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Abstract 
We introduce the Email Mining Toolkit (EMT), a system that implements behavior-based methods to 
improve security of email systems.  Behavior models of email flows and email account usage may be 
used for a variety of detection tasks. Behavior-based models are quite different from "content-based" 
models in common use today, such as virus scanners.  We evaluate the soundness of these techniques for 
the detection of the onset of viral propagations. The results achieved for the detection of the onset of viral 
propagations suggest email delivery should be egress rate limited - stored for a while and then forwarded 
- or a record of recently delivered emails should be kept in order to develop sufficient statistics to verify a 
propagation is ongoing.  EMT can form part of a larger security platform that deals with email security 
issues in general.  We present the variety of EMT models implemented to date and suggest other security 
tasks that may benefit for its detection capabilities. 
 

1. Introduction 
We introduce the Email Mining Toolkit (EMT), a 
system that implements behavior-based methods to 
improve security of email systems.  Behavior models of 
email flows and email account usage may be used for a 
variety of detection tasks. Behavior-based models are 
quite different from "content-based" models in common 
use today, such as virus scanners.  For pedagogical 
reasons, we demonstrate the utility of behavior-based 
models by simulating and detecting viral propagations 
using real email data. We evaluate the soundness of 
these techniques for the detection of the onset of viral 
propagations.  

Email is a common method of choice for the propagation 
of viruses and worms.  Typically, a virus will extract 
email addresses in an infected computer and send a copy 
of itself to some or all of these addresses.  These 
addresses may be obtained from many sources, such as 
the address book, socket-layer sniffing, inbox, sent 
folder, and any of the stored email archives.  Virus 
scanners cannot stop a virus in its tracks unless the 
signature of the virus is known a priori.  Unfortunately, 
virus writers have demonstrated their continual 
cleverness by thwarting virus scanners with new viruses 
that escape early detection.  Stopping a polymorphic 
virus that uses several points of entry can be a daunting 

task using traditional signature-based virus scanning 
methods alone.    

Like spam email, many viruses that are propagated via 
email today exhibit various strategies to avoid detection 
by, adopting strategies such as changing the subject line, 
text body, and even attached file names and type.   This 
means they will likely escape content-based filtering 
tools like virus scanners.  Updating virus definitions in 
the future will likely be obsolete with a new generation 
of viruses that can mutate their payload.  To complicate 
this matter further, some viruses look like harmless 
spam, with no attachments at all.  Instead, a user is 
directed to a site and may download harmful executables 
without knowing so.   

With these trends in mind, we propose behavior-based 
approaches as a solution to raise the bar of protection 
and detect and extinguish viral propagations as early as 
possible.  We start by observing the following.  First, 
viral propagations via email must involve an email being 
sent, with either an attachment or with something 
equivalent to an HTML page in the text body.   In the 
former case, the user will have to run the executable that 
launches a virus directly, or invoke a program that uses 
the seemingly innocent data file that exploits the 
weakness of the program that makes use of it.  In the 
latter case, the user may simply click on an innocent 
appearing URL.  Second, it is highly unlikely a virus 
will propagate itself with only one or a few emails.  This 
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is because usually viruses are designed to infect as many 
computers as possible in a short period of time.  
Otherwise, they would be stopped long before they have 
a chance to inflict damage on many systems.  Creating 
many copies ensures the virus will propagate quickly 
and widely.  Finally, a virus is not intelligent, in the 
sense that it does not know the relationship between a 
user and those with whom the user is communicating 
with.  For example, a user would be unlikely to send an 
email, or copies of an email, to his or her separate social 
cliques.  Instead, a virus may use simple hard-coded 
rules in deciding whom to propagate to, violating the 
user’s social cliques.  These observations suggest that 
viral propagations may be detected by profiling email 
behavior and using behavior models to detect the onset 
of a propagation. 

Behavior-based detection is not new. Credit card fraud 
detection is perhaps the best example of a widely 
deployed security system that depends upon profiling 
behavior of card users. We posit that a similar approach 
directed towards “email transactions” will provide 
comparable broad-cased security without requiring a 
complete overhaul of email protocols and server 
implementations.  

A behavior-based approach would capture the essence of 
a user’s behavior by analyzing the user’s historical email 
data. This analysis, the subject of this paper, will 
generate a short summary or profile for each user and 
use that historical profile to detect outbound email that 
deviates from the user’s normal email pattern.  Such 
summarization or profiling could be done offline during 
the training or updating phase.  The profiles themselves 
have to be compact and efficient so that they can be used 
readily in real-time.  Equally important, in order to 
preserve privacy, minimal data from emails should be 
used.   

In this paper, we first explore the use of cliques in 
detecting viral email. A clique is the user’s common 
email recipients as defined by the user’s own historical 
record. Then, on a separate front, we show how certain 
mathematical models can be used to capture the 
frequency of the user’s email usage. We describe a 
number of experiments using real email data collected 
from volunteers but injected with viral emails using 
simulated attack strategies. (We did not run the viruses 
but simulated their propagation strategy.) These two 
behavior-based techniques are then combined to mitigate 
the weaknesses. Other models may be employed to 
possibly further improve performance. However, for the 
present paper we demonstrate the effectives of behavior-
based models by combining only two such models.  
Finally, we detail an experimental system we have 
implemented – the Email Mining Toolkit (EMT).  EMT 
is an offline data analysis system designed to assist a 

security analyst compute, visualize and test models of 
email behavior for use in a real-time email violation 
detection system, such as the Malicious Email Tracking 
system reported in [1].  EMT includes a variety of 
behavior models for email attachments, user accounts 
and groups of accounts.  Each model computed is used 
to detect anomalous and errant email behavior for an 
individual account, or for an enclave.  A behavior model 
computed by EMT can be used alone or in combination 
with other models.   EMT is a collection of behavior-
based tools that can be easily expanded to accommodate 
other useful tools to secure a computer or a network of 
computers. 

Two specific behavior-based models are examined in 
detail in this paper: user cliques and the Hellinger 
distance model.  The user cliques model profiles a user’s  
communication groups that naturally occur (for example, 
colleagues, family members, etc). The Hellinger distance 
profiles the distribution of the frequency of 
communication, and the variability of that frequency, 
between a user and his/her correspondents. 
(Interestingly, the analysis we have performed on the 
email archives of many volunteer email users reveals 
that email communication behavior follows a Zipf 
distribution, the same distribution that models the 
naturally occurring frequency distribution of words in 
natural language.)  These two models are more or less 
orthogonal to each other and, as we shall see later, they 
can be combined together to form a hybrid model that 
yields good detection performance.  The power of these 
models is demonstrated with respect to the detection of 
the onset of a virus propagation. 

Interestingly, the detection methods studied here do not 
use message or attachment content.  We believe the 
approach of behavior-based modeling will provide 
additional evidence that when combined with existing 
techniques will enhance security for email and other 
applications. 

2. Group Communication Models: Cliques 
In order to study email flows between groups of users, 
we compute a set of cliques in an email archive.  We 
seek to identify clusters or groups of related email 
accounts that participate with each other in common 
email communications, and then use this information to 
identify unusual email behavior that violates typical 
group behavior. For example, intuitively it is unlikely 
that a user will send a distinct message to his spouse, his 
boss, his “drinking buddies” and his church elders all 
appearing together as recipients of the same message. 
(Of course this is possible, but it is rather unlikely.)  A 
virus attacking his address book at random would surely 
not know these social relationships and the typical 
communication pattern of the victim.  Hence it would 
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violate the user’s group behavior profile if it propagated 
itself in violation of the user’s social cliques.  

Clique violations may also indicate email security policy 
violations internal to a secured enclave.  For example, 
members of the legal department of a company might be 
expected to exchange many Word attachments 
containing patent applications.  It would be highly 
unusual, and probably unwise, if members of the 
marketing department, and HR services would likewise 
receive these attachments.  We can infer the composition 
of related groups by analyzing normal email flows  to 
compute the naturally occurring cliques, and use the 
learned cliques to alert when emails violate that clique 
behavior. 

Conceptually, two broad types of cliques can be 
extracted from user email archives: user cliques and 
enclave cliques.  In simple terms, user cliques can be 
inferred by looking at email history of only a single user 
account, while enclave cliques are social groups that 
emerge as a result of analyzing traffic flows among a 
group of user accounts. 

2.1. User Cliques 

For any user account, an email sent is usually not 
intended for everyone the user knows. Instead, it would 
be intended for only a small subset of his/her contacts, 
who may or may not appear in the address book of the 
user.  We model the collection of recipients in a single 
email as a set, and summarize these sets and their 
dynamics.  This information is used to detect abnormal 
emails that violate the user’s clique behavior. 

The recipient list of a single email can be viewed as a 
clique associated with the “From:” account.  However, 
using this set directly is problematic for two reasons. 
First, a single user account would contain a large number 
of such sets and enumerating them for real-time 
reporting or detection tasks would be undesirable. 
Second, some of these sets are duplicates or subsets of 
one another and it would be difficult to use them directly 
for any purpose.  For these reasons, we define a user 
clique as a set of recipients that cannot be subsumed by 
another set.   Naturally, a single user will have a 
relatively small number of user cliques.  As an example, 
suppose a user has in his/her sent-folder four emails with 
the following recipient lists: {A, B, C}, {A, B, C}, {A, 
B}, and {A, B, D}.  The user cliques belong to this user 
would be {A, B, C} and {A, B, D}.  Note that duplicate 
user cliques are removed, as it does not contribute useful 
information. 

Once these sets are derived off-line, we inspect each 
email sent from the user’s account to see if there is a 
clique violation – i.e. the recipient list is inconsistent 
with the user’s cliques. The usefulness of this model 
depends not only on how quickly new groups of 

recipients form over time but also on how it is combined 
with other models. Installing a monitoring tool using this 
model on a new account or an account that is constantly 
communicating with new groups may cause too many 
false positives and thus render the model useless. 
However, this very behavior is indicative of user email 
usage patterns and thus can be turned into a feature that 
characterizes user behavior.  Although the dynamics of 
clique formation (and expiration) is implemented in 
EMT, for the present paper we shall ignore the dynamics 
of clique formation. Computing the set of “static  
cliques” is sufficiently informative for the purpose at 
hand; this model provides useful evidence of a viral 
propagation launched from a user’s account.  

2.1.1. Test of Simulated Viruses 

We simulate viruses by inserting dummy emails into an 
email archive following a propagation strategy that has 
been observed from numerous real viruses seen in the 
wild.  The first 80% of emails sent from each account 
are used for deriving user cliques associated with that 
account.  The remaining 20% of the emails are used 
during the testing phase where the dummy emails 
simulating the propagation are inserted.  For this 
simulation, it is not critical exactly when and how often 
viral emails are sent out.  This is because once the user 
cliques are derived, determining whether or not a 
recipient set violates existing user cliques is independent 
of the timing of the email in question.  However, during 
the simulation/test phase, user cliques are updated on a 
daily basis and the timing of email is affected slightly.  
Such effects are still more or less negligible, as having 
viral emails that are sent late in time is tantamount to 
having a longer training phase and a shorter test phase. 

In terms of modeling attack strategies, we test the 
effectiveness of the user clique violation model against 
various sizes of a viral email recipient list.  For 
illustrative purposes, we assume that a virus would fetch 
email addresses from the address book of a user to 
propagate itself.  In reality, email addresses could be 
obtained via others means, such as scanning the inbox, 
sent folder and email archives.  Without loss of 
generality, the simulation has the virus propagating itself 
to recipients chosen at random.  However, the usefulness 
of user-clique violation detection in practice depends on 
how a virus obtains the target email addresses.  For 
example, a virus obtaining addresses from an inbox and 
replying to respective senders and everyone else in the 
message may not be detected easily, depending upon 
how compatible they are with existing user cliques. 
(Herein lies the reason for False Positives. The other 
models we explore below mitigate these mistakes.) 

As we can see from the ROC curve below, the false 
positive rate is invariant with respect to the size of the 
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recipient list.  This is expected, as this rate is defined as 
the number of false positives over the number of normal 
emails, and both of these quantities do not vary with 
respect to how viral emails are sent under our simulation 
setting.  It is interesting to note that the rate of detection 
(true positive rate) increases dramatically as the size of 
recipient lists grow from 1 to 2 to 3 and then approaches 
100% gradually as the list size further increases (figure 
1).  This result is intuitive; we should not expect that 
there would be many clique violations if a virus sends an 
email to only one recipient at a time.  The fact that this 
number is not 0, as one might have thought, deserves 
some mention.  This could happen because certain email 
addresses appear in an address book before any email is 
sent to them.  While a virus may try to thwart our 
detection effort by sending to one address at a time, it 
will inevitably have to send many separate emails to 
achieve the same propagation speed.  In doing so, it is 
likely a different level of threshold would be triggered 
by another model that is tuned to the user’s outbound 
email frequency. Thus, we combine the user clique 
detection model with other methods of detection, such as 
Hellinger Distance described in section 3, to mitigate 
this error. (Alternatively, as demonstrated below - the 
buffer crawling strategy - we may delay email 
transmission to gather evidence of clique violations 
among a sequential set of similar or equivalent emails 
indicative of a propagation.) 

 
  Figure 1 

2.2. Enclave Cliques 

When viewed at an aggregate level, email traffic flow 
within an enclave of accounts reveals how tightly 
connected individuals really are.  As a consequence, we 
can infer clusters of social groups from the density of 
such links, and use the clique violation strategy to detect 
a broad propagation within the enclave.  An enclave in 
this context could be a sub-domain, a department, or 
simply a set of user accounts of interest for inspection.   
Such analysis could be used for reporting, profiling, and 
email traffic violation detection. 

Before enclave cliques can be used for email violation 
detection, enclave cliques have to be formed.  The 
enclave clique model is based on graph theory. We use 
the branch and bound algorithm described in [4].  It 
finds the largest cliques (groups of users), which are 
fully connected with a minimum number of emails per 
connection at least equal to a specified parameter (set at 
50 by default).   For example, if clique_1 is a clique of 
three users, A, B and C, this means that the three email 
accounts must have pair-wise exchanged at least 50 
emails. The clique is computed by measuring bi-
directional email flow, from A to B and from B to A.  
With enclave cliques defined this way, any single user 
can be a member of multiple cliques and thus cliques are 
not mutually exclusive. 

For concreteness, suppose a group of users, {A, B, C, 
D}, have exchanged a number of messages in the past, 
as specified in the following table,  

        To 

From       

A B C D 

A N/A 20 52 23 

B 33 N/A 34 24 

C 14 42 N/A 79 

D 5 89 37 N/A 

Table 1: Number of messages exchanged among users. 

Using a threshold of 50, we can immediately see that the 
following pairs have communicated at least a sufficient 
number of emails to be qualified in the same group of 
dyad cliques: {AB, AC, BC, BD, CD}.  The triad cliques 
are {ABC} and {BCD}.  Note that enclave cliques are 
not necessarily mutually exclusive.   

Figure 2 shows two cliques sharing two common 
accounts. 

 
Figure 2: Two enclave cliques sharing 2 common user 
accounts. 

2.2.2 Clique reporting 

For summarization and reporting, one could simply 
show the enclave cliques discovered by the algorithm.  
However, it would be even more illuminating if the 
nature of the communication shared among members of 
such cliques is further revealed.  For every clique, EMT 
computes the most frequently occurring words appearing 
in the subject line of the emails (although body text may 
also be used).  Figure 3 displays an example enclave 
clique report generated by EMT. 
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2.2.3. Clique violation detection 

Using enclave cliques to detect anomalous email traffic 
flow is similar to the case using user cliques, except that 
now we are examining all email traffic among a selected 
group of users, instead of focusing on one user.  For 
every email circulated within the enclave, we check the 
set of users involved, including the sender, and see if this 
set is a subset of a known enclave clique.  If it is not, an 
alarm is generated for further examination; this may be 
evidence of a viral propagation, or some security policy 
violation. 

The usefulness of this detection algorithm depends on 
how well established traffic patterns are revealed by the 
email archive available for analysis.  In an enclave that is 
newly formed or constantly changing its membership or 
communication patterns, there would be many false 
alarms.  However, the fact that an enclave is laden with 
many false alarms is itself informative.  It implies the 
fast changing nature of the communication pattern in the 
enclave.   

In practice, an enclave defined arbitrarily by a random 
set of users would not be very useful, as there may not 
be much traffic to examine in the first place.  On the 
other hand, a well defined enclave may not reveal as 
much information as we desire, using the enclaves 
defined thus far, as there may be a lot of external traffic 
in and out of the enclave.  Nonetheless, the information 
captured by user cliques still provides evidence of a 
propagation.  Enclave cliques remain a useful tool for 
summarization and email violation detection. 

 

Figure 3: Common subject words 

3. Non-Stationary User Profiles 

Most email accounts follow certain trends, which can be 
modeled by some underlying distribution.  As an 
example of what this means, many people will typically 
email a few addresses very frequently, while emailing 
many others infrequently.  Day to day interaction with a 
limited number of peers usually results in some 
predefined groups of emails being sent.  Other contacts 
communicated to on less than a daily basis have a more 
infrequent email exchange behavior.  These patterns can 
be learned through the analysis of a user’s email archive 
over a bulk set of sequential emails.  For some users, 
500 emails may occur over months, for others over days. 
The duration of these email transmissions is not material 
for the profile we now consider.   

Every user of an email system develops a unique pattern 
of email emission to a specific list of recipients, each 
having their own frequency of occurrence (with respect 
to the number of emails).  Modeling every user's 
idiosyncrasies enables the system to detect malicious or 
anomalous activity in the account.  This is similar to 
what happens in credit card fraud detection, where 
current behavior violates some past behavior patterns. 

3.1 Profile of a user 

We analyze the account's activity in terms of recipient 
frequency.  Figure 4 displays the frequency at which the 
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user sends emails to all the recipients communicated to 
in the past.  Each point on the x-axis represents one 
recipient and the corresponding height of the bar 
measures the frequency of emails sent to this recipient, 
as a percentage. (The display is an actual distribution 
from a volunteer email account. All others have been 
found to follow the same type of distribution.) 

 
     Figure 4: Recipient Frequency Histogram 

This bar chart is sorted in decreasing order, and usually 
appears as a nice convex curve with a strong 
skewedness; a long low tail on the right side, and a very 
thin spike at the start on the left side.  This frequency bar 
chart can be modeled with either a Zipf function, or a 
DGX function (Discrete Gaussian Exponential function), 
which is a generalized version of the Zipf distribution.  
This distribution characterizes some specific human 
behavioral patterns, such as word frequencies in written 
texts, or URL frequencies in Internet browsing [2].  In 
brief, its main trait is that few objects receive a large part 
of the flow, while many objects receive a very small part 
of the flow. 

The rank-frequency version of Zipf's law states 
that )(rf ? r/1 , where )(rf  is the occurrence 
frequency versus the rank r, in logarithmic-logarithmic 
scales.  The generalized Zipf distribution is defined 
as )(rf ? ?)/1( r , where the log-log plot can be linear 
with any slope.  Our tests indicate that the log-log plots 
are concave, and thus require the usage of the DGX 
distribution for a better fit [2]. 

We also analyze the number of distinct recipients and 
attachments.  Figure 5 contains several curves that 
visualize the variability of the user's emission of emails.  
They are calculated by the number of distinct recipients 
and number of messages with attachments.  The first 
type of curve uses a rolling window of 50 (or 20) emails 
to calculate the number of distinct recipients.  What it 
means is, the higher its value (and thus the closer to 50), 
the wider the range of recipients the selected user sends 
emails to, over time.  On the other hand, if the metric is 

low, it means that the user predominantly sends 
messages to a small group of people.  We also use the 
moving average (using 100 records) to indicate the 
trend.  

 
Figure 5: Recipient and attachment 

We also plot a curve using 20 as the window size instead 
of 50.  This metric has a faster reaction to anomalous 
behavior, while the previous one using blocks of 50 
shows the longer-term behavior.  The short-term profile 
can be used as the first level of alert, the longer-term one 
acting to confirm it.  

Another type of curve is the number of messages with 
attachment(s), per block of 50 emails.  It shows the 
average ratio of emails with attachments versus emails 
without attachments, and any sudden spike of emails 
sent with attachments will be detected on the plot.  

The profile displays a fingerprint of a specific user's 
email frequency behavior.  The most common malicious 
intrusion can be detected very fast by the metrics.  For 
instance, a Melissa type virus would be detected since 
the curves will jump up to 50, 20 and 50 respectively. 

3.2 Chi Square Test of User Histograms 

We test the hypothesis that the recipient frequencies are 
identical over two different time frames by Chi Square.  
Obviously, recipient frequencies are not constant over a 
long time horizon, as users will add new recipients and 
drop old ones.  It can be informative for behavioral 
modeling though, to analyze the variability of 
frequencies over two near time frames. 

We compare two time periods of activity for the same 
user.  The idea is to treat the first period as the true 
distribution corresponding to the user under normal 
behavior, while the second time period is used to 
evaluate whether or not the user’s frequencies have 
changed, providing evidence that perhaps a malicious 
activity is taking place.  Generally, we operate under the 
usual 1/5 - 4/5 ratio between testing and training sets.  
For example, we use 1000 messages as a testing set, 200 
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past emails are selected as the testing range, while 
previous 800 are the training range. 

Assuming that the observed frequencies corresponding 
to the first, longer time frame window are the true 
underlying frequencies, the Chi Square statistic enables 
us to evaluate how likely the observed frequencies from 
the second time frame are to be coming from that same 
distribution [18].  The Chi Square formula 

is ? ?
??

k

i
inpinpiXQ

1
)(/))()(( , where )(iX is the 

number of observations for recipient (i) in the testing 
range, )(ip is the true frequency calculated from the 
training range, n is the number of observations in the 
testing range, and k is the number of recipients. There 
are (k-1) degrees of freedom.  

The p-value represents the probability that the 
frequencies in both time frames come from the same 
multinomial distribution.  In order to get an idea of the 
variability of the frequencies under real conditions, we 
used a sample of 37,556 emails from 8 users. We ran 
two batches of calculations.  First, we used a training 
period size of 400 emails and a testing period size of 100 
emails; for each user, we started at the first record, 
calculated the p-value, then translated the two windows 
by steps of 10 records until the end of the log was 
reached, each time calculating the p-value.  Secondly, 
we reproduced the same experiment, but with a training 
period size of 800 emails, and a testing period size of 
200 emails.  We thus collected a total of 7,947 p-values, 
and their histogram is shown in figure 6.  

Under the hypothesis that the frequencies are constant, 
the histogram is expected to be a flat line.  On the 
contrary, this histogram is characterized by a very large 
concentration of p-values between 0 and 5%, and a large 
(but less large) concentration between 95 and 100%, 
while p-values in the range of 5 to 95% are under-
represented.  Our intuitive explanation of this histogram 
(also based on our domain knowledge) is the following:  
Most of the time, frequencies change significantly (in a 
statistical sense) between two consecutive time frames; 
this is why 60% of the p-values are below 5% (as a low 
p-value indicates a very high chance that the frequencies 
have changed between two time frames).  Email users 
tend to modify their recipient frequencies quite often (at 
least the 8 volunteers).  On the other side, there are non-
negligible times when those frequencies stay very stable 
(as 13% of the p-values are above 95%, indicating strong 
stability).  As the frequencies have been found to be so 
variable under normal circumstances, the Chi Square 
itself could not be used to detect an abnormal email 
behavior. Instead we explore a related metric, which will 
be more useful for that purpose.   

 
Figure 6: P-value plot 

3.3 Hellinger Distance 

Our first tests using the Chi-square statistic revealed that 
the frequencies cannot be assumed to be constant 
between two consecutive time frames for a given user.  
What is specific to every user though, is how variable 
frequencies are over time.  We try to assess this by 
calculating a measure between two frequency tables.   

We use the Hellinger distance for this purpose.  It is 

defined as 
1 2

1 2 1 20
( [], []) ( [ ] [ ])

n

i
HD f f f i f i

?

?
? ?? , 

where f1[] is the array of frequencies for the training set, 
f2[] for the testing set, n the total number of distinct 
recipients during both periods.  Figure 7 displays an 
example for a user from our group of volunteers. 

The Hellinger distance plot shows the distance between 
training and testing sets plotted over the entire email 
history of the user.  For example, if a user has 2500 
outbound emails, the plots starts at the 500th record, and 
measures the distance between the frequencies 
corresponding to the first 400 records, versus the emails 
corresponding to the next 100 records; these two 
windows, of 400 and 100 records, respectively, are then 
rolled forward over the entire email history of the user, 
by steps of one record.  At each step, a Hellinger 
distance is calculated between the given training window 
of 400 records, and the corresponding testing window of 
100 records. 

What this plot tells us is that when a burst occurs, the 
recipient frequencies have been changing significantly.  
This can be either a normal event, as we know from the 
previous section, or a possible viral propagation.  
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Figure 7: The Hellinger distance of a typical User 

3.4 Tests using simulated viruses 

As real email data with real embedded viral emails are 
very difficult to obtain [19], we generated outbound 
“dummy” viruses, and insert “virus email” records into a 
real email log file as described above.   A set of 
parameters introduces randomness in the process, in 
order to mimic real conditions: the time at which the 
virus starts, the number of corrupted emails sent by the 
virus and its propagation rate.  

For testing purposes, all the recipients of such “dummy” 
corrupted emails are picked randomly from the address 
list of a selected user.  In reality, where addresses are 
obtained and how they are combined can be a crucial 
issue for a virus to successfully propagate itself without 
being detected.  The chosen recipients can be set to be 
all distinct, as most viruses do.  But not all viruses would 
send an email only once to each target recipient account. 
In our simulation, each “dummy” email contains one 
attachment, but no information about the attachment is 
provided or used.  (Recall, our focus here is to 
demonstrate the value of behavior models, as an adjunct 
to content-based analyses.)  For our purposes, we do not 
need to know the content of the message, its size, and 
the size and content of the attachments.  So, these 
techniques may be general enough that they encompass 
polymorphic viruses as well (where content analysis or 
scanners may fail).  Similarly, even though viruses can 
also propagate through HTML content, our techniques 
will handle these techniques as well. 

Our experiments use a combination of three plots, 
“Hellinger distance”, “number of distinct recipients”, 
and the “number of attachments”, as detailed in the 
above sections.  Our intuition is that when a virus 
infiltrates itself, it causes each plot to rapidly grow.  We 
use two types of thresholds to determine when a burst 
occurs, a threshold proportional to the standard deviation 
of the plots, and a heuristic formula evaluating when a 
change of trend occurs.  We cannot say which threshold 

is better.  The first threshold always misses the first half 
of the viral propagation.  The second one always catches 
separate batches of viruses.  Moreover, each of them has 
different false positive rates.  We take the union (OR) of 
the models to evaluate a series of emails and to generate 
results. 

The dataset used for this independent test is an archive 
of 16 users, totaling 20,301 emails.  The parameters that 
were randomly generated at each simulation were the 
time of the intrusion and the list of recipients (taken 
from the address list of each selected user).  The 
parameters that were controlled were the propagation 
rate, the number of corrupted emails sent, and the 
window size (Hellinger distance).  In total, about 
500,000 simulations were performed.  

As expected, a slower propagation rate (longer inter-
departure time) makes detection harder, as in such a 
case, each corrupted email becomes less “noticeable” 
among the entire email flow. As can be seen in Figure 8, 
the performance gets worse when the inter-departure 
time increases. 

 
Figure 8: Varying inter-departure time 

The Hellinger window size is the most important 
parameter.  In Figure 9, the performance is best when the 
window size is the same as the number of dummy 
emails.  The reason is that, for example, when the 
window size is 50 and there are 20 dummy emails (# of 
dummy emails is less than window size), the dummy 
emails do not occupy a very significant portion of the 50 
emails.  The model may not determine that they are 
“suspicious”.  On the other hand, if there are 100 dummy 
emails and the first 50 are not detected, these 50 dummy 
emails will be treated as normal emails in the next round 
of Hellinger training.  As a consequence, the system will 
likely model the second 50 as normal and not be able to 
detect any abnormality. 
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Varying Hellinger Window Size
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Figure 9: Varying Hellinger window size 

 
In summary, we achieved very reasonable results with 
the Hellinger distance model. However, there are still 
three problems.  First, we assumed that we have enough 
normal emails before and after dummy ones, and we can 
analyze all the emails (both dummy and normal) at the 
same time, which is not practical.  (We cannot block a 
user’s email for a long time, for instance, a month. 
However, we may store a record of the emails and detect 
the propagation after the fact, but perhaps still in 
sufficient time to forewarn the recipients that they likely 
have a viral email in their inbox.)   Second, it’s difficult 
to optimize the Hellinger window size, as it depends on 
the viral strategy used.  In practice, we can overcome 
this by blocking all outgoing emails once we detect a 
virus.  The question is then how can we detect the first 
virus.  Third, the false positive rate is about 15%, which 
cannot be reduced in this model.  Thus, to achieve a 
better detector, this method has to be used in 
combination with other models.  The first two issues will 
be addressed in the next section. 

4. Combining User Clique and Hellinger 
Distance 
Hellinger distance is the result of inspecting the 
aggregate behavior of a sequence of emails.  As such, it 
would not react immediately when a viral email 
appears.  Similarly, it would keep setting alarms for a 
short while after a batch of viral emails has already been 
sent out.  On the other hand, user cliques could detect a 
suspicious viral email upon its first appearance.  It is 
worth mentioning that every time an email with a new 
address appears, the user clique model will treat it as a 
violation.  In short, Hellinger analyzes the trend of users’ 
behavior by buffering records, while the user clique 
method is good for single email detection.  Ideally, we 
want to take only the best features from each method and 
combine them to achieve better overall performance. 

4.1 Buffer Crawling 

The most straightforward method to combine user 
cliques and Hellinger is to take the intersection (AND) 

of their results.  A close examination shows that they 
have different distributions of false positives.  For 
example, the user cliques model may generate false 
positives on email number 1, 3 and 5, while Hellinger 
may generate false positives on email number 2, 4 and 6.  
If we take the intersection, we can eliminate most false 
positives.  However, a lower false positive rate is 
achieved at the expense of a lower detection rate (hit rate) 
-- down to 40%, much worse than before.  

We propose an alternative strategy we call the buffer-
crawling method.  Emails are assumed to be buffered 
before they are actually sent out (or, as we mentioned, a 
record of the sent emails are kept for analysis).  Such 
buffering could be hidden and unbeknownst to the user.  
Email is fundamentally a store and forward technology.  
However, an egress “store for a while, then forward” 
strategy for email delivery has a practical advantage.  As 
far as the user is concerned, the email is sent from client 
to server and is delivered by the underlying 
communication system at some arbitrary future time.  
Thus, the strategy of buffering and holding emails for 
some period of time allows sufficient statistics to be 
computed by the models and also benefits mitigation 
strategies to quarantine viral emails, limiting exposure to 
the enclave. Alternatively, a record of the recently 
delivered emails may also benefit early detection and 
mitigation strategies. When the system sees an alarm 
triggered by both the Hellinger distance model and the 
user cliques model, it will examine all adjacent emails 
more closely, those preceding it and those newly sent by 
the client.  Namely, it will trace (crawl) all buffered 
emails forward and backward (or their record of 
delivery), starting from the common trigger.  The trace 
attempts to find all sequential emails that are deemed 
suspicious by the user cliques model and will end once a 
harmless email, as viewed by user cliques, is 
encountered.  The system then marks all those emails 
found along the trace as suspicious. 

The idea behind the backward trace is that user cliques 
are quick at detecting a suspicious email while Hellinger 
distance takes a while to trigger.  The forward trace is 
the result of empirical observation that when a common 
trigger is encountered, viral emails in the neighborhood 
of the common trigger are detected more easily by user 
cliques.  

Figure 10 is a simple example of buffer-crawling 
algorithm.  Each email in the sequence is denoted by “x” 
or “o”, depending on whether or not there is an alert 
associated with it.  The alerts generated by user clique 
and the Hellinger model are in the first and second row, 
respectively.  In the third row, the system starts checking 
(backward) at the first common “x” in both user clique 
and Hellinger alert. 
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 Figure 10: Buffer crawling method.   

4.2 Tests of simulated viruses 

The dataset for this independent test includes an entire 
year of email from 15 users.  We treat data of the first 
ten months as each users’ normal behavior (training 
data) and inject a batch of “dummy emails” into the last 
two months.  During the test phase, we train and test the 
email data on a daily basis.  This means that on the first 
day of the eleventh month, we put all the data (on that 
day) into the buffer.  Then we use the training data to 
test whether they are suspicious emails depicting 
abnormal behaviors.  We then move on day by day for 
testing.  It is clearly not desirable to buffer and hold 
emails for too long.  When that happens, there is bound 
to be a number of viral emails leaking out undetected by 
the Hellinger model.  As we noted, however, learning 
that a propagation did occur is valuable information that 
may help mitigate broad effects within an enclave.    

The parameters that are controlled are the propagation 
rate and the number of recipients in a single dummy 
email.  The first parameter is one of the most important 
issues in the Hellinger simulation (section 3.4).  The 
second parameter is more pertinent to user cliques.  
Having more recipients in a single email makes it easier 
for user clique to detect a violation. 

Another important issue is the Hellinger window size 
(Hellinger Distance, see section 3.3, 3.4).  Since it is 
impossible to a priori choose a perfect Hellinger window 
size, we change it by evaluating the size of data 
(records) each day.  The window size is meaningless if it 
is too small or too big.  If it’s too small, each email has 
too much of an influence and each email may look like a 

virus.  If it’s too big, the training data would not be 
enough and a small number of viruses could easily go 
undetected.  Generally, the window size is the average 
number of emails sent on an average day.  If the size is 
less than 20 or more than 100, it is set at 20 and 100, 
respectively. 

4.3 Results and Discussion  

Varying the number of recipients in a single virus email 
yields a very interesting result.  In Figure 11, we have 
what we expect from intuition.  The detection rate 
increases with the size of the recipient list in a dummy 
email.  It means that if a virus picks up many email 
addresses (for example, 9) and sends them in a single 
email or at the same time.  We have a high detection rate 
(about 95%).  The false positive rate also decreases 
when using multiple recipients. 

 
Figure 11 

The first test is quite encouraging.  However, this is 
because we set a low propagation rate in our simulated 
“dummy” emails.  The inter-departure time used is 
uniformly distributed between 0 and 10 minutes in this 
test.  The next test varies this propagation rate. 

In this independent test, the number of recipients in a 
single email is set to 4.  Similar to the propagation rate 
test in section 3.4, the detection rate gets worse when the 
inter-departure time increases (Figure 12).  If this 
happens in the real world, once we find the first virus 
(with long inter-departure time), we would likely have 
enough time to mitigate its effects, since it propagates 
slowly.  Thus, the issue here again is about catching the 
first virus.  Fortunately, on average, our system in both 
tests can always catch the first or second dummy email.  

It is important to note that the two behavior models used 
here, Hellinger distance and user cliques, do detect viral 
propagations.  This is presented to demonstrate the 
power of behavior models.  Other models are available 
and are described next.  We believe other combinations 
of models, including content-based models, will 
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substantially raise the bar of protection against future 
viruses. 

 
  Figure 12 

5. EMT – Email Mining Toolkit 
In order to centralize and coordinate various behavior-
based methods for email security, we have implemented 
EMT – Email Mining Toolkit.  This toolkit is useful for 
report generation and summarization of email archives, 
as well as for detecting email security violations when 
incorporated with a real-time violation detection system, 
such as the MET (Malicious Email Tracking) system.  In 
addition to all those techniques mentioned in the 
previous sections, EMT contains a myriad of features 
that may be combined for various detection tasks. 

5.1 Attachment Statistics and Alerts 

EMT runs an analysis on each attachment in the 
database of emails to calculate a number of metrics.  
These may be used to track important documents, for 
example.  These include birth rate, lifespan, incident 
rate, prevalence, threat, spread, and death rate. They are 
explained fully in [1]. 

Rules specified by a security analyst using the alert logic 
section of MET are evaluated over the attachment 
metrics to issue alerts to the analyst.  This analysis may 
be executed against archived email logs using EMT, or 
at runtime using MET.  The initial version of MET 
provides the means of specifying thresholds in rule form 
as a collection of Boolean expressions applied to each of 
the calculated statistics.  As an example, a basic rule 
might check for each attachment seen: 

If its birth rate is greater than a specified threshold, T , 
AND sent from at least X number of users. 

5.2 Account Statistics and Alerts 

EMT provides support for email abuse detection, such as 
masquerader detection.  Thus, EMT generates alerts 

based upon deviation from other baseline user and group 
models.  EMT computes and displays three tables of 
statistical information for any selected email account.  
The first is a set of stationary email account models, i.e. 
statistical data represented as a histogram of the average 
number of messages sent over all days of the week, 
divided into three periods: day, evening, and night.  
EMT also gathers information on the average size of 
messages for these time periods, and the average number 
of recipients and attachments for these periods.  These 
statistics can generate alerts when values are above a set 
threshold as specified by the rule-based alert logic 
section.  

We next describe the variety of models available in 
EMT that may be used to generate alerts of errant 
behavior.  

5.3 Stationary User Profiles 

Histograms are used to model the behavior of a user’s 
email accounts.  Histograms are compared to find 
similar behavior or abnormal behavior within the same 
account (between a long-term profile histogram, and a 
recent, short-term histogram), and between different 
accounts. 

A histogram depicts the distribution of items in a given 
sample.  EMT employs a histogram of 24 bins, for the 
24 hours in a day.  (Obviously, one may define a 
different set of stationary periods as the detect task may 
demand.) Email statistics are allocated to different bins 
according to their outbound time.  The value of each bin 
can represent the daily average number of emails sent 
out in that hour, or daily average total size of 
attachments sent out in that hour, or other features 
defined over an of email account computed for some 
specified period of time.  

Two histogram comparison functions are implemented 
in the current version of EMT, each providing a user 
selectable distance function as described below.  The 
first comparison function is used to identify groups of 
email accounts that have similar usage behavior.  The 
other function is used to compare behavior of an 
account’s recent behavior to the long-term profile of that 
account.  

5.3.1 Histogram Distance Functions 

A distance function is used to measure histogram 
dissimilarity. For every pair of histograms, 1h , 2h , there 
is a corresponding distance ),( 21 hhD , called the distance 

between 1h and 2h .  The distance function is non-
negative, symmetric and 0 for identical histograms.  
Dissimilarity is proportional to distance. We adapted 
some of the more commonly known distance functions: 
simplified histogram intersection (L1-form), Euclidean 
distance (L2-form), quadratic distance [9] and histogram 
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Mahalanobis distance [12].  These standard measures 
were modified to be more suitable for email usage 
behavior analysis. For concreteness, 
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?
??

1

0 21211 |][][|),(
n

i
ihihhhD  

L2-form: ? ?

?
??

1

0
2

21212 ])[][(),(
n

i
ihihhhD  

Quadratic: )()(),( 2121213 hhAhhhhD T ???  

where n is the number of bins in the histogram. In the 
quadratic function, A  is a matrix where ija denotes the 

similarity between bins i and j.  In EMT we set 
1|| ??? jiaij , which assumes that the behavior in 

neighboring hours is more similar.  The Mahalanobis 
distance is a special case of the quadratic distance, where 
A is given by the inverse of the covariance matrix 
obtained from a set of training histograms.  

5.3.2 Abnormal User Account Behavior 

The histogram distance functions are applied to one 
target email account.  A long-term profile period is first 
selected by an analyst as the “normal” behavior training 
period.  The histogram computed for this period is then 
compared to another histogram computed for a more 
recent period of email behavior.  If the histograms are 
very different (i.e., they have a high distance), an alert is 
generated indicating possible account misuse.  We use 
the weighted Mahalanobis distance function for this 
detection task.  

The long term profile period is used as the training set, 
for example, a single month.  We assume the bins in the 
histogram are random variables that are statistically 
independent.  Then we get the following formula: 
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Vector h  represents the histogram of the (eg., one 
month) profile period, while 1h represents the recent 

profile period (eg., one week).  i? describes the 
dispersion of usage behavior around the arithmetic 
mean.  We then modify the Mahalanobis distance 
function to the weighted version.  First we reduce the 
distance function from the second degree function to the 
first degree function; then we assign a weight to each bin 

so that the larger bins will contribute more to the final 
distance computation: 
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When the distance between the histogram of the selected 
recent period and that of the longer term profile is larger 
than a threshold, an alert will be generated to warn the 
analyst that the behavior “might be abnormal” or is 
deemed “abnormal”.  The alert is also put into the alert 
log of EMT.  

 
Figure 13: Abnormal Behavior Detected 

The histograms described here are stationary models; 
they represent statistics at discrete time frames.  Other 
non-stationary account profiles are provided by EMT, 
where behavior is modeled over sequences of emails 
irrespective of time. These models are described next. 

5.3.3 Similar Users 

User accounts that may behave similarly may be 
identified by computing the pair-wise distances of their 
histograms (eg., a set of SPAM accounts may be inferred 
given a known or suspect SPAM account as a model).  
Intuitively, most users will have a pattern of use over 
time, which spamming accounts will likely not follow. 
(SPAMbots don’t sleep or eat and hence may operate at 
times that are highly unusual.)  

The histogram distance functions were modified for this 
detection task.  First, we balance and weigh the 
information in the histogram representing hourly 
behavior with the information provided by the histogram 
representing behavior over different aggregate periods of 
a day.  This is done since measures of hourly behavior 
may be too low a level of resolution to find proper 
groupings of similar accounts.  For example, an account 
that sends most of its email between 9am and 10am 

Changes in 
outbound email 
behavior may 

indicate misuses 
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should be considered similar to another that sends emails 
between 10am and 11am, but perhaps not to an account 
that emails at 5pm.  Given two histograms representing a 
heavy 9am user, and another for a heavy 10am user, a 
straightforward application of any of the histogram 
distance functions will produce erroneous results.  

Thus, we divide a day into four periods: morning (7am-
1pm), afternoon (1pm-7pm), night (7pm-1am), and late 
night (1am-7am).  The final distance computed is the 
average of the distance of the 24-hour histogram and that 
of the 4-bin histogram, which is obtained by regrouping 
the bins in the 24-hour histogram.  

Second, because some of the distance functions require 
normalizing the histograms before computing the 
distance function, we also take into account the volume 
of emails.  Even with the exact distribution after 
normalization, a bin representing 20 emails per day 
should be considered quite different from an account 
exhibiting the emission of 200 emails per day. 

In addition to find similar users to one specific user, 
EMT computes distances pair-wise over all user account 
profiles, and clusters sets of accounts according to the 
similarity of their behavior profile.  To reduce the 
complexity of this analysis, we use an approximation by 
randomly choosing some user account profile as a 
“centroid” base model, and then compare all others to 
this account.  Those account profiles that are deemed 
within a small neighborhood from each other (using their 
distance to the centroid as the metric) are treated as one 
clustered group.  The cluster so produced and its 
centroid are then stored and removed, and the process is 
repeated until all profiles have been assigned to a 
particular cluster.  

5.4 Supervised Machine Learning Models 

In addition to the attachment and account frequency 
models, EMT includes an integrated supervised learning 
feature akin to that implemented in the MEF system 
previously reported in [12]. 

5.4.1 Modeling Malicious Attachments 

MEF is designed to extract content features of a set of 
known malicious attachments, as well as benign 
attachments.  The features are then used to compose a 
set of training data for a supervised learning program 
that computes a classifier.  

MEF was designed as a component of MET. Each 
attachment flowing into an email account would first be 
tested by a previously learned classifier, and if the 
likelihood of “malicious” were deemed high enough, the 
attachment would be so labeled, and the rest of the MET 
machinery would be called into action to communicate 
the newly discovered malicious attachment, sending 
reports from MET clients to MET servers. 

The core elements of MEF are also being integrated into 
EMT.  However, here the features extracted from the 
training data include content-based features of email 
bodies (not just attachment features).  

The Naïve Bayes learning program is used to compute 
classifiers over labeled email messages that are deemed 
interesting or malicious by a security analyst.  The GUI 
allows the user to mark emails indicating those that are 
interesting and those that are not, and then may learn a 
classifier that is subsequently used to mark the 
remaining set of unlabeled emails in the database 
automatically. 

A Naïve Bayes [5] classifier computes the likelihood 
that an email is interesting given a set of features 
extracted from the set of training emails that are 
specified by the analyst.  In the current version of EMT, 
the set of features extracted from emails includes a set of 
static features such as domain name, time, sender email 
name, number of attachments, the MIME-type of the 
attachment, the likelihood the attachment is malicious, 
the size of the body, etc.  Hot-listed “dirty words” and n-
gram models and their frequency of occurrence are 
among the email message content-based linguistic 
features supported.  

6. Concluding Remarks 
We have introduced several behavior-based methods in 
this paper and described how these notions can be used 
in detecting viral email propagations.  These methods 
deviate from traditional approaches that handle system 
vulnerabilities only when the signature of an attacking 
virus is known.  We have defined user cliques, enclave 
cliques, and various non-stationary user profiles.  Two 
specific techniques were presented and tested: user 
cliques and Hellinger distance.  They can also be 
combined to achieve high detection rates. 

The Hellinger model can be used to confirm which alerts 
in user cliques should be kept, and which alerts should 
be eliminated.  Doing so reduces the false positives and 
does not reduce the detection rate.  When a user sends 
out an email with an unusual address combination, user 
cliques can point them out and Hellinger will either 
strengthen or weaken its finding and label the email as 
malicious or harmless. 

We further find that delaying outbound email delivery 
for some period of time provides the means to gather 
additional statistics and detects viral propagations more 
accurately.  Indeed, if detection is performed at the onset 
of the viral propagation, it may be entirely stopped. 

The techniques can be used as part of a larger system 
that handles email security or system security in general.  
We have reported an implementation of a behavior-
based email security system, EMT, which encompasses 
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many modeling techniques that can be combined in 
interesting ways.  EMT includes a variety of behavior 
models for email attachments, user accounts and groups 
of accounts. Each model computed is used to detect 
anomalous and errant email behaviors.  EMT has been 
deployed to several organizations that are actively 
testing its features for a variety of security purposes. 

Simulation results based on the data obtained from a 
number of volunteers (who we thank) indicates these 
techniques are quite promising.  In future work, we plan 
to incorporate these tools on a larger scale and explore 
further how these tools can be optimally combined. 
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