy exchanges dictate when, where, and how to
trade performance or accuracy for power in ways that only
an application’s developer can decide. In particular, the ab-
stractions offer audits and budgets which watch and cap the
power or energy of some piece of the application. The inter-
face also exposes energy and power usage reports which an
application may use to change its behavior. Such information
complements existing system-wide energy management by op-
erating systems or hardware, which provide global fairness
and protections, but are unaware of the internal dynamics of
an application.

Energy exchanges are implemented as a user-level C++
library. The library employs an accounting technique to at-
tribute shares of system-wide energy consumption (provided
by system-wide hardware energy meters available on newer
hardware platforms) to individual application threads. With
these per-thread meters and careful tracking of an applica-
tion’s activity, the library exposes energy and power usage
for program regions of interest via the energy exchange ab-
stractions with negligible runtime or power overhead. We
use the library to demonstrate three applications of energy
exchanges: (1) the prioritization of a mobile game’s energy
use over third-party advertisements, (2) dynamic adaptations
of the framerate of a video tracking benchmark that maximize
performance and accuracy within the confines of a given en-
ergy allotment, and (3) the triggering of computational sprints
and corresponding cooldowns, based on time, system TDP,
and power consumption.

1. Introduction

Today’s computer systems have more complex and critical
power and energy management needs than ever before. In
2011, 70% of the returned Motorola devices were due to batt-
tery life complaints attributable to applications [8]. Another
recent study revealed that 65%-75% of the energy consump-
tion of free applications is spent on third-party advertisement
code [33]. In datacenters, energy- rather than time-based ac-
counting may soon be the norm, as it has been shown benefit
both datacenter owners and customers alike [19].

Power and energy efficiency have been first-class design
goals for more than a decade [28]. At the base of the stack,
hardware has become dynamically adjustable, offering a range
of supply voltages, operating frequencies, and sleep states. In
the middle, the operating system tunes the hardware based on
the measured and expected needs of the applications running
on top. For example, the Linux kernel has policies to manage
processor idle states and frequency scaling [17], and work is
in progress to develop power-aware scheduling algorithms that
aim to schedule applications such that resource slow-downs
can be made for longer periods or at a larger scale [15, 45, 25].

These hardware and operating system adjustments can pro-
ceed without any application-level changes. By some stan-
dards, this is desirable, as many application developers either
cannot or will not modify their programs. However, keep-
ing applications out of the energy management picture also
limits the potential efficiency. As we contend in Section 2,
application-level energy management not only can but must
be used for optimal energy and power efficiency. Because
hardware and operating systems do not have intricate knowl-
edge about each application’s needs, they must be conservative
in their adjustments. In contrast, applications, knowing their
own needs, can more aggressively trade performance and/or
accuracy for power savings.

The energy exchanges presented here empower program-
mers to mandate when, where and how to trade performance
and accuracy for power and energy use. Using the simple
but expressive application-level directives provided by en-
ergy exchanges, programmers can implement feedback-driven
changes to the application’s behavior, for example, switching
from precise to sloppy decoding in a video player as battery
life declines, reducing parallelism in a smart phone game if
other applications are elevating processing power, or bypass-
ing some nonessential part of a robot’s activity for a time so
that it can run longer in between charges.

Energy exchanges offer several advantages over energy pro-
filing and existing application-level energy management tech-
niques. First, the exchanges are simple to use and integrate
into existing programs and systems. They require no new
hardware, operating systems, languages, or compilers. Instead,
they require only short software annotations supported by a
library extension. Second, unlike many software management
strategies, e.g., compiler-inserted DVFS hints, that tune the
same hardware knobs as the OS but in an application-specific

way, energy exchanges allow the application to adjust itself.
Moreover, they change its behavior based on online energy,
power, and temporal feedback, so that a program trades per-
formance or accuracy only when necessary. Finally, these
exchanges are extremely flexible. They can be used to modify
just about anything a developer might want to change about
their program’s behavior, offer energy and power usage feed-
back, and can trigger adjustments preemptively if desired. This
expressivity means that a single energy-exchange augmented
application will function across a range of different inputs,
architectures, and degrees of parallelism.

Energy exchanges are usable now, via an open source library
extension for C++ programs. The syntax and semantics of this
library are presented in Section 3, along with several canonical
examples that demonstrate the simplicity and breadth of use
of the exchanges. Section 4 describes an implementation of
energy exchanges. It uses a novel technique that monitors
programmer indicated regions of interest on a per-thread gran-
ularity using just the system-wide hardware energy meters
available on recent processors. The capabilities of the im-
plementation are experimentally demonstrated in Section 5,
where energy exchanges prioritize the energy of a game over
a third-party advertisement, adapt simulation framerates to
optimize quality while meeting a variety of pre-set energy bud-
gets, and trigger computational sprints followed by precisely
compensating cooldowns. The paper closes with a discussion
of related work in Section 6.

2. Background
Before describing our new abstractions, we explain why appli-
cations need to help the hardware and OS manage energy and
power for optimal efficiency. We also outline the prerequisites
for an application to be able to do so.

2.1. Why Applications Must Help Manage Energy

Hardware power management techniques typically involve
reducing the activity and therefore the power draw of various
hardware components. Often this can be accomplished without
affecting overlying applications, for example, by putting pro-
cessors to sleep when they are idle [31]. However, similarly
often power savings techniques do impact program perfor-
mance, for example, if a processor oversleeps and a program
must wait for it to wake up, or if the clock frequency is reduced
while a processor is in use.

Operating systems and compilers can help by scheduling
application-level resource requests to maximize the oppor-
tunity for hardware power savings, possibly even exploiting
heterogeneous architectures [6]. However, because of the po-
tential for losses in program performance, any adjustments
made at the hardware or system level must be conservative.
These lower levels of the system stack are missing two critical
control mechanisms that prevent them from achieving peak
energy efficiency. First, the hardware and OS cannot reduce
the amount of resources requested by applications in the first

place. Only applications have the ability to request fewer pro-
cessing and memory resources, and, if they are judicious in
their requests, both energy and power can be saved. Second,
hardware and the operating system do not know when or by
how much it is acceptable to slow down a program, which
is why they must err on the side of caution. Compounding
the caution, most existing power tuning controls operate on a
whole-core or whole-socket granularity, with potentially more
than one application sharing the core or socket. At times when
it is appropriate for one application to trade performance for
power, it may not be for the another, preventing the system
from taking advantage.

Applications know their own needs, and can decide exactly
when, where, and to what degree performance should be traded
for power. Moreover, while the system can trade only perfor-
mance for power, the application has a second currency at its
disposal: accuracy. Absent application-level information, the
system cannot interfere with the function of a program. For
optimal efficiency, applications must be engaged in power and
energy management.

2.2. Requirements of Application Level Energy Manage-
ment

Tools to monitor application-level energy use [20, 42] and com-
pile time energy optimizations [39, 18, 47] each have more
than a decade of history. More recently, application-level man-
agement strategies have been proposed, for example EnerJ
which approximates data types to save energy [37], and Eon
which creates a new flow language for writing energy efficient
software [40]. Despite this, application-level energy manage-
ment has yet to enter mainstream software development. One
reason for this is that application level energy management
has not historically been as commercially viable as hardware
and operating system level management techniques. Until
recently, while people were willing to pay more for mobile
devices with better battery life or for servers with lower energy
costs, they generally did not consider the energy efficiency of
applications. There was thus little incentive for developers to
invest in making their code energy- or power-efficient.

However, opinions about software-level energy use have
started to change. Embedded devices, now accounting for 98%
of manufactured microprocessors [12], demand low-energy
software, users have power monitor applications to identify
energy hogs [33], and computer scientists are coming to the
realization that energy can be better saved with software’s help
than without [13]. System-level energy savings techniques are
ubiquitous and have many loyal users. Any application-level
technique will need to offer substantial and complementary
gains. Successful techniques must also be flexible and easy to
use. An ideal application-level management solution should
exploit conservation opportunities that the hardware and op-
erating system cannot to complement existing energy saving
techniques at lower levels of the system stack; be easy for
programmers to use, ideally requiring no special hardware,

2

new operating system, or new languages, and not necessitating
complete program re-writes; be as agnostic as possible to
the underlying architecture and inputs so that developers do
not have to manage multiple versions of their software; and
consider and account for other applications running on the
same machine that may also be managing their own energy.
To our knowledge, no current solution fulfills all of these re-
quirements, but as the next sections show, energy exchanges
attempt to do so.

3. Energy Exchanges

The primary goal of energy exchanges is to empower appli-
cations to trade performance and/or accuracy as needed to
improve efficiency or keep power and energy consumption
within pre-determined bounds. Energy exchanges offer short
software annotations to be inserted by software developers into
new or existing programs. This section describes the seman-
tics of these annotations using, as needed, the syntax offered
by our C++ library implementation which is the subject of
Section 4.

3.1. Audits, Budgets, and Usage Records

Runtime power-performance and power-accuracy trade-offs
require additional code to set up runtime resource monitor-
ing and to adjust programs as a result of these measurements.
Both additions are simplified with two new abstractions: au-
dits and budgets. Audits and budgets both enable programs to
observe the runtime, energy, and power consumption of arbi-
trary regions of code. Each audit or budget is associated with
a block of source code, enclosed in a pair of corresponding
curly braces as shown on the right of Figure 1. At runtime,
these braces delineate the region of execution to which an
audit or budget applies. These regions can perform arbitrary
computation, including nesting other audits and budgets or
spawning new threads. Nested audits and budgets will also
count towards the outer region’s usage, while child threads’
activity will be attributed to the enclosing region until such
time as the thread terminates or the original thread exits the
block. In our C++ implementation of energy exchanges audit
and budget should be though of as new reserved keywords.

Audits and budgets differ with respect to how they trigger
programs to react to their measurements. Audits are passive
measurements, allowing programmers to make adjustments
only after the associated region has completed. When the
region finishes, the programmer receives a usage report, via
a command of the form report(usage_t* u);. This com-
mand effectively declares an instance of usage_t* named u

which, when the command finishes, will be a C++ struct pop-
ulated with information about the associated region, namely
the energy, average power, and runtime, in joules, Watts, and
seconds respectively as shown in Figure 1. The application is
then free to use this information to make any desired adjust-
ments.

In contrast, budgets are preemptive. When initiated they set
a cap consisting of a metric (energy, average power, or time), a
value that the metric should not exceed, and a unit of measure-
ment. During execution of the associated region, if the metric
meets the indicated cap value, execution of the region will be
immediately terminated, including any child threads spawned
therein, and control transferred back to the if_exhausted

block that follows the original budget. There, the programmer
may specify his or her reactionary adjustments.

3.2. A First Example

As a first example, we show how mobile applications can
use energy exchanges to prevent energy overconsumption by
third-party advertisement code. In this scenario, the main
application is a game that runs repeated rounds of play and
displays an ad in between each round. The developer would
like each advertisement to consume no more than 20% of
the energy consumed by the previous round of play, and if
it does, she would like the ad to be killed. Additionally, she
wants to track how many times an advertisement went over its
allotted budget. The code below shows how energy exchanges
concisely express all of this functionality:

1 int overages = 0;
2 while (! quit) {
3 audit {
4 game.play_round();
5 } (usage_t *round_use);
6 double energy = round_use->energy;
7 budget (ENERGY, energy*0.2, J) {
8 ad.run();
9 } if_exhausted (usage_t *ad_use) {

10 // ad is implicitly killed if control jumps here
11 overages++;
12 }
13 }

First the developer initializes a variable overages to count
the number of over-consuming ads. Next, the game loop
starts to be stopped only by a user quitting the game. Each
round of play (line 4) is wrapped by an audit which captures
the round’s dynamic energy, power, and runtime in an in-
stance of usage_t* called round_use (line 5). This usage
record is accessed (line 6) to calculate an energy budget for
the advertisement equal to 20% of the usage of the previous
round. The budget wraps calls to an advertisement which
runs as a separate thread (lines 7-9). Following the budget
is an if_exhausted block (lines 9 - 12) which tells the pro-
gram what to do in the event an ad exceeds the pre-set budget.
Exhaustion immediately terminates code initiated within the
budget region, in this case the advertisement thread, and con-
trol jumps to the inside of the top of the if_exhausted block.
There, the developer updates the overages counter, after which,
exhaustion or not, the outer round iteration loop resumes.

Alternatively, if the developer did not wish to interrupt
energy-hogging advertisements, she could have used an audit
in place of the budget. Had she done that, rather than stopping
the ad mid-execution, she might have it to complete, but re-
stricted runs of future ads based on the energy consumed by

3

typedef enum {
AVERAGE_POWER,
ENERGY,
TIME

} metric_t;

typedef enum {
W, mW, uW,
J, mJ, uJ,
s, ms, us

} unit_t;

extern double TDP, MIN_POWER, MAX_POWER;

typedef struct {
double energy; // in J
double average_power; // in W
double wall_time; // in s

} usage_t;

audit {
// code to profile

} report(usage_t *u);
// reaction to profiled usage

budget (/∗ metric_t ∗/ m, /∗ double ∗/ v, /∗ unit_t ∗/ u) {
// code for which budget has been set, to be
// preempted if budget is exhausted

} if_exhausted (usage_t *u) {
// reaction to exhausted budget

}

Figure 1: Energy Exchanges Abstractions in C++ Library Form. With the new syntax provided by our initial implementation,
audits or budgets can be used to profile power, energy, and time either passively or preemptively. The code which follows
resource profiling is a reaction to the runtime measurements stored in the usage records, either a reduction to performance or
accuracy, or some other side effect such as a data backup.

earlier ad runs.

3.3. Four Steps to Add Exchanges to Any Application

Energy exchanges are designed to be simple to learn and
quick to add into existing programs. Users must consider the
following four factors when inserting exchanges:
1. Decide where in the program’s source code to curb power

and energy. This can be decided via profiling — potentially
through the use of preliminary audits — or based on a de-
veloper’s prior knowledge of an application. In Section 5.2
where we write energy exchanges into a lengthy and unfa-
miliar benchmark program, we simply inserted audits in
main() to quickly find the energy hotspot.

2. Determine whether an audit or a budget is more suitable.
If preemption is a desired part of a power and energy use
based adjustment, a budget should be used; otherwise au-
dits should be used.

3. Identify the power, energy, or execution time conditions
that should trigger a runtime change. To match a range
of potential uses, energy exchanges offer several ways
to set these conditions. As in the previous example, en-
ergy, power, or time limits can be set relative to earlier
measurements. They can also be set relative to the built-
in, platform-specific global variables TDP, MIN_POWER, or
MAX_POWER, or as absolute numbers with a variety of preset
units as shown in the first two columns of Figure 1.

4. Elect how to change the behavior of the application based
on the observed resource usage thus far. While perfor-
mance and accuracy trade-offs are going to be specific to
individual applications, we have identified several canon-
ical types which are described below. In our case studies
we found that one or a combination of these standard styles
was often sufficient to express the desired management
policy.

3.4. Canonical Uses of Energy Exchanges

Although it may not be immediately obvious, many programs
can trade performance or accuracy for energy or power, usually
without major revision. In many cases, a trade can be made
by modifying just a single variable and adding a few lines

of annotations. Consider a GPS or bluetooth application on
an embedded device that normally polls for a signal every
second. Energy exchanges can switch the polling period to
once in a minute, say if the more frequent polling pushed
power consumption to within 95% of the peak device power.
With the higher delay time between polls, the embedded device
would have time to enter deeper processor or memory sleep
states, saving a significant amount of power and energy.
1 poll_period = 1; // originally, poll GPS once per second
2 while (gps_on) {
3 budget(POWER, MAX_POWER*0.95, W) {
4 wait(poll_period);
5 location = poll_signal();
6 } if_exhausted(usage_t *u) {
7 poll_period = 60; // poll GPS once per min if power is a constraint
8 }
9 }

In the preceding example, some small amount of function-
ality was periodically skipped within a loop. Functionality
could also be skipped at a larger scale, as in the first example
when the execution of an advertisement was cut short. In that
example, the resource allocation of the low priority advertise-
ment was pegged to the consumption of the high priority game.
Instead, what if a high priority application is to run after a low
priority application? In that case, it might be appropriate to al-
low the low priority application to run normally, but to reserve
a certain amount of energy for the higher priority application’s
later use.

As an example, consider a sleep-aid mobile application
that plays soothing nature sounds through the night, and later
sounds a gradual alarm clock in the morning. The nature
sounds should play as long as possible, but it is imperative that
sufficient battery charge remain until morning for the alarm to
sound. Energy exchanges could reserve the necessary energy
(equal to alarm_needs) with a budget region that stops the
nature sounds as soon as the reserve is approached:
1 double total_budget = ...;
2 double alarm_needs = ...;
3 // reserve alarm_needs energy to play an alarm clock in the morning
4 budget (ENERGY, (total_budget-alarm_needs), J) {
5 // play nature sounds as long as possible
6 } if_exhausted(usage_t *u) {
7 // enter extreme low power state until time for alarm clock
8 }

4

Although our current library does not support it, a different
implementation of the energy exchange abstractions could help
an operating system to manage multiple applications at a time.
Power vampires are household appliances that draw standby
power while they are plugged in but not in use. Similarly,
mobile applications may draw power while they are running
in the background but not interacting with users. To get rid
of mobile power vampires, an operating system could wrap a
budget around an application any time it begins to run in the
background. If an application consumed more than, say 10%
of the overall system power while it was supposedly sleeping,
the operating system could kill the offending application.

Rather than reducing the functionality of an application, a
swap of equivalent but differently implemented algorithms
could be made. Certain fast running algorithms draw high
amounts of power; in power constrained situations such appli-
cations could be swapped for slower but less power-hungry
applications. At a less drastic scale than full algorithmic swaps,
energy exchanges could be used to manage energy efficient
algorithmic compositions. Just as optimally performing algo-
rithms might be amalgamations of multiple algorithms (for
example, std::sort uses merge sort followed by insertion
sort when the sublists become small [2]), multiple algorithms
may need to be combined for optimal power savings. Energy
exceptions could help make amalgamations more flexible, tak-
ing into account architecture specific power measurements,
input size, or any other required factors.

Parallelism is another classic power-performance trade-off
that can be readily exploited with energy exchanges. As paral-
lelism increases, power typically also increases and runtime
decreases. Conversely, as parallelism decreases, power typi-
cally decreases and runtime increases. Energy exchanges can
adjust parallelism dynamically depending on current power
and performance requirements, as demonstrated in Section 5.3.

Although energy exchanges have been presented so far as
a means to make changes within application, they could also
be used to trigger side effects that change something outside
of an application. Suppose that a video player wants to warn
users when a video has consumed a significant fraction of
the device’s total battery life. Assuming a battery capacity of
88.2kJ, or 42.5Wh as in the iPad 2 [40], the exchange code
snippet below issues a user warning for any video playback
that consumes more than 50% of a full charge.

1 double full_charge = 88200;
2 budget (ENERGY, 0.5*full_charge, J) {
3 video.play(0.0); // play video from start
4 } if_exhausted (usage_t *u) {
5 printf("Video consumed 50\% of battery\n");
6 video.play(u->wall_time); // restart video after warning
7 }

Note that in line 6, the wall time stored in the usage record
collected by the if_exhausted clause is accessed to restart the
video where it was cut off.

Another side effect option is to backup intermediate data
to a file. Cloud computing services such as Amazon’s EC2

allow users to pay for compute time by the hour and type of
computation (for example, high-I/O or high memory usage
cost more) [1]. With energy use dominating datacenter costs,
some have suggested that charging users per-Watt is a fairer
pricing policy [41]. If a user pre-pays for a specific amount
of energy or power, they will want to make the most of it by
computing up to the budget. Just as in the sleep-aid example,
a small amount of energy can be reserved to backup work
just before a budget expires. Imagine that the developers of
a contextual image classifier have purchased 5 MJ of cluster
service to run their classifier. The audit in the following code
snippet accumulates the computational energy consumed as
each feature vector in the classifier is processed:

1 double backup_energy = ... // energy_needed_for_backup
2 double compute_e = (5e6 - backup_energy);
3 for (i=0; i<NUMPIXELS; i++) {
4 audit {
5 feature_vectors[i] = calc_feat_vector(pixel_vector[i]);
6 } report(usage_t *per_pixel);
7 compute_e -= per_pixel->energy;
8 if (compute_e < per_pixel->energy) {
9 printf("Stopping execution to backup after \

10 processing %d pixels\n", i);
11 save_to_file(feature_vectors, ‘‘backup.dat’’);
12 break;
13 }
14 }

When the energy budget remaining is less than the backup
energy needed plus the amount of energy used to process the
last pixel (lines 7-8), execution of the classifier stops and a
backup snapshot is saved (line 11).

4. Implementation
NRGX (pronounced energy-ex) is a proof of concept,
software-only implementation of the energy exchange inter-
face described in Section 3.

4.1. Overview and Energy Accounting

At a high level, NRGX monitors several activities: an appli-
cation’s active threads including individual usage, pending
audits and budgets, and system wide utilization and energy
consumption – the latter as exposed by standard hardware
energy meters. To track the application’s live threads NRGX
interposes on calls to pthreads which create or destroy threads.
NRGX) is notified of opening and closing audits and budgets
directly via the application’s use of the exchange directives de-
scribed in Section 3. When the application first opens an audit
or budget, NRGX creates a monitor thread that periodically
takes the following readings:
• Esys: system-wide energy reading obtained from Intel’s

Running Average Power Limit (RAPL) [9]
• Usys: system-wide CPU time from /proc/stat

• Utid : CPU time for each application thread tid from
/proc/<pid>/tasks/<tid>/stat

The frequency of these readings is configurable, but for the
experiments presented in the following section ranged from
10-100 Hz.

5

The core innovation of the NRGX implementation is in
using a single, coarse energy meter reading to track energy
consumption within individual applications. It is a two step
process. First, with each new set of readings, we compute the
energy usage of all existing individual threads in proportion to
their share of total system usage. Specifically energy for the
ith sample of thread tid is:

Etid,i =
Utid,i−Utid,i−1
Usys,i−Usys,i−1

× (Esys,i −Esys,i−1)

NRGX maintains an application thread tree and information
about the nested structure of the audits and budgets created
by each thread. It uses this information in the second phase
where each thread’s sampled energy, Etid,i , is accumulated in
the usage record of any open audits or budgets of the thread
itself (tid) and its ancestors.

These same structures are used to identify which threads
should be terminated when a budget is exhausted. Rather
than energy usage flowing upwards towards the enclosing
audits or budgets, the exhausted budget propagates downwards
killing all subthreads spawned during the violating region.
When done NRGX uses an exception to transfer control to the
if_exhausted block.

4.2. Usage Logistics and Limitations

NRGX is open source and can be downloaded from http:

//redacted. After the user has added exchange directives to
their application as described in Section 3 and demonstrated
in Section 5, he or she then must link against NRGX i.e.,
-lnrgx, and ensure that the NRGX shared object file is loaded
first, i.e., via LD_PRELOAD or LD_LIBRARY_PATH. The only
other requirement of the current implementation is that, once
compiled, the application needs to be executed by a sudo-er.
This is because Linux does not currently expose even read-
only access to the RAPL registers to non-sudoers. We believe
this work is an example of why it would be beneficial for
Linux to do so in the future.

Because the RAPL registers are updated every 1ms and the
CPU usage every 10ms (at 100 jiffies/sec), they cannot be used
to audit or budget sub-10ms windows of execution. However,
to make a difference in energy consumption the application
needs to adjust much larger chunks of runtime, so this is
not a problematic limitation. On the low end of sampling
frequency, samples need to be taken frequently enough to
detect overflow – e.g., the RAPL counters overflowed roughly
every 10-20 seconds on our machine – and to promptly detect
and address exhausted budgets. Sampling at 10-100 Hz met
all of these concerns and incurred negligible time or power
overhead above the un-monitored application.

5. Experimental Demonstrations
We now demonstrate the use of energy exchanges with three
full-scale case studies that use NRGX for a range of purposes:
prioritizing the energy of a minesweeper game over third-party

advertisements in Section 5.1, framerate adaptation to opti-
mize performance for a given energy budget in Section 5.2,
and enforced cooldowns after computational sprints in Sec-
tion 5.3. All of the experiments in this section use a Dell
PowerEdge R420 server with a dual socket Intel Sandybridge
E5-2430, each with 6 cores and 12 threads, and a total of 24GB
of DRAM. The machine has Linux kernel version 3.9.11 and
Ubuntu 12.04.2. Intel sleep states [31], turbo boost [7], and
the ondemand frequency governor [32] are turned on for all
the experiments to show that energy exchanges easily com-
bine with existing energy saving techniques at the system and
hardware level.

5.1. Restricting Advertisement Energy

A recent study estimated that 77% of the top free applica-
tions in the Google Play store were ad-supported [22]. With
free applications making up 91% of total downloads [16],
most applications in use are financially supported by adver-
tisements. Mohan et al. [26] found that on average, 23% of
an ad-supported application’s overall energy is consumed by
the advertisements. Coupled with the fact that 70% of all
Motorola devices were returned as a result of resource-greedy
applications [8], developers and mobile providers alike have
an incentive to ensure that advertisements consume only their
fair share of energy.

Energy exchanges can help application developers man-
age energy priorities between their applications and adver-
tisements, even if their applications call upon third-party ad-
vertisements with unpredictable energy demands. Using sim-
ilar syntax to the first example of the paper (Section 3.2),
we put energy exchanges into a real application that calls a
pathologically unpredictable simulated advertisement of our
own devising. The game is a text-based minesweeper game,
from [24], and the simulated ads are pthreads that perform
random amounts of computationally and I/O intensive busy-
work. The minesweeper game has potentially long rounds of
play with unpredictable duration. Rather than budgeting the
advertisement’s energy use relative to each round of play as in
Section 3.2, we set a timer to check-in on the game’s energy
consumption every two seconds. The energy consumption
is measured via an audit, then fed into a budget that wraps
the advertisement threads as Section 3.2 showed. The budget
restricts advertisements to 20% of the energy consumed by the
previous two seconds of game play. If an advertisement ex-
ceeds this budget, it is terminated, and another advertisement
will not begin until another two seconds have been played.

Figure 2 shows resource measurements of two versions of
the game being played by a user. The first version (at left)
has no energy restrictions on the advertisements, while the
second version (at right) restricts advertisements with budgets
as previously described. Both graphs show the energy in
Joules consumed by the minesweeper game in two second
intervals over 50 total seconds of play. In our experiments,
the advertisements sometimes slightly exceeded 20% of the

6

http://redacted
http://redacted

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

E
n

e
rg

y
 (

J
)

Game time (s)

Unrestricted Ads

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

E
n

e
rg

y
 (

J
)

Game time (s)

Restricted Ads

Game
Ad

Figure 2: Energy exchanges can prioritize the energy of different parts of an application. In this example, calls to a simulated
advertisement that computes semi-random amounts of work were inserted into an open-source minesweeper game. Both graphs
show the energy consumed by the game and the advertisement over a series of two second intervals as a user plays. During
the game depicted at left, advertisements are allowed to run freely. At right, energy exchange budgets kill any over-consuming
advertisement threads to restrict advertising to 20% of the energy consumed by the game.

energy of the game even when restricted. This slight increase,
which is always less than 1%, is a result of the latency between
the pthread_cancel call made by NRGX on behalf of the
budget, and the actual death of the advertisement thread.

5.2. Adaptive Framerate

Today’s hand-held and embedded devices are expected to com-
plete increasingly complex computational tasks with limited
energy budgets. Mobile devices, for example, have moved
well beyond the basic text processing and voice communi-
cation of fifteen years ago and now download and process
media, browse the internet, and support graphic-rich games.
At the same time, they are expected to function on extremely
small power and energy budgets in order to operate for long
durations on small, light-weight batteries.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2000 4000 6000 8000 10000 12000

M
ea

su
re

d
U

sa
ge

 (J
)

Energy Allocation (J)

90-100% of Alloc.
Measurement

Application Limit

Figure 3: Energy exchanges allow code to adapt to meet a pro-
gram’s energy goals. This graph shows the results of using
exchanges to augment bodytrack so that it maximizes qual-
ity while never exceeding various allocated energy budgets.
The application adapts by dropping frames as needed based
on the energy consumed so far, the total allocation, and the
number of remaining frames.

Sometimes the best strategy to meet high computational
demands under strict energy budgets is to reduce the function-
ality or accuracy of application services provided. To demon-
strate real-world application level accuracy trade-offs, we aug-
mented the bodytrack application from the Parsec bench-
mark suite [5] with energy exchanges. Bodytrack tracks the
poses of a person recorded on multiple video cameras; the
majority of this work occurs in a for-loop within the main
function, which processes frames one at a time. We assume a
scenario where bodytrack is given a strict energy allocation to
complete its work. The goal is to maximize the performance
and accuracy of the tracking without exceeding this strict bud-
get allocated. The following code snippet uses an audit to
adapt bodytrack to meet any arbitrary energy allocation:

1 #include "nrgx.h"
2 #define ALLOCATION 2000 // could be define as any value
3 ...
4 double per_frame = ALLOCATION/frames;
5 int framestep = 1;
6
7 for (int i = 0; i < frames; i=i+framestep) {
8 audit {
9 // DO FRAME PROCESSING

10 } record (usage_t *this_frame);
11 double energy = this_frame->energy;
12 ALLOCATION -= energy;
13 // if frame did not take 90−100% of allocation, reset framestep
14 if ((energy > per_frame) || (energy < 0.9*per_frame)) {
15 per_frame = (ALLOCATION/(frames - i));
16 framestep = (int)ceil(energy/per_frame);
17 }
18 }

The ALLOCATION constant (line 3) could be converted into
a variable indicating an energy allocation based on the target
platform and remaining battery charge. To keep track of the
program’s progress relative to the allocation, a per_frame

allocation is calculated. The program begins by processing
videos at an initial framestep of 1 (lines 6-8). As each frame
is processed, an audit records its resource use (lines 9-11)
and reduces the total energy allocation by the amount just
consumed. The program then checks if the recorded use was

7

within 10% of the per frame allocation to see if processing
is on target to complete within the allocation (line 14). If
it is not on target, the per frame allocation is updated, and
the framestep is adjusted so that frames are dropped. On the
other hand, if processing is more efficient than necessary, the
framestep is reduced to improve quality.

Relative to the 11,000 lines of code in the entire bodytrack
program, these additions are tiny. However, they are extremely
powerful: with this handful of lines, the application now self-
adjusts its behavior, making it possible to adapt the energy
consumed by the program to any level desired. Figure 3 shows
the actual energy consumed by the augmented bodytrack when
given a range of energy allocations between 1000 and 12000
Joules. The input size of bodytrack was set to native and the
-O3 compiler flag was used for all of the experiments. The
figure shows that the energy consumption always meets, but
never exceeds the given allocation for all trials. Only as the
allocation nears the maximum possible energy of the program
(i.e., the energy consumed when the framestep is always equal
to 1) do the experimental results veer away from ideal.

5.3. Power Sprints

This next use of energy exchanges is based on the idea of com-
putational sprinting [35, 34]. In both of these works, Raghavan
et al. suggest that some devices may be able to temporarily
operate at higher power dissipations, and consequently higher
temperatures, than would be allowed for a sustained period
of time. If sprinting is done right, programs can briefly and
strategically execute above TDP to execute more quickly or
appear more responsive without overheating the chip.

Modulating suitable sprint and cooldown times is non-
trivial. In their original work [35], the authors suggest (in
Section 4.5) that an appropriate cooldown period should be
based on TDP, or the thermal design point of the chip the
program is running on, and should also factor in the length
of the sprint period and the average power consumed during
the sprint. They suggest the following formula for a sprint-
compensating cooldown:

cooldown time (s) =
average sprint power (W)

TDP (W)
× sprint time (s)

In their later work, the authors implement a hardware/soft-
ware testbed for the sprints [34]. When they show sprinting
for extended computations, they use solely time-based triggers
to switch modes. In particular, one experiment used a fixed 5
second sprint period and 12.5 second cooldown.

With energy exchanges it is feasible to factor TDP and run-
time power measurements to calculate the precise duration
of cooldown required after a particular sprint. NRGX ex-
poses TDP, and the power consumption during a sprint can be
audited.

To compare time- and power-based sprinting, we imple-
mented a C++ microbenchmark that searches a very long

string for a particular substring. Substring searching is used
in many important real world applications, such as genomic
analysis and satellite image processing. Our microbenchmark
has two modes: low power, in which a single thread searches
for strings, and high power, in which N threads search con-
currently. In both time- and power-based sprinting, we fix the
sprint time at 5 seconds as in the earlier work. Time-based
sprinting cools for 12.5 seconds no matter what, while power-
based cools according to the actual sprint power using the
formula above.

1 #include nrgx.h
2 ...
3 int num_threads = MAX_THREADS; // set to 24 threads
4 double time_balance = SPRINT_PERIOD; // set to 5 seconds
5 double power_consumed = 0.0;
6 double measurements = 0.0;
7 bool last_was_sprint = true;
8
9 while (strings_checked < TOTAL_STRINGS_TO_CHECK) {

10
11 audit {
12 // num_threads search for substring
13 } record (usage_t *use);
14
15 time_balance -= use->wall_time;
16 power_consumed += use->average_power;
17 measurements++;
18
19 if (time_balance <= use->wall_time) {
20 if (last_was_sprint) {
21 double avg_power = power_consumed/measurements;
22 // calculate new cooldown balance:
23 time_balance = SPRING_PERIOD* (avg_power/TDP);
24 power_consumed= 0.0;
25 measurements = 0;
26 num_threads = 1;
27 last_was_sprint = false;
28 } else {
29 time_balance = SPRINT_PERIOD;
30 power_consumed= 0.0;
31 measurements= 0;
32 num_threads = MAX_THREADS;
33 last_was_sprint = true;
34 }
35 }
36 }

The above code shows the implementation of that formula
with energy exchanges. The program starts with a sprint,
initializing a time_balance to 5 seconds (line 4) and setting
MAX_THREADS to work searching, one region apiece. This
work is wrapped in an audit (lines 11-13), which captures
the average power and wall time. The wall time is subtracted
from the running time balance (line 15), and the power the
average power is accumulated (line 16) for later use. If the
time balance has not been exhausted, and will not be exhausted
before the next round of searches completes (line 19), parallel
search continues. When the sprinting runs out of time, a
new compensating time balance is calculated according to
the formula (line 23), and the number of threads is set to 1
(line 26). Then, the program resumes searching in the serial,
low-power mode until the calculated cooldown time budget is
exhausted. At that time, the sprint time balance is restored to
the original 5 seconds (line 29), and the number of threads is
reset to 24 (line 32) to restart the high-power sprint mode.

Figure 4 shows four experiments which search a 120B char-

8

 0
 40
 80

 120

 0 50 100 150 200 250 300

Po
w

er
 (W

)

1 Thread, No Sprints

 0
 40
 80

 120

 0 50 100 150 200 250 300

Po
w

er
 (W

)

24 Threads, No Sprints

 0
 40
 80

 120

 0 50 100 150 200 250 300

Po
w

er
 (W

)

5s Sprints, 12.5s Cooldown

 0
 40
 80

 120

 0 50 100 150 200 250 300

Po
w

er
 (W

)

Time (s)

5s Sprints, Cooldowns = (sprint power / TDP) * sprint time

Figure 4: Energy exchanges can manipulate power-performance trade-offs, for example with the use of power sprints. Based
on the idea that some devices can withstand only short bursts of high power dissipation, this experiment demonstrates how
a substring search benchmark’s parallelism can be varied and the power consumption dynamically monitored to optimize the
windows of high and lower power computation.

acter string for an 8-character substring. The first graph in
the figure shows power measurements for the duration of the
program when it was run with 1 thread and no sprinting. The
second graph shows the program’s power over time when it
had access to 24 processing threads, again with no sprinting.
The third graph emulates the experiment from [34], following
5 second sprints with 12.5 second cooldowns. Finally, the
fourth graph sprints using energy exchange augmented code
as above, dynamically basing cooldown length on the previous
sprint’s power, duration, and the systems TDP.

Note that the average power is about 40-50 Watts higher
with 24 threads than with 1. As far as energy, the increased
power is more than offset by the performance gains, with the
fully parallel version 8 times as fast as the serial version.

Comparing sprint policies, the fixed-cooldown policy takes
104 seconds to complete, while the power-based cooldown
requires only 61, with the faster runtime attributable to the
shorter cooldown periods.

6. Related Work
Energy management is not a new or uncrowded field. How-
ever, energy exchanges offer an important feature that profil-
ers, application-specific system-level techniques, and existing
application-level techniques do not provide. For the first time,
energy exchanges let programmers easily make performance
and accuracy trade-offs based on runtime feedback of runtime
energy and power measurements of programmer-determined
regions of interest.

Intra-application power measurement. A large body of
research profiles application level power and energy, including
tools such as eprof [33], PowerAPI [30], and JouleMeter [21].
Energy exchanges can also profile intra-application power and
energy consumption, but go one step further by feeding these
profiles back to the program so that it can make energy and
power saving adjustments.

Application-specific system-level energy management.
Dating back to the 1990s, operating systems researchers rec-
ognized energy as an emerging constraint and laid out cases
for treating energy as another resource to be managed [43, 29].
ECOsystem [48] allocates currentcy [49] to each process on
the basis of a user-set target battery life and application pri-
orities. Processes spend currentcy by using the CPU, mem-
ory, and disk, with balances managed using resource con-
tainers [4]. More recently, Cinder [36] introduced per-thread
resource management, while ErdOS [44] uses strategic of-
floading to achieve battery lifetime goals, and DYNAMO [27]
uses specialized middle-ware, a new operating system, and
new hardware to dynamically scale CPU voltage and to ad-
just the backlight of mobile devices. Hardware and firmware
power capping, as in IBM’s Power7[46] or Intel’s RAPL [10]
chips, can limit the peak or average power usage of individual
hardware components, such as memory or a single core, over
a short or long period of time. As the “running average power
limit” name suggests, RAPL allows the user to set a power
limit and a period of time, creating an energy target which the
hardware will endeavor to meet [9]. Intel has, among other

9

things, applied support vector machines to correlate power
caps with response time and throughput, in order to more ef-
ficiently meet SLAs [11]. Other techniques, such as power
containers [38], rely on models to estimate the power and
energy contributions of individual requests, in order to isolate
and throttle power-hungry requests. These techniques are “en-
forced from below” making it impossible for the capped code
to override the cap. Unlike these works, our energy exchanges
allow programmers to incorporate energy and power usage
feedback directly into their applications.

Adapting application behavior for energy savings. A
number of existing works explore application-level techniques
for adapting program behavior to conserve power or energy.
The Odyssey/PowerScope system [14], an early entry in the
field, extended Linux with a specialized file system to trade
source code specifications of accuracy for energy savings. The
Green compiler framework [3] has programmers write new
energy efficient versions of functions and loops, each accom-
panied by a quantitative QoS budget that allow the compiler
to guarantee energy savings at acceptable QoS costs. Eon is
an energy-aware language [40] that requires new flow-state
programs to be written and annotated by the level of power
they will consume (e.g., high or low). The Eon runtime sys-
tem then finds the most energy-efficient flow through the pro-
gram. EnerJ [37] extends a Java compiler so that application
level annotations can denote approximate data types. The
annotations help a runtime system and specialized hardware
choose appropriate energy saving execution strategies. Simi-
larly, Flikker [23] introduces specialized hardware that trades
energy consumption for data integrity based on application-
level annotations. Our work differs from these approaches in
two significant ways. First, it is much simpler to integrate into
existing programs and systems, requiring no new languages
or compilers, and no added middle-ware, no operating sys-
tem changes, and no new hardware. Second, while the other
works allow applications to have some influence over how
energy is saved, none of them allow programmers to integrate
energy and power feedback into their source code as energy
exchanges do, resulting in fewer options for performance and
accuracy trade-offs.

7. Conclusions

Given energy’s status as a precious commodity, many have
ideas about how to police its use. Solutions for power and
energy management abound, from hardware to the operating
system to the virtual machine and the compiler. For the first
time, we allow applications to react to and manage their own
power and energy consumption by trading performance and
accuracy. The energy exchanges abstractions presented in this
paper provide programmers simple mechanisms and a simple
interface to measure a program’s energy, power, and timing,
and feed these measurements back into the program to make
adjustments as it executes. Among other advances, energy

exchanges empower applications to direct their own power
sprinting, backup work before a battery dies, or prioritize the
energy use of one thread over another. Energy exchanges
also allow adaptive modifications of frame or pixel processing
rates, switches between low power and high performance al-
goithms, and adjustments of parallelism. All of these features
are immediately available as an open source, software-only
C++ library which runs on commodity hardware.

References
[1] Amazon Web Services, Inc. Amazon ec2 pricing, 2013. http://aws.

amazon.com/ec2/pricing/.
[2] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,

Alan Edelman, and Saman Amarasinghe. PetaBricks: a language and
compiler for algorithmic choice, volume 44. 2009.

[3] Woongki Baek and Trishul M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled approxi-
mation. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 198–209,
June 2010.

[4] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource con-
tainers: a new facility for resource management in server systems. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 45–58, 1999.

[5] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[6] Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley.
The yin and yang of power and performance for asymmetric hardware
and managed software. In Proceedings of the International Symposium
on Computer Architecture (ISCA), pages 225–236, 2012.

[7] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and
Alexandra Fedorova. Evaluation of the intel R© coreTM i7 turbo boost
feature. In 2012 IEEE International Symposium on Workload Charac-
terization, pages 188–197. IEEE, 2009.

[8] ComputerWorld. Motorola CEO: Open android store leads to
quality issues. http://www.computerworld.com.au/article/
388831/motorola_ceo_open_android_store_leads_quality_
issues/.

[9] Intel Corporation. Intel 64 R©and IA-32 architectures software
developer’s manual. http://download.intel.com/products/
processor/manual/253669.pdf.

[10] H. David, E. Gorbatov, Ulf R. Hanebutte, R. Khanna, and C. Le. RAPL:
Memory power estimation and capping. In International Symposium
on Low-Power Electronics and Design, pages 189–194, August 2010.

[11] Martin Dimitrov, Kshitij Doshi, Rahul Khanna, Karthik Kumar, and
Christian Le. Coordinated optimization: Dynamic energy allocation
in enterprise workload. Intel R©Technology Journal, 16:32–51, August
2012.

[12] Christof Ebert and Capers Jones. Embedded software: Facts, figures,
and future. Computer, 42(4):42–52, 2009.

[13] Hadi Esmaeilzadeh, Ting Cao, Xi Yang, Stephen M Blackburn, and
Kathryn S McKinley. Looking back and looking forward: power,
performance, and upheaval. Communications of the ACM, 55(7):105–
114, 2012.

[14] Jason Flinn and Mahadev Satyanarayanan. Energy-aware adaptation
for mobile applications. ACM SIGOPS Operating Systems Review,
33(5):48–63, 1999.

[15] ’Iñigo Goiri, Ryan Beauchea, Kien Le, Thu D. Nguyen, Md. E. Haque,
Jordi Guitart, Jordi Torres, and Ricardo Bianchini. Greenslot: Schedul-
ing energy consumption in green datacenters. In Proceedings of the
ACM/IEEE Conference on Supercomputing (SC), 2011.

[16] Matt Hamblen. Mobile app download tally will soar
above 102b this year. Computer World, 2013. http:
//www.computerworld.com/s/article/9242516/Mobile_
app_download_tally_will_soar_above_102B_this_year.

[17] Tate Hornbeck and Peter Hokanson. Power management in the linux
kernel. 2011.

[18] Chung-Hsing Hsu and Ulrich Kremer. The design, implementation,
and evaluation of a compiler algorithm for cpu energy reduction. ACM
SIGPLAN Notices, 38(5):38–48, 2003.

[19] V. Jimenez, R. Gioiosa, F.J. Cazorla, M. Valero, E. Kursun, C. Isci,
A. Buyuktosunoglu, and P. Bose. Energy-aware accounting and billing
in large-scale computing facilities. IEEE Micro, 31(3):60 –71, May-
June 2011.

10

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://www.computerworld.com.au/article/388831/motorola_ceo_open_android_store_leads_quality_issues/
http://www.computerworld.com.au/article/388831/motorola_ceo_open_android_store_leads_quality_issues/
http://www.computerworld.com.au/article/388831/motorola_ceo_open_android_store_leads_quality_issues/
http://download.intel.com/products/processor/manual/253669.pdf
http://download.intel.com/products/processor/manual/253669.pdf
http://www.computerworld.com/s/article/9242516/Mobile_app_download_tally_will_soar_above_102B_this_year
http://www.computerworld.com/s/article/9242516/Mobile_app_download_tally_will_soar_above_102B_this_year
http://www.computerworld.com/s/article/9242516/Mobile_app_download_tally_will_soar_above_102B_this_year

[20] Ismail Kadayif, M Kandemir, Narayanan Vijaykrishnan, Mary Jane
Irwin, and Anand Sivasubramaniam. Eac: a compiler framework
for high-level energy estimation and optimization. In Proceedings of
Design, Automation, and Test in Europe (DATE), pages 436–442, 2002.

[21] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-
aware application design. SIGMETRICS Performance Evaluation
Review, 36:26–31, August 2008.

[22] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and Cecilia Mas-
colo. Don’t kill my ads!: balancing privacy in an ad-supported mobile
application market. In Proceedings of the Workshop on Mobile Com-
puting Systems & Applications, page 2, 2012.

[23] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G.
Zorn. Flikker: saving dram refresh-power through critical data par-
titioning. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 213–224, March 2011.

[24] Marek Marczykowski and Krzysztof Sachanowicz. The saper project
(a minesweeper game). Version X.0.14, 2013. http://marmarek.w.
staszic.waw.pl/saper/.

[25] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-conscious
scheduling for energy efficiency on multicore processors. In Proceed-
ings of the European Conference on Computer Systems (EuroSys),
pages 153–166, 2010.

[26] Prashanth Mohan, Suman Nath, and Oriana Riva. Prefetching mobile
ads: Can advertising systems afford it? In Proceedings of the ACM
European Conference on Computer Systems (EuroSys), pages 267–280,
2013.

[27] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian. DY-
NAMO: A cross-layer framework for end-to-end QoS and energy
optimization in mobile handheld devices. Journal on Selected Areas in
Communications, 25(4):722–737, May 2007.

[28] T. Mudge. Power: a first-class architectural design constraint. IEEE
Computer, 34(4):52 –58, April 2001.

[29] Rolf Neugebauer and Derek McAuley. Energy is just another resource:
Energy accounting and energy pricing in the nemesis os. In Proceed-
ings of the Workshop on Hot Topics in Operating Systems (HOTOS),
pages 67–, 2001.

[30] Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel
Seinturier. A preliminary study of the impact of software engineer-
ing on greenit. In International Workshop onGreen and Sustainable
Software (GREENS), pages 21–27, 2012.

[31] Venkatesh Pallipadi, Shaohua Li, and Adam Belay. cpuidle: Do noth-
ing, efficiently. In Linux Symposium, 2007.

[32] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor.
In Proceedings of the Linux Symposium, volume 2, pages 215–230. sn,
2006.

[33] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy
spent inside my app?: fine grained energy accounting on smartphones
with eprof. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), pages 29–42, 2012.

[34] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papaefthymiou,
Kevin P. Pipe, Thomas F. Wenisch, and Milo M.K. Martin. Computa-
tional sprinting on a hardware/software testbed. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 155–166, March
2013.

[35] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,
Kevin P Pipe, Thomas F Wenisch, and Milo MK Martin. Computational
sprinting. In Proceedings of the Symposium on High Performance
Computer Architecture (HPCA), pages 1–12, 2012.

[36] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières,
and Nickolai Zeldovich. Apprehending joule thieves with cinder. In
Proceedings of the ACM Workshop on Networking, Systems, and Appli-
cations for Mobile Handhelds, pages 49–54, 2009.

[37] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. EnerJ: approximate data types
for safe and general low-power computation. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2011.

[38] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and
Zhuan Chen. Power containers: an os facility for fine-grained power
and energy management on multicore servers. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 65–76, March
2013.

[39] Tajana Simunic, Luca Benini, and Giovanni De Micheli. Energy-
efficient design of battery-powered embedded systems. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 9(1):15–28,
2001.

[40] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D. Corner, and Emery D. Berger. Eon: a language and
runtime system for perpetual systems. In Proceedings of the Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys),
pages 161–174, November 2007.

[41] Kayo Teramoto and H. Howie Huang. Pay as you go in the cloud:
One watt at a time. In Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, pages
1546–1547, November 2012.

[42] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien
Lee. Instruction level power analysis and optimization of software. In
Technologies for Wireless Computing, pages 139–154. 1996.

[43] Amin Vahdat, Alvin Lebeck, and Carla Schlatter Ellis. Every joule is
precious: the case for revisiting operating system design for energy
efficiency. In ACM SIGOPS European Workshop: Beyond the PC: New
Challenges for the Operating System, pages 31–36, 2000.

[44] Narseo Vallina-Rodriguez and Jon Crowcroft. ErdOS: achieving energy
savings in mobile OS. In Proceedings of the International Workshop
on MobiArch, pages 37–42, 2011.

[45] Lizhe Wang, Gregor Von Laszewski, Jai Dayal, and Fugang Wang.
Towards energy aware scheduling for precedence constrained parallel
tasks in a cluster with dvfs. In Proceedings of the IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing (CCGrid),
pages 368–377, 2010.

[46] M. Ware, K. Rajamani, M. Floyd, B. Brock, J.C. Rubio, F. Rawson, and
J.B. Carter. Architecting for power management: The IBM POWER7
approach. In Proceedings of the Symposium on High Performance
Computer Architecture (HPCA), pages 1–11, January 2010.

[47] Qiang Wu, Margaret Martonosi, Douglas W Clark, Vijay Janapa Reddi,
Dan Connors, Youfeng Wu, Jin Lee, and David Brooks. A dynamic
compilation framework for controlling microprocessor energy and
performance. In Proceedings of the Annual International Symposium
on Microarchitecture (MICRO), pages 271–282, 2005.

[48] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosys-
tem: managing energy as a first class operating system resource. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
123–132, 2002.

[49] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Cur-
rentcy: a unifying abstraction for expressing energy management poli-
cies. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, 2003.

11

http://marmarek.w.staszic.waw.pl/saper/
http://marmarek.w.staszic.waw.pl/saper/

	Introduction
	Background
	Why Applications Must Help Manage Energy
	Requirements of Application Level Energy Management

	Energy Exchanges
	Audits, Budgets, and Usage Records
	A First Example
	Four Steps to Add Exchanges to Any Application
	Canonical Uses of Energy Exchanges

	Implementation
	Overview and Energy Accounting
	Usage Logistics and Limitations

	Experimental Demonstrations
	Restricting Advertisement Energy
	Adaptive Framerate
	Power Sprints

	Related Work
	Conclusions

