Theses Doctoral

TDP-43 and FUS in Amyotrophic Lateral Sclerosis: From Animal Models to Disease Mechanisms

Ebstein, Sarah Yehudit

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disease in which motor neurons selectively degenerate, leading to paralysis and death. Rare causal mutations in FUS and TARDBP implicated RNA binding proteins and RNA metabolism in ALS disease mechanisms. The absence of faithful animal models has impeded precise understanding of the impact of ALS mutations on all functions of ALS-associated proteins. In my graduate studies, I used a novel, animal model of FUS-ALS to explore gain of function disease mechanisms and observed specific, aberrant interactions between mutant FUS and other RNA binding proteins including hnRNP U. Genetic experiments indicate loss of hnRNP U is toxic to motor neurons, suggesting mutant FUS toxicity may result from hnRNP U sequestration and loss of function. In a parallel series of experiments, I also generated novel knock-in mouse models of ALS expressing pathogenic TARDBP mutations to address the flaws of existing model systems and to study the functional consequences of disease-related mutations. We demonstrate that the ALS mutant alleles TDP-43M337V and TDP-43G298S are fully functional and are insufficient to cause age-dependent motor neuron pathology, indicating that physiological levels of mutant TDP-43 are alone insufficient to initiate disease. This model enables future exploration of the interaction between genetic and environmental factors that lead to TDP-43 toxicity in ALS and related disorders. Collectively, our findings suggest a gain of function mechanism of toxicity in which mutations and aging, with other factors, alter the local concentration of RNA binding proteins, leading motor neurons to degenerate.

Files

  • thumnail for Ebstein_columbia_0054D_14084.pdf Ebstein_columbia_0054D_14084.pdf application/pdf 2.61 MB Download File

More About This Work

Academic Units
Neurobiology and Behavior
Thesis Advisors
Shneider, Neil A
Degree
Ph.D., Columbia University
Published Here
July 29, 2017