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ABSTRACT 

We present a distributed algorithm for replication of a data-item in a set of processors 
interconnected by a tree network. The algorithm is adaptive in the sense that the replica­
tion scheme of the item (i.e. the set of processors. each of which stores a replica of the 
data-item). changes as the read-write pattern of the processors in the network changes. 
The algorithm is optimal in the sense that when the replication scheme stabilizes, the 
total number of messages required for the reads and writes is minimal. 
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W.: present a distnbuted algmnhm 1\1r rq1iIcation of a daw-Item in a set of processors interconnected by a 

tm: network. The algorithm IS adapu\c In the sense that the replicauon scheme of the item (I.e. the set of 

processors, each of which stores a repllc~1 oj the elata-Item), changes as the read-write pattern of the proces-

sors in the network changes. The algonlhll1 IS optimal in the sense that when the replication scheme stabi!-

lies, the total number of messages required for the reads and writes is minimal. 

The algorithm, called AD.-\PTlVE-REPLICATION, works in the read-one-wnte-all context. 

Specitically, a read of the data-Item IS pertormed from the closest replica In the network. A write is to all 

thl? replicas. and It IS propagated along the edges of the smallest network-subtree that contains the wnter 

and the processors of the replication scheme. For example, consider the communication network T of the 

tlgure below, and suppose that the replicallon scheme consisb of processors C and D. 
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When processor A writes the nem, A sends the item to B. then B sends it to C. and then C in tum sends it to 

l1Hs research was supported In part b\ h\ the Cenler for Advanced Technology at Columbia L"mverslty under con­
lraw \"YSSTF-CA Tl89 )-5 and CUll :079() 1. and 11\ ';SF gram IRI -90-113341 



Why would we he intC'rcsted 1[1 an !ltiU[lUIC rl'plll'atIOn scheme) Tu anw·er this question. tirstict us 

pOint out that for a gl\en read-\\ file p~llll'rn. I.e'. nllmher of reads ami writes for each processor. the replica-

lion scheme determines the necess<!n J111lllhe'r 01 messal'es. ConSider agam the network r. and suppose 

that the read-wntc pattern for thc data-ltl'llI h the following: each processor of the network. except A. reads 

the llem once and writes it once dunng a timl'-perimi: processor A reads the llem four times and writes II 

once during the time-penod. Then. II the replICation scheme consists of a single processor, C, the number 

of messages required by this read-wflte pattern is IR. On the other hand. if the replication scheme conSISts 

of processors Band C then the numher ()f me'ssagcs reqlJlred hy the same read-wnte pattern IS 17. In fact. 

the latter replicallon ,;cheme b optImal In the sense that any other scheme requires at least 17 messages for 

the read-wntc pattern. However. for thl' rl'ad-\\Tite pattern in which each processor of the network reads 

the llem once and writes 1l once dunng a tH11C-penoci. the former replication scheme is optimal. Therefore, 

the optimal replicatIOn scheme depends on the read-wnte pattern. We would like the replication scheme to 

adapt dynamically. as the read-wnte pattern changes. The algorithm ADAPTIVE-REPLICATION per­

forms exactly this functIon. although the rcad-\\ flte pattern is not known a pnOfi. 

The decisions to change Il1 the rcplicallon scheme arc local at each processor, and come as a result of 

its execution of reads and write,;. In this sense the ADAPTIVE-REPLICATION algorithm is distributed. 

However. the overall effcct of the algorithm is the following. Metaphorically, the replication scheme of the 

ADAPTIVE-REPLICATION algonthm forms a variable-size amoeba that stays connected at all times, and 

constantly moves towards the "center of read-write activity". The replication scheme expands as the read 

activity increa,es. and it contracL, as the wfite activity increases. When at each "border" processor (i.e. 

processor of the circumference of the amoeba) the number of reads equals the number of writes, the repli­

cation scheme remains fixed. Then this scheme is opumal for the read-write pattern in the network. 

The rest of the paper is organized as follows. In section 2 we present. demonstrate and discuss the 

ADAPTIVE-REPLICATION algonthm. In section 3 we show the optimality of ADAPTIVE­

REPLICATION. In section ..+ we compare this paper to other work on replicated data, and we discuss 

future work. 



2. The ADAPTIVE-REPLICATIO,\ Algorithm 

Our pro pm cd algorithm, ADAPTIVE-REPLICATIO.'\, works as follows. The initial replIcation 

scheme consists of the whole set of prO(Cs\(lh. At an\ tllne. thc processors ut the replication scheme, R, 

Induce a connected suh1'raph of the nel\\ mk. For oample, :\DAPTIYE-REPLlCATION will never replt-

cate the Item at processors A and C (It the net\\ork T. Each processor i that IS a R-neighbor, i.e. i belongs 

to the repltcauon scheme hut It has a neluhhor that docs not belong to R, performs the followmg test for 

each read request from a processor J that IS not m R. 

(Expansion-Test) If there arc two read requcsts made hI' ;2, between whICh l rccelves no wnle request 

made h lor h a nel1'hhor ddlerent than J. then l tells J to Join R. 

Pracl1cally, j Joins R simply hy 5a\ln1' a C(lPY of the item sent hy l as a result of the second consccutive 

read request. Except for i and I. no uthl'r procc"or is tnformed of the expansion. 

Each processor J that IS an R -- (nni;c node, i.e. a leaf of the subgraph of the network induced by R, 

performs the following test for each \\ fill' request from the single neighbor l that is in R. 

(Contraction-Test) If there arc t\\ () Wfltc requesLs made by i, between which J receives no rcad request 

made hv lor h\ a neighbor of 1, then J eXIlS R, i.e. ceases to ke{?p a copy. 

1 eXlb R hI' telling i not to send 3l1\ more wnte requests to j; any further read requesls arriving at j arc 

passed along to i. Except for land i. no other pnx:essor is informed of the contraction. 

Finally, the following test IS executed by a processor that constitutes the whole replication scheme, 

R. of the algorithm. Namely, a processor i that is in R but none of its neighbors is in R, performs the follow-

ing test for each rcad or write operauon from some neighbor n. 

( Switch-Test) If i executes two opcrallons 0: and 02, requested by n. such that 0 I or 02 (or both) is 

a write and between them i executed no operation requested by i or by a neighbor 

other than n, then the single copy of the item is transferred from i to n (i.e. simul-

mneously, l eX1L~ Rand n enters it). 

J makes read and write reque'ts. each ,,1 which (lnglrlates either In J or In some other node, k, such that the shortest 

path from k to R goes through J. For example. c()n'lder the network T. If R = Ie;, then B makes read-wnle requests that 

onglnate In B or "\. 



To summanze the algonthm. ,-'ill h I< -nl'H.:hbor pl'rtOrms the Expanslun-Test on a read request: addI­

tionally. an R-fringe node that has ,OI11l' nl'lghbm that IS also In R performs the Cuntracl!on-Test on a wrIte 

request. and If it docs not have iI nCIl!hbor m R then It performs the SWilch-Test on a read or a wntc 

request. "lOll' that a nexic may be both an I<-fnnge nodc and a R-ncighhor. 

Let us demonstrate the algonthm usmg the followmg example. 

Example 1: Consider the net\\ mk r. The mitial rcplication scheme, R, consists of the whole sct of 

processors in the network. Suppose that the fiN rcqucst IS a writc that originates at D. Aftcr it is rc{;civcd 

by all the processors. thc sccond rcque-;t is inilIatcd. The sc{;ond rcquest is a write that originatcs at E. 

After the execution of the second \Hlle b> all the processors, the R-tnngc nodes F and A exit the replica­

tion schemc. R. For example .. -'\ l'XII> 'Incc the first two requests were presented to A hy B. Then the third 

request. a write that originates at B. h 1I11tIateci I after its execution R = (B, C): E and D exit since each has 

executed two write requesLs from C. wilhout an intervcning read l. The fourth request IS a read that on­

ginates at A (after its execution R remalI1S lB. C 1). Thc tifth rcquest is a write that originates at A (after iLs 

execution R = (B 1). Thc sixth request IS a read that originates at A (R = (A, B)). The seventh request is 

a read that originates at D (R = (,-,\, B)) Thc eighth request is a read that onginates at F (R = lA, B, 

Cli. II 

-'ote that ADAPTIVE-REPLICAT10-' rCljulrcs that each node of R knows whether it is a R­

ncighbor, or an R-tringe nodc, or a Ufliljue nude of R. Knowing this requires only that the node knows the 

identity of its ncighbors. and "remeflibcrs' for each ncighhor whether or not it is in the replication scheme. 

A processor that docs not helong to the replication scheme docs not participate in the algorithm; nor does 

an internal node of the replicatIOn schcme, I.e. a node that is not an R -fringe. and that does not have a 

neighbor oUL~ide R. 

What does a node need to know in mder to execute reads and writes) A node j of the current repli­

cation scheme, R, satisfies a read request locally. and transmil5 each write request to the neighbors that are 

in thc replication scheme (each of which lfl tum. propagates the write to its neighbors that are in R, except 

j). Therefore, j has to know thc idcntity of ib ncighhors, and to remember for each neighbor whether or 

not It is in the replication scheme I same as the information needed to execute the algorithm ADAPTIVE-



REPLICA TIO;-"; I. Interesttngh. c\ [lpde that lilll'" [lot belong to the replIcatllln ~cheme docs not have to 

"search" for the replical10n scheme In llrlkr [() necllte rl'alh and '.Hltes. A nllde i that IS not In the replica­

tion scheme R. must rememtx?r the' fHXk 1 [(1 which I sent the last announcement that J exits R. I indicates 

the "dire{:tion" of R. Each read or wnte ot I must be sentLO I. whIch in tum. If is not in R any longer. routes 

the re<iuest in the "dire{:tion ot R. Therdore. for executing the algorithm ADAPTIVE-REPLICATIO~ 

and for executing reads and wrItes. knm\ leduc of the whole network topology IS not nc{:cssary: nor IS 

knowledge of the whole replicatIon ,cheme neceS'ilry. 

Practically. each node. !, has a dIrector) -record for each data-item. The record indicates whether or 

not I is in the replication scheme. R: If It h. the record al,o indicates whIch of (s neighbors are In R, and if 

it IS not, it indicates the direction of R. Retorc accesslf1g a data-Item, J accesses ilS directory record. This 

access is part of the transaction that accesses the data-Item. and consequently a concurrency control 

mechal1lsm that ensures serializabilit) ot transactions in a static replication environment wIll also do so In 

thIS dynamic environment. 

The next comment concern, the eXIt of a node J from the replication scheme, as a result of the 

Contraction-Test. } docs not leave R unconditIonally. simply by announcIng (s exit to its neighbor i in R. 

The reason is that i and I may he the only nodes of the current replicauon scheme, and) and I may both 

announce their eXIt to each other. lea\lng an empty replication scheme. Therefore, if the Contraction-Test 

succeeds then} re<iuests permIssIon trom 1 to nit R. but / keeps a copy of the data-item until it receives the 

next message from i. If the next message from I is l's request to leave R then only one (say the one WIth 

the smallest processor-identification-numhcr) lcaves R. 

~ote also that although we 'ipcciticd that ADAPTIVE-REPLICATION starts with a replication 

scheme that contains all the processors In the network. any replication scheme that induces a connected 

sub graph wIll sufficc. Thc only diffcrence IS that at the outset, a processor I that does not belong to the 

replication schemc, R. must know R's (IIrcction: i.e. i must know the neighbor to which read and write 

rC{juesL, should be scnt. 

Finally let us mention that. in contra,t to [AE 1], our model ignorcs the cost of storing a replica. 

Therefore, in practice, our algorithm is opumal only in an environment in which storage costs are 



J. Anal~sis of ADAPTI\,E-REPLI('.\TI()~ 

In this section we formally deline' the model and analY/e the algorithm. A netw()rk IS an undirected 

tree. l=i V,£). \. represents a set 01 processors. and an edge in the network between two processors 

represents a bldire{:tional communicatIon lmk hetween them. The replication scheme is a nonempty subset 

of \. For a given network and replicatIon scheme. the reud wst of a processor I. denoted r" is the length 

(in edges) of the shortest path in the nctwmk between I and a processor of the replication scheme. It 

represents the number of messages rCljlJlrecl for the data-Item transfer. ObViously. if i is m the replication 

scheme. then the reaei cost is ICro. I.c't I< be a replication scheme. and assume that processor i E 1,' writes 

the data- i tern. The wnte Lost for I. denoted II,. I" the num her of edges in the smallest subtree of 1 that con-

tams (I U R). 

A schedule is a seljuence (). r 1 ,'. r 1 ,' Each iJ, IS a read or write operation. and each j, is a pro-

ce,sor of \'. at which the operatIon 0, nrIgmated. Intuitively each operation represents the initiation of the 

request. as well as iLs execution. In other words. we assume in particular that e<lch write request is exe-

cuted by all the processors of the repllcatilm schemc hefore the next request is issued. Given a schedule, 

(J'.' • .... c/,'. a subschedule. S. IS a subsequence 0;';1' .. o;·~~. Suppose that in S each processor, i, 

of the network performs tlR, reads. and #H', writes. The set of pairs A = ( (tlR" tlW,) I i is a processor in 

the network. and #R, and tlW, are nonnq!atiw Integers), is called the read-Ivrite-pallern of 5. Given a 

replication scheme, R, and a read-write pattern. A. the replication scheme cost for A, denoted cost(R,A), is 

defined as L #W,'w, + L tlRJ,. Intuiti\ely. [ost(R./\) represenLs the total number of messages sent dur-
I':;: V I ~ V 

ing the subschedule, assummg that R is the replication scheme. A message is the transmission of the data-

item over one communication link ledge). A replication scheme is optimal for a read-write pattern, A, if it 

has the minimum (among all repltcatIon schemes I cost for :i. 

~ext we detine a dynamiC repltcation algorithm. A configured -schedule, 

0'; (R J, oi' (R 2)' .... o~'(R~) IS a schedule in which each operation is mapped to a replication scheme. 

Intuitively. it is the replication scheme that eXlsL, when the operation is initiated. We assume that any 



re{:omputatIon of the replication ,chellll' 1\ e\l'clited hct(lre the next operatIOn IS ITIluated. For the above 

conligured schedule. the replicatloll ,(heme 1<', h rlSI()(Wlcd \\ Ith the operatIOn ();. . A 

d,namll: replicatIOn al5?oruhm IS a tllI1l'tIOf1 that maps each schedule to a contigured schedule. 

Let S' be a schedule and let ORA he a dvnamlc replication algonthm. Suppose that S' is mapped hy 

DR,; to the contigured schedule "n. Let S he a subschedule of S". Suppose that the operations of S and the 

operation immediately succeedlTIg the last one ITI S, are all aSSOCiated with the same replication scheme R. 

Intllltivcly this means that S starts and ends with the same replication scheme. Then we say that ORA is 

stable on S, with .lIability scheme R. 

,>;ow consider ADAPTIVE-REPLlC,\ TIO".;. It mo\es towards the center of read-write actIvity in the 

followmg sense. Suppose that at some romt ITI lime, I, all the processors become quiescent (i.e. stop imtiat­

ing operations). except for onc. I. Furtik'rmore. suppose that 1 Issues only reads. Then it is clear intuitively, 

and It can be proven formally. that ADAPTIVE-REPLICATION will stabilize, and the stability scheme 

Will include i (i.e. It will be optImal tor am subschedulc consisting only of reads from i). Specifically, if at 

time t processor i IS in the replication scheme. then as long as it Issues read requests and all the other pro­

cessors arc qUiescent. the replication scheme will not change. If processor I IS not in the replication 

scheme, R, then R will expand towards 1 unulll reaches i, and from then on ADAPTIYE-REPLICATIO~ 

will become stable. Each expansion step will t.ake two reads. Therefore, convergence to the optimal repli­

cation scheme will occur after a nllmher of reads that is bounded by twice the number of processors in the 

network. 

,",ow suppose that from point ITI lime lon, proccssor i issues only writes. Then ADAPTIVE­

REPLICATION will stabilize. and the stability scheme will be optimal for any subschedule consisting only 

of writes from i (i.e. the stability scheme will be a singleton set, consisting of the processor i). Specifically, 

if at time t processor i is in the replication scheme, then as long as it ISSUCS write requests and all the other 

processors are quiescent, the replication scheme will contract until it consists of the single processor, i. If 

processor i is not in the replication scheme. R. then denote by} the processor of R that is closest to i. R will 

contract until it consists of the singleton set ( 1\. and then it will switch until it consists of the smgleton set 

(l). In both cases, convergence to the opumal replication scheme will occur after a number of writes that 



,tahll/cs. With a ,tabil1l;' ,chcme th~lt I' ()pumal tor the operation. Howe\cr. .-\OAPTIVE-REPLlCATIO'.; 

\\ ill stabilize not only whcn all prp,-C,,(lrC; except one hecome ljUiescent, hut v. hcncvcr the three tests per-

formed by the algomhm will faIl. ThiS ()ccurs when the re~ds and writes executed by ~ch R-fringe JJ1d 

cach R-neighbor Interl~ve perfectly dunng some subschedule S. The rest of thiS sec lion IS dedicated to the 

proof that In this case as welL the stabditv .scheme IS I almost) optlmal for the read-wnte pattern in S. 

The proof consists of several lemmas. leading to lemma 4; It proVides four properties that character-

Ize JJ1 optimal replicatlon scheme Then. theorem 1 states that when ADAPTIVE-REPLICATION stabtl-

izes. the stability scheme possesses the,e tour propertles. We wtll start with some definiuons and nota-

lions. IntuitIvely, for a network and a read-v. nte pattern, the median IS a node for which the sum of 

weighted-distances to the other nodes IS minimum. Formally, in a tree, let ivu denote the length (in edges) 

of the simple path between I-' and u. A median of the network is a node, m, for which YJ#R, + #W.)'i"" is 

minimum. 

Denote the processors of a subtree, I. of the network by V (t). Let R be a subset of nodes that induces 

a connected subgraph of the network. Denote by I a processor that is either an R-fringe, or, is not in R, but 

IS a neighbor of some processor In R. ConSider the removal of the edge between I and its neighbor in R, say 

J. It disconnects the network into two subtrees: a subrree that contains i, that we denote T,_R, and a subtree 

that contains R, that we denote TR _, (see Fig. II. The subtrees may also be denoted T, _j and Tj --<, respec-

llvely. 

,..-

Figure 1: illusrration of T, -R and T R _, . " 

-

I 
\ , 

-

'_..-



') -

Lemma 1: Let .\ he a rcad-I' ntl' l'altern. and let s and 1 he two nelghhors In the tn:<2. Then 

" IHR 'ti\'- ).[ - " laR" - a\i" , 
£...., ~" - "" '" - £...., L I::R"-ti\\',,I- L (tiR"-It\r,,I. 

i~ --= ~ I, :, .:: ~ 1, I 

Proof: Observe that b: conSI(icnng 'C'paratd: !. and r, _,' and hy suhsututing i,u for Isu \I.e obtall1: 

(ltR" - ::\\"1'(1,,, -- 1). By manipulation 

of the right hand side of the equauon. the lemma foll()\,s. II 

Lemma 2: Let A be a read-wnte pattern. A node m IS a median if and only if for each neighbor w of 

m: (#R" ~ #\\',,)::> 

Proof': (==> ) Suppose thaI I>! h a median, but for one of its neighbors, 1\.'. 

L (#R,,-;iW,,1 < L (aR., + ::\\,,1, Then. lemma 1. 
u-=~r,"",' u.::VI .... OO\ 

L (aR, -- .-tHul'i",,,. contradiction to m being a median. 

«==) Suppose that dotm is a median. Consider the path d=x(l). x(2), .... x(n-l) ,x(n)=m. Since for 

each neighbor I\.' of m: (:fR, - .-t\\" I::> (#R" - tiW,,), in particular: 
u -= ~'11 '" ... : 

III L (ltR" - ItH" ) ::> L 
u. .:: V (1'"" _ I' >t : ; ;, -= ~ J, r ~ 

Furthermore. remember that e<lch nOlle' performs a nonnegative numher of reads and writes. Thus, intui-

tively, when removing the edge between tin-I) and x(n-2), rather than the edge between x(n) and 

x (n -1) as in inequality (1)' the operations of x (n -1 ) move from the right hand side of the inequality to its 

left hand side. Therefore, (#R" - tiWu)' Moreover, by the 

same argument. for each n ::> i ::> 2 L (#R" ... tiW,,) ::> L (tiR u + #W,.). In particular, 
!,f. .:: ~: Tl u .:: V (TIl' 1 ~_~" 

(#R" + #W,,)::> This, combined with lemma 1, gives: 

L (#Ru + #\-\--,,)'I,12)u <:: L (dR u - tiH'u )'!du' By an easy induction on i is can be shown that: 
u E ~ (n u <;: \ :-n 

L (#Ru -+- #Wu)-l",)u <:: L (PR" - tlV>")·I,,,.i lu' for each Therefore, 
,,~Hn UE\,T, 

Since d is a median, then 



\ti. 

I. I ::1<, ~ ::\1" 1'/;", and lllllSCljllcntiv III IS also :1 mClilan. [) 

Lemma 3: Let A he a rcad-\\ nte pattern in v.hich each node performs at le<ISt one operatIon (read or 

write J. Then there arc elther one or t\\ II medIans. Furthermore. if there are t\\O medians then they arc 

neighbors 111 the network. 

Proof: Suppose by contradiction that the lemma docs not hold. Then there must be two medians. d and m. 

that arc not neighbors. Consider the path d=x( I). x(2) .... ,x(n-I) ,x(n)=m. for n:::- 3. By lemma 2, for 

each neighbor w of m: In particular: 

ittR" - :iii',,). Furthermore, since each node performs at least one 
u -= \" T., I" . ') u ..::: V r, 

operatIon. for each n -I 2' I 2' ~ IttR" ~ :iWu ) > I. 
u ..::: ~ I TZII 

IttR" - ;iii,,). By lemma 2. this contradicts the fact that d is a 
,: 

median. [1 

Lemma 4: Let A be a read-WrIte pattern In which each processor performs at least one operation 

I read or write). A replicatIon scheme. R. that satisties the following four conditions is optimal for A: 1. R is 

a I connected) subtree, and 2. eac h nmk I that IS a nelghhor of R satisfies: L #R;:O: L #W;, 
..::: ~ (T, R) ~ V(T R :1 

and 3. Suppose that R conta1l1S more than one ncxic and let i be an R-fringe node. Then, 

#W,. 4. If R is a singleton set. then it consists of a median of the network. 
_ \. 7 • I 

Proof: In [WMJ we have shown that the fol\ow1l1g algorithm computes an optimal replication scheme, RS3 

3 Actually, ill [WM] we have proven that RS i, an optimal repllcauon ,cherne, provided that A is a read-write pauern ill 
v.hlch each processor performs at least one re3d and at least (Jnc v.ntc. l!ov.ever. the same proof works for a read-wnte pat­

tern ill WhlCh each processor performs at least one opcratlOf1 



11 

TREE-RS! Tn'E), ,\f ~ \1'.!I'rll!Wl/;,r tindznl; Ihe (lflumal resiw.'nU' ICI. ,>;lven !llrec r 
unti cJ rcud-I' rUt' !)UlIcrn ,\ In which c(lch {'r()(C.lIOr {lCrforms 

til /('« ,{ I Inc u',ld and ul Icusl one wrut' • 

I, inil: color all thc pnx.:cs,urs llt I' re'd: mItwli/c RS to a median, m, 
whlle there eXlsl\ a pnll'l'ssor lr1 RS wIth at !cast one rcd nelghhor. I, do: 

If L. #R > L. dn then add 1 tll RS: cbe color I hlue, 
, ~ \ 1. X.I 

4 end ",hlle, 

S, OUlpUl: RS, 

The main idea of the proof is III show that 11 a repilcation scheme, R, satisfies the four conditions of 

the lemma, then iLS cost IS equal to the' cost of the replical10n scheme RS (prcxluced by the algorithm 

TREE -RS). The proof proceeds in three stages, In stage I we will show that R contains a median. In stage 

II we will show that if Rand J<S arc clislOll1t. then each one of the SCL\ IS a sinlCleton, implying that each set 

consIsts of a median. and then. ha,sL'(j lemmas ~ and _, the costs are equal. In stage III we show that if R and 

RS arc not disjoint. then actually R I" cont.amed mRS. and the two costs are equal. 

ISW!.!C J) Suppose that R docs not ccmtall1 a me(han. Then, by condition 4 It is not a singleton. We will 

show that conditions 3 and 4 cannot hot.h he sat.istled. Let the shortest path between a median and R be 

m.n. " ,I,k, where k E R, Since liZ 1, a medIan and each node performs at least one operation, 

L. (ifW - tiR, ) > L. (;;tlr ~;;tJ< I, Bv condition 2 of the lemma 
~ \ I, K -== Iv·, TR , ' 

Together. the last two inequaill1cs Imply that 

L. #Ir > L. dR, Slr1ce R IS not a smgleton, let.li he an R-fringe that is different 

than k. It is casy to see that I'U,_R) is a proper suhset of \'([R-I) and I'([I-R) is a proper subset of 

IITR _, l. Therefore. based on metjuality (0) L. #W) > L. #R), which in tum contradicts con-
V(TR Jji ) E V(Tg _R) 

dillon 3 of the lemma. 

I Swgc II) The set R contains a median hy Stage 1. and the set RS contains a median by step 1 of the algo-

rithm fREE -RS. Assume that Rand RS arc di.\joint. Consetjucntly, each one of the two sets contains a dif-

fcrent median. Let the two medians be III and n, and suppose without loss of generality that m E RS and 

n E R, 

Suppose, by way of contradicl1on, that RS contains more than one node. Let k be a node of RS that is 



different than m. 3J1d IS a kat (11 the 'uhtree IndUCed hy RS. We will ~ho\.l. that the co~t of RS can he 

reduced by replacing k by n, contradlcun): the mlntmalltv of (oS[ IRS.:\). Let us consider how thiS ch3J1ge 

will affect the cost of RS. For thiS purpose we will partluon the nodes of the tree network Into three dls-

Joint subsets, illustrated in Fig. 2: set-l consisung of the nodes of T" set-2 conSlSung of the nodes of T", 

that are not in T.-RS , set-) consisting of and the nodes of Tk - RS . 

~-,-. 
! " I 
. P"1. -" 'iT; I -. .... '. . 
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The cost of each read originating in set-l will decrease by one (since it will access the replica on 11 instead 

of m), and the cost of each write onginating in set-l will decrease by one (since it will not have to access 

k). The cost of each read originaung in set-2 remain the same (since it will access m), and the cost of each 

write originating in set-2 will remain the same (since it will access m instead of k). The cost of each read 

originating in set-3 will increase by one (since it will access the neighbor of kin RS, instead of k), and the 

cost of each write originating in set-3 will increase by one (since it will have to access 11). Since m and n 

are medians, and Tt - RS is a proper subset of T"" there are strictly more operations originating in set-1 than 

in set-3. Consequently, the replacing k by 11 will reduce cost(RS,A). 

Suppose now, again by way of contradiction, that R contains more than one node. Let k be a node of 

R that is different than m, and is a leaf of the subtree induced by R. We will show that the four conditions in 

the lemma cannot be simultaneously satisfied. For this purpose we will consider three subtrees, T ",-ft' T~-fft 

and Tt - R, illustrated in Fig. 3. Note that Tt - R is included in T~_. 
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Figure 3 
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By condition 2 of the lemma, 

(l) L ifW 1m IS the neighbor of R). 
" E V(T .. _.,. \ 

By condition 3 of the lemma. 

I)) L ifW.' ~ L #R j (k IS the R-fringe node). 
E \/(T .. _",) E 'v'(ft_R) 

r--;ote that the left hand side of inequality (2) IS actually 

If there is any write ISSUed 10 some node of T"_",-T"_R (i.e. in a node that is in T~_ .. but not in T .. - R ), 

then, by inequality (2), L #R" and thiS, combined with inequality 0), implies that 

L I#R, ... #W)) (since T"_R is a subset of T"_ .. ). But, by lemma 2, this con-

tradicts the fact that m is a median. Thus. 

performs at least one operation. thiS operation must be a read. Combined with (2), this implies that 

(3) #w. < 
) 

) E V(T.~) 

By inequalities (1) and (3) L (#R) + #W)) < L (#RJ + #WJ). But this contradicts the fact that 
J E V (T .~) J E v (T.-.) 

m is a median. 

(Stage Ill) Suppose that Rand RS are not disjo1Ot. We will show first that R is contained in RS. Suppose 

that there is a node of R that is not in RS. Since RS induces a connected subtree of the network, there must 

be leaf, q of the subtree induced by R, that is not in RS (see Fig. 4) 



i~ 

Figure 4: 

Consider the shortest path q =x; ,x 2, ", Xn-: =k ,x,=h from q to a node h In R 11 RS. During the con-

struction of RS by TREE-RS, the node k must have been examined in step 3, Since k was not added to RS, 

I. #R) < I. #W;. Then, for every n-l ~ i ~ 1: I. #R) < I. #W). 
J E ~. (T._~) ) E \/(T ~ ... ) ) E v O"I(II-I}-I'{II-,"!)) ) E v"(T,( .. _,.I)-.((II_I)) 

In other words, for every i, if we remove the edge between x (I) and x (i "'-1), then there are more writes 

issued in the subnetwork that containS x (I + 1) than there are reads issued in the subnetwork that contains 

x (i). This is true in particular for 1=1. But then, since q is an R -fringe node, this conuadicts condition 4 of 

the lemma, 

Finally, we will show that if R ~ RS then the costs of the two sets are equal, This claim is obviously 

true is R = RS, therefore suppose that R c RS, We will show that all the nodes of RS - R can be added to R 

without changing the cost of R, and this will conclude the proof. 

Let k be a node in RS - R that is a neighbor of R (see Fig,S), 

Figure 5: 
i 
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By condition 3 of the lemma, we know that 

(4) I. #R) ~ I. #W)' 
) e V (T._.) ) e vcr ..... ) 

, , 

/ 
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We will show that actually: 

L tiR. 
- V(]" R 

Suppose that all the nodes of \. (I, R 1 that arc 1r1 R.\; dYe removed from RS. ThIs wIll allen the cost of RS as 

follows. The cost of all the reads performed in \. (T, -R) will increase by one. and the cost of all the writes 

performed in V (IR-l:) w111 decrease [1\ one: the cost of any other operation wtll not change. Since the cost 

of RS is minimum. 

By comb1r1ing (41 and (6) we obta1r1 (:=; I. Equation (:1 1 Implies that the addition of k to R will not change the 

cost of R. for the following rcason. Thh addition will increase the cost of each write performed in V (TR -<) 

by one. and will decrease the cost 01 each read performed in \; (Tl: -R) by one: the co~t of anv oth::r opcra-

tion will not change. ThIS proof can he repeated verbatim. if after the addition of k to R the set R5 - R IS 

not empty. [I 

Theorem 1: Let S' he a schedule that is mapped hy the algorithm ADAPTIVE-REPLICATION to a 

configured-schedule. S". Let c be the number of processors in the tree network. and let 5 be a subschedule 

of 5". in which each processor of the network performs at least one operation. and let A be the read-write 

pattern m S. If ADAPTIVE-REPLIC\ TIO~ h stable on S with stability scheme R. then cost(R,.4) is 

higher than the cost of an optimal replicatIOn scheme for :\ by at most Co 

Proof: We will show that either R IS optImal for A. or. there is a replication scheme R', that is obtained by 

applying a transformation to R. .-;uch that R' satisfies: 1. it IS optimal for A, and 2. 

('ost(R . .4) - cost(R',o4) ~ c. The initial replication scheme, consisting of the whole set of processors. 

clearly induces a connected subgraph of the network. Since ADAPTIVE-REPLICATION only adds neigh-

hors of the current replication scheme and drops fringe nodes. R induces a connected subgraph of the net-

work. If R also satisfies conditions 2. 3. and -+ of lemma 4, then it is optimal for A, and the proof is com-

plete. Otherwise. we will show that the conditIons of lemma -+ are satisfied by the replication scheme R'. 

that is obtained from R by the application of a transformation. called Transform. It consists of the addition 

of some neighbors. and removal of some R-fringe nodes. 



Descnpoon of Irans{(mn: 

Suppose that conditIon .2 of lemma ~ h nut \~llhlicd fm R. Then we cxecute the followmg, step I of 

lramlorm. There IS at least one nel",hhor /.:. 01 Rim whl(h: 

(10) L ifR > 
l 1", (' 

Iransform calls k an R-add noele. \inw we will make an Important ohservation about k. Denote by I 

the neighbor of k that is m R. Rememhcr that I performs the expansion test dunng the operallons in the 

schedule S, and since ADAPTIVE-REPLICATIO!\ i.s stable on S, we know that I docs not change the 

replication scheme. Since inequality (10) holds. the sequence of requests at ncx1c i during the schedule S, 

when considering only the reads Imm \ I I, -Ii I and wntes from i' (11i _<), is the following: q = 

r,\'J, ... ,r,WJ. In other words, the -;eqlll'nce '/ ,tarb and ends wah a read from iTTk _R ), and the number 

of such reads exceeds the numher of writes Irom \ (7 R -<l hy one. 

Suppose that condition .~ of lemma ~ is not satistled for R. Then we exez:ute the following, step 2 of 

Transform. There is at least one R-frmge noelL'. /.:., fm which: 

( III L tiR < till 

Transform calls k an R-drop node. 'low we wlll make the following observation about k. It perfonns 

the contraction test dunng the operallOl1s m the schedule S, and since ADAPTIVE-REPLICATION is 

stahle on S. we know that k docs not changc the replication scheme. Since inequality (11) holds, the 

sequence of requests at node k during the schedule S. when considering only the reads from V (1't-R) and 

writes from i"(TR _k ), is the following: '/ = \\.J.\\. .. ..T,W. In other words, the sequence q starts and ends 

with a write from FUR-d, and the number of ,uch writes exceeds the number of reads from V(Tt - R ) by 

one. 

Suppose that condition 4 of lemma 4 is not satisfIed for R. If step 1 of Transform defined any R-add 

nodes then we go step 4 of Transform. Othef\\lse we exe{:ule the following, step 3 of Transform. R is a 

singleton. say {k}. There is one nClghbor or!:.. n. for which during S the number of operations requested by 

n is bigger than the numher of operallons initiated at some node of V (Tk - n ). Transform calls k an R-drop 

node. and n and R-add node. Now we will make the following observation about k and n. k perfonns the 



SWItch and expansion tests dunns the ll['l'ratI()n s In thl' schedule S, and SInce ,.\,DAPTlVE-REPLICATIO'.' 

IS stahle on S, we know that k doc, not e han!!e' the' re'pllcatIon ,che'1l1e. Then the ,equence of requests at 

node k during the schedule S is the tollcm In!!: (1 = (I.h,(/.. ,b,u, where Ule u', ~e operations issued hy n, 

and the b' s are operatIons InitIated at ,Ol1le node of t (T, "I. In other words, In the sequence q the number 

of a's exce<::ds the numhcr of b's hy nne. 

Finally, in step 4 of han.l/ortlZ We' define R' as follows. subtree of T that contains (i U R). If the 

set S U (all R -add nodes) - (all R -drop nocies! is nonempty, let us call it R'. Otherwise R must consist 

of two nodes, say k and m, ooth of which are R-drops. Then, let us define R' = 1 U. 

ThiS completes the descnption of lrUf1.lfnrm. 

'.'ow observe that the removal oj each R-drop node from R decreases cost(R,A) by one (by the 

detlniuon of an R-drop node). SlmIl~ly. the addition of each R-add node to R decreases C051(R,A) by one 

(by the definition of an R-add node! To complete the proof of the theorem, left to prove is that R' is 

optimal, and we will do so by shOWIng that the four conditions of lemma -+ are satistled for R'. 

(emf j.) Suppose that R' contaInS more than one node. It can be deduced from the detlnitions that an R-

add and an R-drop cannot be nelghhors. Thus, R' is connected. To show that condition 2 of lemma 4 is 

satistled for R', consider a node I that IS a neighbor of R'. If i is also a neighbor of R, then it obviously 

satisfies: L itR, < L #v.,. OtherWise, i is either a neighbor of an R-add node, or i is an R-

drop node. It can be veritled from the detinition of an R-add node, and the fact that each node performs at 

le<lSt one operation, that In both cases: L itR) S; L #W)' Thus condition 2 of lemma 4 is 
~ v,r .. I } ~ vcTK.) 

satisfied for R'. 

To show that condition 3 of lemma -+ is satisfied for R', consider a node i that is an R'-fringe node, If 

i is also an R-fringe, then It obviously satisties: L #R) ~ L itW,. Otherwise, i is eitller an R-
• ~ HI -K) ~ V(T •.• ) 

add nooe, or i is in R and it becomes an R' -fringe node as a result of being a neighbor of some R -drop node. 

In the first case it can be verified from the defmition of an R-add node, that: L #R) ~ L #W)' 
) ~ HT._ K) ) E ~'(TK_') 



In the second ca.,e this InequalIty hnllh h\ till' dctinltJ()n III an R-fnngc n(xk. and hy the fact that each node 

performs at least one operation. Thus lllnlillInn ' of lemma -+ IS salisticd for R' 

ICase :;.) Suppose that R' is a sInglcton 'CL I k I. \Vc have to show that condillOns :: and 4 of lemma 4 arc 

saustled. 

(Case:;]) Suppose that R is also a qngleton set. 1m I. 

I Case:; 1.1) Suppose that R' = R. Then. sincc k performs the SWllch test, and since R is the stability scheme 

on S. and since Transform docs not change R. k IS a median. Since k performs the expansion-test. and since 

no R-add nodes were defined by Jranl,i1rm. condition:: 01 lemma 4 IS satistied for R'. 

ICase :;/:;) Suppose that R' ~ R. Then k IS a uT1lque R-add and m IS a UT1lljuc R-cirop. By the way these 

were defined by Transf(lrm. ill.S C<h\ to \l'C that conclition -+ of lemma 4 is salistled for (kJ. Condition 2 of 

lemma 4 is satisfied for the followmg reason. Since the expansion test performed by m does not change R, 

then: 

( 12) I. tlR}'; 
. E HT, ~) 

Consider I, a neighbor of k that is ddferentthan m. Since VU,_I) C 1'(7'",_<). and since k performs at least 

one operation, then: I. #R'; I. tin ConSider m. Since R ~ R' and both arc singletons, 
~ I I. ; 

(13 ) I. #0,'; I. tiO - I, 
; ~ ,':T, _~: ~ , r~ , 

where tlO; denotes the number of operations (read or write) issued at node ,. Combining (12) and (13) we 

obtam: 

ICase 2.2) Suppose that R is not a smglcton set (i.e. R' is obtained by deleting nodes from R). It can be 

shown that condition 2 of lemma 4 is satlstied for (k). by the same line of reasoning as used in case 1. For 

showing that condition 4 is satisfied, we will analyze three subcases. 

(Cale :;.2.1 j Suppose that R consIsts of two nodes: k, and another node m, that is an R-drop. Since k is not 

an R-drop, 

I. ifR;:2: I. til\'. 
J '= V(Tt _ ... ) I -= v: r..." ( 

Since m is an R-drop, 
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Based on (14) and 1151. 

I #()j > I #() i' and thl'rl'lore Ull1ClllIOn ..) 01 kmma ..) IS "alIslied for neighbor m that is an 
- \.. Tt 'I't .,:: ~.: T ... .t 

R-drop. 

1\ow consider another neighbor of k. ,,<I) " (g IS not In R since R comists of two nodes. and it is also not an 

R-addsInceR' = (k). SincegisnotanN-acld. 

(16) 

Since m is an R-drop. 1: \ \ 

\' (T ... _k ) C V (Tk_~)' and k perform" elt ka~t one operation. Consequently. 

I. #W, <:: 
j E ViT, .' 

Based on (16) and (17) condition..) llf lemma -l IS sallstied for Ii. 

ICase ~.~~) Suppose that /\ consist-; of two nodes: k and m. both of which are R-drops. Since m is an /\-

drop. eljuation (15 I holds. and SInce k I S an R -drop 

( 181 fiR. -'- 1. 
\ T.t." 

Based on (15) and (IS), 

I #(); I. aO .. 
;' .:: V( I",,_t 'I \; T, " 

Based on (19) it is easy to see that tor any other neighbor of k. say I. I. #()j' Thus 
) E V'Tt ,1 J E V(TI_-i:) 

condition 4 of lemma 4 is satisfied for R'. 

ICase ~.2.3) Suppose that R consists of k plus two or more nodes, all of which are R-drops. Consider an 

R -drop neighbor of k, say m. Eljuatlon ( 15) holds for m. Now consider another R-drop neighbor of k, say 

n. 

(20) I #w I fiR. ~ 1. 
j E VCT, _" I 

Since \' (Tn -I:) C V ([1:-",), and SInce l'ach noele performs at least one operation. 

(21) I. #Wj <:: I #/(. 
j E V(T._,I _ \':7, ". 
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Based on (lSI and 1211. ::( ) > ;:() Thlh conditIon -+ of lemma -+ i~ satlsticd for c~lCh 
, r 

- , '.., l 

R-drop nodc. If thcrc arc other nelghtxlh of J.:. that arc not R-drops. thc prout that for ~uch a nCIghbor, say 

I #() 2 I #Or IS Identical tuthe one Ifl ca"e 2.2.1. [1 
~ '''!.i: II'! \ i •• , 

Theorcm I indicates that whcn ,,\DAPTIVE repllcation stabilizcs. then the dlfferencc hctwccn thc 

cost of the stability schemc and thc optimal cost is at most thc number of nodes in the network. This holds 

regardless of the lcngth of the schedule S. and the cost of iL, read-wnlC pattern. Obviously, the higher this 

cost. the more insignificant the diffcrence becomes. 

~. Comparison to Relevant Research and Future Work 

Therc arc two main purposes for data-repIICillIon: performance and rcliability. In this paper we have 

addressed the performance issue. Research \\ orks that concentrate on reliability usually devise more 

sophisticated policies than the read-one-write-all we assumed here (see for example [AE2, G B 1). 

\10st performance-oriented works address the static problem, namely establishing a priori a replica-

tion ~cheme that will rcmam fixed at run-tIme. ThiS is called the tile-allocation problem, and it has been 

studied extensively lo the literature (sec IOFI for a surveyl. The goal is to optimize the communication 

lllSt. as well a:; othcr parameters. such as ~torage costs I[C. ML]), communication channels capacity 

(I\1R 1), or the communicatIon network topology (ilK J). Existing works on the file-allocation problem 

a,sume a naive write policy, in which the total communication cost of a write is simply the sum of the com-

munication costs between the sender and each one of the receivers (nodes of the replication scheme). This 

means, for example, that in the network T of the introduction, the cost of the write from A to C and to 0 is 

2 + 3. Obviously, this is a waste for tree networks, where there is a unique path between every pair of 

nodes. Furthennore, in [WM) we have shown that the write policy affects the optimal replication scheme, 

namely, a scheme that is optimal for the naive write may not be optimal for the tree write, and vice-versa. 

Consequently, this paper is novel since it addresses the problem of dynamic (vs. static) replication, and it 

assumes the proper write policy for tree-networks. The need for dynamic replication was pointed out in 

[GS1. 
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In future work we Intend to ntc'nli the :,\DAPTIVE-REPLICATION algOrIthm to arbitrary networks: 

an important intermediate step IS nng-lllplllo).:lc". We \\()uld al-.;o like to ntend the algorithm to policle, 

that are different than the reali-one-\\rItl'-all le.g. [AL-;. GB])' We ha\l' an additional goal that IS 

motIvated by the extensive work on onlml' algOrIthm, that IS currently ocmg carried out in the theoretical 

computer science community I e.g. : BLS. BS. CL]l. We would like to show that ADAPTIVE-

REPLICATION is competitive in the sense that given any se,-!uence of rcad-write rC{juesls. the ratIo 

Cc1s[((l{Jlimai replication scheme II ((Jltl\O:\PJ1\E -REPLICATION) is bounded by some constant. 
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