2007 Articles
Dynamical Formation of an Extra-Tropical Tropopause Inversion Layer in a Relatively Simple General Circulation Model
The key factors contributing to the formation and maintenance of the recently discovered extra-tropical tropopause inversion layer are presently unclear. In this study, it is shown that such a layer can form as a consequence of the turbulent dynamics of synoptic-scale baroclinic eddies alone, in the absence of explicitly parameterized, small-scale, radiative-convective processes. A simple general circulation model, initialized from a state of rest, and driven with idealized forcings, is found to spontaneously develop an inversion layer above the tropopause under a wide variety of parameter choices and model resolutions. Furthermore, such a model is able to capture, qualitatively, both the latitudinal and (in part) the seasonal dependence of the observed tropopause inversion layer. However, the inability of our simple model to capture some detailed quantitative features strongly suggests that other physical processes, beyond balanced synoptic-scale dynamics, are likely to play an important role.
Subjects
Files
-
grl23406.pdf application/pdf 179 KB Download File
Also Published In
- Title
- Geophysical Research Letters
- DOI
- https://doi.org/10.1029/2007GL030564
More About This Work
- Academic Units
- Applied Physics and Applied Mathematics
- Earth and Environmental Sciences
- Lamont-Doherty Earth Observatory
- Ocean and Climate Physics
- Published Here
- November 4, 2013