Academic Commons

Theses Doctoral

Measuring Spatial Extremal Dependence

Cho, Yong Bum

The focus of this thesis is extremal dependence among spatial observations. In particular, this research extends the notion of the extremogram to the spatial process setting. Proposed by Davis and Mikosch (2009), the extremogram measures extremal dependence for a stationary time series. The versatility and flexibility of the concept made it well suited for many time series applications including from finance and environmental science.
After defining the spatial extremogram, we investigate the asymptotic properties of the empirical estimator of the spatial extremogram. To this end, two sampling scenarios are considered: 1) observations are taken on the lattice and 2) observations are taken on a continuous region in a continuous space, in which the locations are points of a homogeneous Poisson point process. For both cases, we establish the central limit theorem for the empirical spatial extremogram under general mixing and dependence conditions. A high level overview is as follows. When observations are observed on a lattice, the asymptotic results generalize those obtained in Davis and Mikosch (2009). For non-lattice cases, we define a kernel estimator of the empirical spatial extremogram and establish the central limit theorem provided the bandwidth of the kernel gets smaller and the sampling region grows at proper speeds. We illustrate the performance of the empirical spatial extremogram using simulation examples, and then demonstrate the practical use of our results with a data set of rainfall in Florida and ground-level ozone data in the eastern United States.
The second part of the thesis is devoted to bootstrapping and variance estimation with a view towards constructing asymptotically correct confidence intervals. Even though the empirical spatial extremogram is asymptotically normal, the limiting variance is intractable. We consider three approaches: for lattice data, we use the circular bootstrap adapted to spatial observations, jackknife variance estimation, and subsampling variance estimation. For data sampled according to a Poisson process, we use subsampling methods to estimate the variance of the empirical spatial extremogram. We establish the (conditional) asymptotic normality for the circular block bootstrap estimator for the spatial extremogram and show L2 consistency of the variance estimated by jackknife and subsampling. Then, we propose a portmanteau style test to check the existence of extremal dependences at multiple lags. The validity of confidence intervals produced from these approaches and a portmanteau style test are demonstrated through simulation examples. Finally, we illustrate this methodology to two data sets. The first is the amount of rainfall over a grid of locations in northern Florida. The second is ground-level ozone in the eastern United States, which are recorded on an irregularly spaced set of stations.

Geographic Areas


  • thumnail for Cho_columbia_0054D_13619.pdf Cho_columbia_0054D_13619.pdf binary/octet-stream 823 KB Download File

More About This Work

Academic Units
Thesis Advisors
Davis, Richard A.
Ph.D., Columbia University
Published Here
October 11, 2016