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Objective: ICU resources may be overwhelmed by a mass casu-
alty event, triggering a conversion to Crisis Standards of Care in 
which critical care support is diverted away from patients least 
likely to benefit, with the goal of improving population survival. 
We aimed to devise a Crisis Standards of Care triage allocation 
scheme specifically for children.
Design: A triage scheme is proposed in which patients would 
be divided into those requiring mechanical ventilation at PICU  

presentation and those not, and then each group would be evaluated 
for probability of death and for predicted duration of resource con-
sumption, specifically, duration of PICU length of stay and mechani-
cal ventilation. Children will be excluded from PICU admission if their 
mortality or resource utilization is predicted to exceed predetermined 
levels (“high risk”), or if they have a low likelihood of requiring ICU 
support (“low risk”). Children entered into the Virtual PICU Perfor-
mance Systems database were employed to develop prediction 
equations to assign children to the exclusion categories using logis-
tic and linear regression. Machine Learning provided an alternative 
strategy to develop a triage scheme independent from this process.
Setting: One hundred ten American PICUs
Subjects: One hundred fifty thousand records from the Virtual 
PICU database.
Interventions: None.
Measurements and Main Results: The prediction equations for prob-
ability of death had an area under the receiver operating character-
istic curve more than 0.87. The prediction equation for belonging to 
the low-risk category had lower discrimination. R2 for the prediction 
equations for PICU length of stay and days of mechanical ventilation 
ranged from 0.10 to 0.18. Machine learning recommended initially 
dividing children into those mechanically ventilated versus those not 
and had strong predictive power for mortality, thus independently 
verifying the triage sequence and broadly verifying the algorithm.
Conclusion: An evidence-based predictive tool for children is 
presented to guide resource allocation during Crisis Standards 
of Care, potentially improving population outcomes by selecting 
patients likely to benefit from short-duration ICU interventions. 
(Pediatr Crit Care Med 2015; XX:00–00)
Key Words: intensive care unit length of stay; intensive care unit 
mortality; mass casualty; palliative care; pandemic preparedness; 
triage

Although no regional or national emergency has ever 
overwhelmed American hospitals in the era of modern 
critical care medicine, federal planners assume the likeli-

hood of massive patient surges in future natural or man-made 

Evidence-Based Pediatric Outcome Predictors to 
Guide the Allocation of Critical Care Resources  
in a Mass Casualty Event

Philip Toltzis, MD1; Gerardo Soto-Campos, PhD2; Evelyn M. Kuhn, PhD3; Ryan Hahn, DO1;  

Robert K. Kanter, MD4,5; Randall C. Wetzel, MD2,6

1Division of Critical Care, Department of Pediatrics, Rainbow Babies and 
Children’s Hospital, Cleveland, OH.

2Virtual PICU Systems LLC, Los Angeles, CA.
3National Outcomes Center, Children’s Hospital of Wisconsin, Milwaukee, 
Wisconsin.

4Pediatric Critical Care Medicine, Department of Pediatrics, Virginia Tech 
Carilion School of Medicine, Roanoke, VA.

5National Center for Disaster Preparedness, Columbia University, New 
York, NY.

6Department of Anesthesiology Critical Care Medicine, Children’s Hospital 
of Los Angeles, Los Angeles, CA.

This work was performed at the Rainbow Babies and Children’s Hospital, 
Virtual PICU Systems, LLC, Children’s Hospital of Wisconsin, and Chil-
dren’s Hospital of Los Angeles.

Supported, in part, through a contract with the Ohio Hospital Association.

Presented, in part, at the Annual Congress of the Society of Critical Care 
Medicine, San Francisco, CA, January 2014.

Dr. Toltzis is employed by the University Hospitals of Cleveland/Case Medical 
Center. His institution received grant support from the Ohio Hospital Associa-
tion/Ohio Department of Health. Dr. Kuhn has disclosed other support from 
VPS, LLC (contract between VPS, LLC and Children’s Hospital and Health 
System). Dr. Kanter consulted for the National Center for Disaster Prepared-
ness, lectured for the University of Michigan and the University of Oregon, and 
received support for travel from the National Center for Disaster Prepared-
ness. His institution received grant support from the Baton Rouge Area Foun-
dation. Dr. Wetzel received royalties from Elsevier, William and Wilkins, LWW 
(multiple textbook assignments); lectured for the University of Utah (Key Note 
Symposium Speaker and Visiting Professor); and received support for article 
research from the State of Ohio. His institution received grant support from 
the State of Ohio (research funding for developing triage schema) and the 
Whittier Foundation (research funding for VPICU). The remaining authors 
have disclosed that they do not have any potential conflicts of interest.

For information regarding this article, E-mail: philip.toltzis@uhhospitals.org

Pediatric Critical Care Medicine

Pediatr Crit Care Med

1529-7535

10.1097/PCC.0000000000000481

XX

XXX

00

00

2015

Copyright © 2015 by the Society of Critical Care Medicine and the World 
Federation of Pediatric Intensive and Critical Care Societies

DOI: 10.1097/PCC.0000000000000481

Esther

xxx

XXX

XXX

Toltzis et al

mailto:philip.toltzis@uhhospitals.org


Copyright © 2015 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.
Unauthorized reproduction of this article is prohibited

Toltzis et al et al

2 www.pccmjournal.org	 XXX	2015	•	Volume	XX	•	Number	XXX

catastrophes (1). The recent outbreaks of H1N1 influenza, 
enterovirus D68, and Ebola highlight the possibility that the 
medical infrastructure can be overwhelmed by a wide-spread 
disaster. In a severe pandemic, patients requiring critical care 
could greatly exceed the available resources for many weeks. 
Crisis Standards of Care (CSC) (2), including critical care triage 
allocation that diverts resources to subpopulations likely to sur-
vive with relatively short periods of ICU support, may improve 
population outcomes compared with first-come first-served (or 
random) selection (3–5).

Identification of patients whose ICU admission will most 
likely contribute to the greatest number of survivors at the 
population level depends on evidence-based, validated outcome 
predictors determined from patient characteristics at the time 
of presentation. A tool to predict survival of adult populations 
using a single arbitrary triage threshold has been incorporated 
in adult critical care triage guidelines proposed by professional 
organizations and public health planning agencies (5–14). No 
population outcome predictors have been validated as a triage 
tool for children. Furthermore, the proportion of critically ill 
children in typical PICUs who are at very high risk of mortality 
is so small that exclusion of such patients would scarcely alter 
resource availability and thus would achieve little advantage in 
population outcome. The identification of patients likely to sur-
vive with brief ICU support is necessary to gain greatest advan-
tage in a triage allocation scheme for sustained emergencies, and 
there is no such validated tool for children or adults (4, 5, 14)

Recognizing these shortcomings, the Ohio Department of 
Health solicited aid in proposing a conceptual framework for a 
pediatric triage algorithm in the event of an overwhelming mass 
casualty and in deriving pediatric population outcome predic-
tion equations to identify critically ill children likely to survive 
with brief critical care support. After devising a CSC alloca-
tion decision tree, these equations were derived from data from 
actual PICU admissions obtained from a large pediatric critical 
care registry. The details of this work are presented herein.

MATERIALS AND METHODS

Primary Assumptions
We made three assumptions in deriving our CSC resource allo-
cation scheme:

 1.   Some children who present to the ICU during CSC will 
not require ICU care.

 2.  Some children will have a significant likelihood of dying 
despite ICU care.

 3.  Some children, although likely to benefit from critical 
care, would remain in the ICU consuming resources for a 
prolonged period of time, thus preventing care for others 
more likely to benefit with less resource utilization.

Thus, we developed prediction models to assign children 
presenting for critical care to three categories:

 1.  Excluded from PICU admission because they are likely to 
be too healthy to require ICU care.

 2.  Excluded from PICU admission and assigned to pal-
liative care because they are likely too ill or too resource 
consuming.

 3.  Optimal for critical care because they are most likely to 
benefit with reasonable resource utilization.

Triage Schemes
We imagined a CSC triage scheme in which children are 
evaluated for PICU admission as they present to the hospital 
(Fig. 1). In this scheme, the first division is between children 
who are in respiratory failure (hereafter referred to as “intu-
bated,” whether actually intubated on PICU presentation or 
immediately requiring intubation) and those who are not, 
assuming that the presence of respiratory failure at admission 
will be the first factor influencing triage and because ventila-
tors are likely to be a limited resource. The branching scheme 
thereafter divides casualties into the final three categories: “high 
risk—exclude/palliative care,” “low risk—exclude,” and “opti-
mal—admit,” conceptually similar to CSC triage schemes that 
have been proposed for adult patients (14). Intubated children 
are designated as “high risk” if they exceed a predetermined 
threshold for risk of mortality or if they are predicted to be 
resource consumptive by thresholds for PICU length of stay 
(LOS) or days of mechanical ventilation (DMV). Prolonged 
LOS was included along with DMV as an exclusion criterion 
in the event that ICU support modalities other than mechani-
cal ventilation, such as hemodynamic support or response to 
rapidly evolving organ failure, prove unavailable in areas out-
side the ICU, a consideration included in some adult schemes  
(5, 14). Nonintubated children are subsequently evaluated 
regarding whether they are “low risk,” defined a priori as a 
composite outcome of predicted mortality less than 0.5% com-
bined with predicted 0 DMV and PICU LOS less than 3 days. 
Such children would be excluded as being too healthy for ICU 
admission. The remainder of nonintubated children is then 
divided in a similar fashion to that described above, depending 
on whether they exceed the predetermined high-risk thresholds 
for mortality, LOS, and DMV. Children not excluded by any of 
these criteria are designated as optimal for critical care (most 
likely to benefit without excessive resource utilization) and 
admitted to the PICU.

The triage scheme was designed so that it could be modi-
fied according to the nature of the mass casualty occurrence. 
In the event of an overwhelming pandemic causing a high 
prevalence of respiratory failure, for example, PICU admis-
sion likely would be confined exclusively to those requiring 
mechanical ventilation. The larger scheme thus would be sim-
plified to employ only selected categories (high mortality, 
LOS, or DMV) among those presenting in respiratory failure  
(Fig. 2A). In a sudden-event disaster, characterized by a short-
term catastrophe affecting many victims limited to a discrete 
location and time, the triage scheme could be simplified further 
to consider only intubated patients and only on the basis of risk of 
mortality (Fig. 2B), assuming that resources outside the affected 
geographical area could be mobilized sufficiently quickly that 
prolonged LOS and DMV would not preclude PICU admission.
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Development of Prediction Equations
The datasets used to generate the prediction equations assigning 
children to each of the CSC exclusion categories were derived 
from the Virtual PICU Performance System (VPS). The VPS 
database is a prospective observational cohort of consecutive 
PICU admissions from a diverse set of hospitals caring for chil-
dren in the United States. There is extensive quality validation 
performed by VPS staff prior to release of data for analysis. Dur-
ing the period of data extraction for the current project, there 
were approximately 110 participating PICUs with a database 

containing clinical data from 
over 600,000 pediatric admis-
sions. Participating centers 
were required to enter extensive 
clinical information prompted 
by a uniform questionnaire 
on every PICU admission. 
Required elements included, 
among other variables, the 
established pediatric severity 
scores Pediatric Risk of Mortal-
ity (PRISM) II, PRISM III, and 
Pediatric Index of Mortality-2, 
entered by their component 
variables; primary and sec-
ondary diagnostic categories; 
and mechanical ventilator use, 
PICU LOS, and mortality.

To develop the prediction 
equations for each of the cat-
egories represented in the triage 
scheme, a randomly selected 
de-identified dataset of 150,000 
VPS records was generated, 
representing patients who 
had been admitted between 
January 1, 2009, and December 
31, 2012. We focused on vari-
ables available at PICU admis-
sion (n = 21, as we envisioned 
a triage scheme that would be 
applied at the time of hospital 
presentation) that the investi-
gators judged likely to be bio-
logically associated with the 
outcomes. A 100,000-record 
subset (the development set) 
was used to derive the pre-
diction equations. Univariate 
analyses were performed to test 
the association of candidate 
variables with the outcomes 
of interest (namely mortal-
ity, LOS, DMV, and low risk). 
Variables so identified were 
added in a stepwise manner to 

generate multivariate models. Logistic regressions were used 
to model the categorical bivariate outcomes mortality and low 
risk. Stepwise linear multivariate regressions were used for 
the logarithm of the continuous variables LOS and DMV. The  
p value used to determine statistical significance in the stepwise 
regressions was 0.05.

The remaining 50,000 records were used to validate the 
equations. The areas under receiver operator characteristic 
curves (AROC) were measured to determine the discrimina-
tive power of the logistic regressions. Decile and 20-quantile 

Figure 1. Illustration of the pediatric Crisis Standards of Care triage algorithm. The scheme initially divides 
children into those presenting to the PICU who are in respiratory failure and those who are not. Patients sub-
sequently are excluded from PICU admission if they exceed a predetermined threshold for “high risk” (i.e., prob-
ability of death, PICU length of stay, or duration of mechanical ventilation) or “low risk” (i.e., mortality < 0.5%, 
length of stay < 3 d, and duration of mechanical ventilation, 0 d). All the remaining children are deemed optimal 
for PICU treatment and admitted to the unit. The equation numbers next to each arrow refer to the prediction 
equations in Table 1.
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Hosmer-Lemeshow tests (15) 
were used to evaluate the good-
ness-of-fit for the logistic regres-
sions, and a p value larger than 
0.05 was considered a sign of a 
good fit. For the linear multivar-
iate regressions, we computed 
unadjusted and adjusted cor-
relations coefficients, R2. All the 
analyses and models were done 
with version 2.15.3 of the statis-
tical software R (R Core Team 
2013, Vienna, Austria) (16) and 
independently verified with ver-
sion 9.1 of SAS (Cary, NC).

Machine Learning
Because the development of a 
pediatric CSC triage scheme 
and the application of predic-
tion equations to pediatric tri-
age decisions are innovative 
and because they are difficult 
to confirm without actual 
disaster data, we sought 
another approach to compare 
to the logistic regression model 
based on the expert-deter-
mined decision tree described 
above. Machine learning (ML) 
is useful for the development 
of algorithms and has had 
extensive application for learn-
ing from large datasets both 
outside of and within health-
care (17–26). The technique 
has been applied to making tri-
age decisions in the emergency 
department and renal trans-
plantation and additionally 
in the development of triage 
tools for adult surge manage-
ment (24–26). We used an 
ML approach similar to these 
(27–29) to provide an alternate 
strategy to designing a triage 
decision tree, which could be 
compared with the expert-
derived tree described above.

ML methodology was used 
to generate a decision tree 
learned using the same clini-
cal and physiologic variables 
employed in the above predic-
tion equations. A probabilistic 
decision tree (27) conditioned 

A

B

Figure 2. A, The algorithm presented in Figure 1 is modified to represent a scheme that can be used in a 
wide-spread pandemic of a respiratory virus. The scheme assumes that only children presenting to the PICU in 
respiratory failure will be candidates for PICU admission. Such children will be excluded from admission if they 
exceed a predetermined threshold for probability of death, PICU length of stay, or duration of mechanical ven-
tilation. Children not requiring mechanical ventilation will be cared for elsewhere. B, The algorithm presented in 
Figure 1 is modified further to represent a scheme that can be used in a sudden-event catastrophe. As in  
Figure 2A, it is assumed that only children requiring mechanical ventilation will be considered for PICU admission. 
Children will not be excluded on the basis of prolonged length of stay or duration of mechanical ventilation, as it 
is assumed that resources can be quickly mobilized from neighboring regions not affected by the event. In both 
figures, the equation numbers next to each arrow refer to the prediction equations in Table 1.
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on these variables was learned to predict the joint (combined) 
probability distributions of need for ventilation, mortality, LOS, 
and DMV. Briefly, we started with a single leaf (a tree with no 
decisions) that has a joint distribution over the outcomes and 

resources used for the entire population in the dataset. The next 
step was to consider splits of the data (decision nodes) that sub-
divide the population generating a tree with two leaves, testing all 
possible decisions. The model branch points (nodes) were based 

TABLE 1.  Prediction Equations for Assigning Children to Triage Risk Categories

Presents Intubated Presents Nonintubated

Equation 1: Mortality Equation 4: Low risk

  r = –3.860 – 0.780 × ElectiveAdmit – 0.794 × 
RecoveryFromSurgery – 1.484 × NoHighRiskDx + 1.054 × 
NoLowRiskDx +2.840 × PupilsNonReact + 0.022 × SystBP_ 
forpim + 0.061 × BaseExcess + 1.074 × gcs_lt8 + 0.003 × 
ageMonths + 0.533 × under1yr + 0.820 × categ_infec – 
0.220 × categ_resp

  r = 1.465 + 0.330 × ElectiveAdmit + 0.643 × 
RecoveryFromSurgery – 0.391 × AdmitAfterCardBypass 
+ 0.773 × NoHighRiskDx – 0.958 × NoLowRiskDx 
– 0.007 × SystBP_forpim – 0.956 × gcs_lt8 – 0.223 
× neonate – 0.462 × under1yr – 0.452 × categ_infec 
– 0.453 × categ_card + 1.255 × categ_inj + 0.246 × 
categ_neur – 0.483 × categ_ 
resp

  PdeathInt = 1/1 + exp(–r)   Plow-risk = 1/1 + exp(–r)

  AROC = 0.869; H-L = 0.182   AROC = 0.683; H-L < 0.01

Equation 2: LOS Equation 5: Mortality

  logLOSInt = 1.330 – 0.170 × RecoveryFromSurgery – 0.360 
× NoHighRiskDx + 0.088 × NoLowRiskDx – 0.650 × 
PupilsNonReact + 0.003 × SystBP_forpim + 0.023 × Fio2/ 
Pao2 + 0.154 × gcs_lt8 + 0.367 × neonate +0.346 × under1y 
+ 0.370 × categ_infec + 0.072 × categ_card – 0.181 × 
categ_inj – 0.347 × categ_neur + 0.264 × categ_resp

  r = –5.321 – 0.880 × ElectiveAdmit – 1.860 × 
RecoveryFromSurgery – 1.600 × NoHighRiskDx + 2.100 
× NoLowRiskDx + 0.860 × PupilsNonReact + 0.018 × 
SystBP_ 
forpim + 0.084 × BaseExcess + 1.631 × gcs_lt8 – 
2.314 × categ_inf – 1.003 × categ_neur

  LOSInt = exp(log LOSInt)   PdeathNonInt = 1/1 + exp(–r)

  Adjusted R2 = 0.101   AROC = 0.871; H-L = 0.265

Equation 3: DMV Equation 6: LOS

  LogVentDaysInt = 0.845 – 0.072 × ElectiveAdmit – 0.554 
× RecoveryFromSurgery – 0.252 × AdmitAfterCardBypass 
– 0.530 × NoHighRiskDx + 0.005 × SystBP_forpim + 0.030 
× Fio2/Pao2 + 0.276 × gcs_lt8 + 0.587 × neonate + 0.460 × 
under1y – 0.150 × age18plus + 0.717 × categ_infect – 0.199 
× categ_card – 0.452 × categ_inj – 0.705 × categ_neur + 
0.492 × categ_resp

  logLOSNonInt = 0.453 – 0.160 × ElectiveAdmit 
– 0.180 × RecoveryFromSurgery + 0.232 × 
AdmitAfterCardBypass – 0.405 × NoHighRiskDx + 
0.360 × NoLowRiskDx – 0.004 × SystBP_forpim + 
0.406 × gcs_lt8 + 0.0003 × ageMonths + 0.210 × 
neonate + 0.242 × under1yr + 0.250 × categ_infec 
+ 0.191 × categ_card – 0.470 × categ_inj – 0.070 × 
categ_ 
neur + 0.207 × categ_resp

  VentDaysInt = exp(logVentDaysInt)   LOSNonInt = exp(logLOSNonInt)

  Adjusted R2 = 0.182   Adjusted R2 = 0.101

Equation 7: DMV

  logVentDayNonInt = 1.134 – 0.573 × 
RecoveryFromSurgery – 0.795 × AdmitAfterCardBypass 
– 0.427 × NoHighRiskDx + 0.447 × under1yr + 0.619 × 
categ_infect – 0.560 × categ_inj – 0.183 × categ_neur + 
0.550 × categ_resp

  VentDaysNonInt = exp(logVentDaysNonInt)

  Adjusted R2 = 0.100

ElectiveAdmit = admission could have been postponed > 6 hr without causing harm, RecoveryFromSurgery = recovery from surgery principal reason for PICU 
admission, NoHighRiskDx = none of the following: cardiac arrest immediately preceding admission, severe combined immunodeficiency, leukemia or lymphoma 
after first induction, spontaneous cerebral hemorrhage, cardiomyopathy, HIV infection, liver failure as the principal reason for admission, or neurodegenerative 
disorder, NoLowRiskDx = none of the following: asthma, bronchiolitis, croup, obstructive sleep apnea, or diabetic ketoacidosis, PupilsNonReact = both pupils 
nonreactive during first hour of PICU admission, SystBP_forpim = first measured systolic blood pressure in first hour of PICU admission, subtracted from 120, 
BaseExcess = base excess, gcs_lt8 = Glasgow Coma Scale < 8, ageMonths = age in months at admission, under1yr = age < 1 yr at time of admission, categ_
infect, categ_resp, categ_card, categ_inj, categ_neur = diagnosis is infectious, respiratory, cardiac, injury, or neurologic, respectively, AROC = area under the 
receiver operating characteristic curve, H-L = Hosmer-Lemeshow calculation for calibration, LOS = length of stay, neonate = age < 1 mo at admission,  
DMV = days of mechanical ventilation, AdmitAfterCardBypass = admitted after operation using cardiac bypass, age18plus = age > 18 mo at admission.
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on the admission measurements. The decisions were scored and 
those yielding leaves with the best Bayesian score (the sum of the 
logs of the probabilities of the four outcome variables in each 
leaf adjusted for tree size) were used. The tree was learned in a 
standard greedy fashion (a recursive ML strategy that consid-
ers other solutions in the dataset), iteratively continuing to add 
splits until the Bayesian score of the resulting leaves was maxi-
mized and further splits did not increase the score (29).

We applied this unsupervised (no a priori assumptions of 
assignments or outcomes) decision tree, which captured poten-
tial nonlinear effects to provide probability estimates of the out-
come distributions for given admission values for each patient. 
The final leaves of the decision tree represented the probabilities 
of the combined outcome groups: lived, not ventilated; lived, 
ventilate; died, not ventilated; and died ventilated. The leaf dis-
tribution so learned was a multinomial distribution (used to 
compute the probabilities in situations in which there are more 
than two possible outcomes) over the categorical outcomes of 
mortality and need for ventilation and a conditional log-normal 
distribution over the continuous outcomes of LOS and DMV. In 
this way, an optimal triage scheme was generated by ML from 
the data, without any presuppositions. Once the model was built 
on the training set, new patients (test set) were assigned to one of 
the leaves of the tree depending on their presentation values. In 
contrast to the triage model described above, the ML approach 
assigned the triage decisions based on a purely heuristic math-
ematical approach, free from expert opinion and modeled on 
the actual data to predict the probability of each outcome.

This project was approved by the VPS Research Committee 
and the Institutional Review Boards of Rainbow Babies and 
Children’s Hospital/Case Medical Center, Cleveland, OH, 
Children’s Hospital of Wisconsin, and Children’s Hospital of 
Los Angeles, who waived requirement for informed consent on 
the basis of nonhuman research.

RESULTS

Prediction Equations
The prediction equations for each of the triage exclusion cate-
gories are presented in Table 1. The AROC of the two mortality 
predicators (Eqs. 1 and 5 in Table 1 and Fig. 1, predicting mor-
tality in patients arriving intubated and nonintubated, respec-
tively) was more than 0.87. Both equations also were well fitted 
according to the method of Hosmer and Lemeshow (Table 1). 
The equation predicting low risk (Eq. 4 in Table 1 and Fig. 1) 
had an AROC less than 0.70 and failed the test for goodness-of-
fit. The adjusted R2 for the equations predicting the continu-
ous outcomes LOS (Eqs. 2 and 6) and DMV (Eqs. 3 and 7) in 
both the initially intubated and initially nonintubated patients 
ranged between 0.10 and 0.18 (Table 1 and Fig. 1).

Selection of Exclusionary Thresholds
Public health authorities recommend that plans for mass casual-
ties include the establishment of Operations Command Units 
to continually monitor the availability or shortfall of medical 
resources before and after CSC has been declared (2). Once CSC 

has been initiated, adult triage schemes have recommended a 
single exclusionary mortality threshold (90%) regardless of the 
degree of resource shortage (5). The currently proposed triage 
scheme recognizes that the balance between number of casu-
alties and available resources during CSC will be different for 
different events and may even evolve during a particular mass 
casualty occurrence. Thus, the scheme allows the proportions of 
children excluded from PICU care (“high risk” plus “low risk”) 
to be adjusted by manipulating the levels of risk of mortality 
and LOS or DMV (referred to as “thresholds”) for assignment to 
the excluded categories, so the optimal treatment group can be 
sized to approximate the number of available beds. In Table 2, 
example A, for example, the threshold probability of assignment 
to low risk was set to more than 0.60 (i.e., > 60% chance of being 
correctly assigned to the low-risk group) and of mortality to 
more than 0.70 (i.e., > 70% chance of dying); for LOS or DMV, 
the threshold values were set to those that fell at or above the 
90th percentile of the entire population. When these thresholds 
were applied to the total 150,000 record dataset, 69.9% of chil-
dren were excluded from PICU admission. In Table 2, example 
B, the threshold for assignment to the low-risk group was set 
more liberally than in example A, from more than 0.60 to more 
than 0.50, with the other thresholds unchanged. This increased 
the proportion of children assigned to the low-risk group and 
consequently reduced the size of the optimal, admitted popula-
tion from 30.1% to 26.0%. In Table 2, example C, the thresh-
old for assignment to low risk remained at more than 0.50 as 
in example B, but the threshold for risk of mortality and hence 
admission to the excluded high-risk group was reduced from 
more than 0.70 to more than 0.50, and those for prolonged 
LOS or DMV were reduced from more than 90th to more than 
80th percentile of the population. This adjustment resulted in 
expansion of the number of children assigned to the excluded 
high-risk cohort and therefore further reduction of the number 
assigned to the optimal admitted population. In this fashion, the 
proposed scheme permits adjustment of the thresholds to match 
variations in resource availability as the disaster evolves.

Machine Learning
The results from the ML experiments displayed two noteworthy 
properties, discovered independently from the above approach 
and without guidance (i.e., unsupervised ML from actual patient 
data). First, the most informative decision for triage assignment was 
whether the patient was intubated at the time of triage, thus agree-
ing with the expert-derived triage algorithm assumption. Second, 
the ML-predicted mortality among intubated patients generated 
an AROC of 0.81, similar to that using logistic regression. The ML 
approach predicted DMV and LOS poorly for nonintubated chil-
dren, again similar to the weaker predictive values of the regressions 
derived to predict category assignment of nonintubated children in 
the triage scheme. These ML results, taken together, independently 
tended to confirm the triage model derived from the first approach.

DISCUSSION
The Institute of Medicine (2) has recommended that the medi-
cal community preemptively prepares a response to future 



Copyright © 2015 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.
Unauthorized reproduction of this article is prohibited

Feature Article

Pediatric Critical Care Medicine www.pccmjournal.org 7

mass casualties. These recommendations focus on developing 
plans to expand existing patient-care capabilities were a disas-
ter to occur. In the most severe mass casualty events, however, 
it is anticipated that the need for critical care resources will 
be overwhelmed, prompting a conversion to CSC in which 

normally life-saving interventions will be diverted away from 
some patients who would have otherwise survived (2). Sev-
eral schemes have been proposed to inform triage decisions 
in adult patients during CSC. The scheme proposed by a con-
sensus group in Ontario (14), followed by a similar algorithm 

TABLE 2. Selection of Exclusionary Thresholdsa

Group No. of Casualties
Proportion  

of Population Variable Value

Example Ab

  Low risk 96,456 64.3 Mortality (%) 0.00

> 1 ventilation day (%) 4.22

LOS (median [IQR]), d 1.20 (0.80, 2.40)

  Optimal 45,126 30.1 Mortality (%) 4.00

> 1 ventilation day (%) 42.29

LOS (median [IQR]), d 3.03 (1.56, 6.93)

  High risk 8,323 5.5 Mortality (%) 18.72

> 1 ventilation day (%) 64.60

LOS (median [IQR]), d 5.73 (2.21, 12.75)

Example Bc

  Low risk 102,982 69.0 Mortality (%) 0.59

> 1 ventilation day (%) 5.02

LOS (median [IQR]), d 1.24 (0.54, 2.59)

  Optimal 39,456 26.0 Mortality (%) 5.66

> 1 ventilation day (%) 46.05

LOS (median [IQR]), d 3.11 (1.65, 7.04)

  High risk 7,557 5.0 Mortality (%) 20.47

> 1 ventilation day (%) 68.77

LOS (median [IQR]), d 5.97 (2.43, 13.06)

Example Cd

  Low risk 102,982 68.7 Mortality (%) 0.59

> 1 ventilation day (%) 5.02

LOS (median [IQR]), d 1.24 (0.84, 2.59)

  Optimal 34,595 23.1 Mortality (%) 3.46

> 1 ventilation day (%) 43.30

LOS (median [IQR]), d 2.96 (1.55, 6.65)

  High risk 12,418 8.3 Mortality (%) 16.23

> 1 ventilation day (%) 67.53

LOS (median [IQR]), d 4.95 (2.03, 10.9)

LOS = length of stay, IQR = interquartile range.
a The algorithm allows the proportions of children admitted to the PICU to be expanded or contracted based on the size of the mass casualty event and the 
relative shortfall of ICU resources, by adjusting the thresholds for assignment to each of the exclusion categories.

b The proportions of children assigned to the high-risk, optimal, and low-risk categories if the thresholds are adjusted as follows: probability of low risk > 60%, 
probability of death > 70%, LOS and duration of ventilation > 90th percentile.

c The proportions of children assigned to the high-risk, optimal, and low-risk categories if the thresholds are adjusted as follows: probability of low risk > 50%, 
probability of death > 70%, LOS and duration of ventilation > 90th percentile.

d The proportions of children assigned to the high-risk, optimal, and low-risk categories if the thresholds are adjusted as follows: probability of low risk > 50%, 
probability of death > 50%, LOS and duration of ventilation > 80th percentile.
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developed by experts convened by the United States Centers 
for Disease Control and Prevention (CDC) (5), recommends 
a two-step process in which, first, scarce resources are diverted 
from patients with predisaster chronic underlying conditions 
with limited potential for long-term survival. Patients who 
pass this step then are assessed for risk of mortality based on 
their initial and daily Sequential Organ Failure Assessment 
(SOFA) scores. Those whose SOFA scores predict a more than 
90% mortality also are denied critical care (5).

These and similar adult-patient schemes are not readily 
adaptable to children. The exclusionary antecedent conditions 
are uncommon in children, and the ethics of such exclusions 
recently have been questioned even in adults (30). SOFA is not 
validated as a mortality prediction tool in the pediatric age 
group, and, in fact, existing data indicate that children with 
multiple organ dysfunction experience higher survival com-
pared with adults with similar severity of disease (31); indeed, 
SOFA has been abandoned in recent revisions of even adult tri-
age schemes (32). Furthermore, adult schemes do not assess for 
ICU resource overutilization. Based on these considerations, a 
task force of pediatric expert advisory to the CDC endorsed 
the concept of CSC ventilator and critical care triage allocation 
specifically for children (4). They declined to recommend any 
particular mass casualty triage criteria to guide PICU resource 
allocation, however, citing the need for empirical research to 
develop evidence-based quantitative tools to predict outcomes 
on the basis of early clinical characteristics (4).

We have proposed a mass casualty population-outcome 
predictive tool that addresses these issues, summarized as fol-
lows: 1) For the first time a pediatric-specific scheme has been 
developed, informed by prediction equations based on data 
from actual critically ill children entered into a current, large 
PICU database. 2) The decision-tree scheme was formulated by 
expert opinion and then largely confirmed in an entirely inde-
pendent and unbiased fashion by ML. 3) Unlike adult schemes, 
the pediatric scheme considers the utilization of resources 
(LOS and DMV) as well as risk of mortality when consider-
ing PICU admission during CSC. 4) Unlike adult schemes, it 
does not exclude children based on predisaster comorbidities; 
antecedent conditions are relevant only if they affect mortal-
ity, LOS, DMV, and low risk. 5) The pediatric scheme allows 
the thresholds for PICU admission to be adjusted during CSC 
as the event progresses, to enable clinicians and public health 
officials to match changing casualty volumes to bed availability 
using criteria that could be employed simultaneously and con-
sistently by all acute care facilities in the affected area. These 
steps were achieved all the while ensuring that the scheme sat-
isfies key ethical principles pertaining to resource allocation 
during CSC (7, 30, 33): it is objective (using only measurable, 
clinically relevant data); is transparent; is egalitarian (assessing 
all children presenting for PICU admission equally); and guar-
antees procedural justice (by applying the same triage process 
consistently and to all comers).

The triage scheme assigns children to high-risk and low-
risk exclusion categories using physiologic variables available 
at PICU admission. Discrimination and goodness-of-fit of the 

mortality prediction equations, both for initially intubated and 
nonintubated children, were very strong. The predictive power 
of the other equations was not as compelling. Prediction of low 
risk was felt to be a necessary component of the CSC triage 
scheme, since conventional care practice frequently offers pre-
emptive monitoring and interventions to children who are only 
moderately ill but whose illness may progress. Such children 
would not be appropriate for PICU admission during CSC. The 
AROC for assignment to the low-risk group, however, fell below 
0.70. Nevertheless, we reasoned that inaccurate assignment to 
this group was tolerable, since individual children misclassified 
as low risk and denied ICU support could be re-evaluated for 
PICU admission if their condition worsened, using the same cri-
teria as other children vying for a PICU space at the same time. 
Additionally, the prediction equations with the continuous out-
comes LOS and DMV were associated with low R2 values. Others 
have demonstrated that models designed to predict ICU LOS in 
units serving adults are weak when they employ only variables 
collected early in the patients’ course (34). Predictive power 
increases when data collected on subsequent ICU days are used 
(34), since these reflect the patients’ response to initial interven-
tions and early complications of critical care, events that are 
more reliably associated with subsequent need for ICU support. 
We made the deliberate decision to develop an algorithm that 
could be applied at the patient’s PICU presentation because tri-
age allocation decisions must be made at the time of admission.

The scheme is subject to several limitations. Common to all 
schemes that employ prediction scores derived from popula-
tion analyses, the accuracy of the prediction for any individual 
patient is inexact. Although receiver operator characteristic 
curves summarize sensitivity and specificity of population-
based predictions across the entire range of predictive variable 
thresholds, sensitivity and specificity at particular thresholds 
cannot be derived reliably from receiver operator characteris-
tic curves. Thus, although the AROC may appear satisfactory, 
sensitivity and specificity at particular thresholds are uncer-
tain. Prediction scores perform better at the population level, 
however, and it is survival at the population level, rather than 
the individual, that is the focus of CSC. Second, the scores were 
derived from general PICU reference populations. It is possible 
that the performance of the prediction equations will be lower 
in a mass casualty event in which a large proportion of chil-
dren will exhibit a particular clinical phenotype whose clini-
cal severity may have different population distributions than 
reference populations. Established severity-of-illness scores, 
such as Acute Physiology and Chronic Health Evaluation and 
PIM, composed of physiologic and diagnostic categories simi-
lar to ours, perform well across a variety of illnesses, however. 
Furthermore, CSC prediction scores will need to assess out-
come of children with conditions outside the one driving the 
mass casualty and thus should not be overfitted to any par-
ticular entity. Finally, all of the records in the VPS database are 
derived from children who received the full extent of available 
critical care. Altered capabilities during CSC may affect the 
accuracies of the prediction equations.



The work proposed herein requires a demonstration that the 
algorithm results in greater survivorship in the affected population 
than a random assignment first-come first-served process. This 
test of efficacy, which can be gained only through a real disaster or 
sophisticated simulation, is critical, as a recent analysis suggests that 
an algorithm based on predictors with poor sensitivity or specific-
ity may result in fewer survivors when compared with a random 
assignment strategy (35). Our group recently has performed pre-
liminary experiments using computer simulation; these experi-
ments have demonstrated that optimal thresholds for assignment 
to exclusion groups can be derived for a disaster of a given mag-
nitude and that triage algorithms using these optimal thresholds 
outperform a first-come first-served strategy in terms of overall 
population survival (36). During an actual sustained emergency, 
however, it is mandatory that public health agencies responsible 
for implementing triage allocation assess the accuracy of outcome 
predictors as the situation evolves, potentially requiring revision 
of the prediction equations, based on real-time evidence from 
patients, patterns of care, and outcomes in the emergency.

CONCLUSIONS
An evidence-based predictive tool for children to guide resource 
allocation during CSC is presented, potentially improving 
population outcomes by selecting patient subpopulations most 
likely to benefit from ICU interventions. Next steps should 
include the development of a method to determine optimal 
triage thresholds on the basis of needs-to-resources ratio and 
validation of an algorithm that would incorporate population 
outcome predictors and optimal thresholds.
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