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Abstract 
We are building Q system that can automatically ac- 

quire 30  range scans and 2 0  images to build geomet- 
rically correct, texture mapped 30 models of urban en- 
vironments. This paper deals with the problem of auto- 
matically registering the 3D range scans with lmages Q C -  

quired at other times and with unknown camera calibra- 
tion and location. The method involves the utilization 
of parallelism and orthogonality constraints that natu- 
rally exist in  urban environments. We present results 
for building a texture mapped 3-D model of an urban 
building. 

1 Introduction 
This paper deals with the problem of automatic pose 

estimation & calibration of a camera with respect to an 
acquired geometric model of an urban scene. The pose- 
estimation is part of a larger system [27, 11 which con- 
structs 3-D solid CAD models from unregistered range 
images. Our goal is t o  enhance the geometric model 
with photographic observations taken from a freely mov- 
ing 2-D camera by automatically recovering the cam- 
era’s posit>ion and orientation with respect to the model 
of the scene and by automatically calibrating the camera 
sensor. We propose a method which provides a solution 
for modeling buildings in urban environments. Most 
systems which recreate photo-realistic models of the en- 
vironment by a combination of range and image sens- 
ing [28, 22, 31, 241 solve the range to  image registration 
problem by fixing the relative position and orientation of 
the camera with respect to the range sensor (that is the 
two sensors are rigidly attached on the same platform). 
The major drawbacks of this approach are A )  Lack of 
2-D sensing flexibility, since the limitations of range sen- 
sor positioning (standoff distance, maximum distance) 
translate to constraints on the camera placement, and 
B) Static arrangement of sensors which means that the 
system can not dynamically adjust to the requirements 
of each particular scene (the camera sensor is precali- 
brated off-line). Also, the fixed approach can not han- 
dle the case of mapping of historical photographs on the 
models, something our  method is able to accomplish. 

*Supported in part by a n  ONRIDARP.4 MURI award ONR 
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This paper provides a solution to  the automated pose 
determination of a camera with respect to  a range sen- 
sor without placing artificial objects in the scene and 
without a static arrangement of the range-camera sys- 
tem. This is done by solving the problem of automati- 
cally matching 3-D & 2-D features from the range and 
image data  sets. Our approach involves the utilization 
of parallelism and orthogonality constraints that nat- 
urally exist in urban environments in order to extract 
3-D rectangular structures from the range data  and 2-D 
rectangular structures from the 2-D images. 

The problems of pose estimation and camera calibra- 
tion are of fundamental importance in computer vision 
and robotics research since their solution is required or 
coupled with stereo matching, structure from mot,ion, 
robot localization, object tracking and object recogni- 
tion algorithms. There are numerous approaches for 
the solution of pose estimation problem from point cor- 
respondences [lo, 8, 20, 7, 231, or  from line correspon- 
dences [17, 12, 61. Work in automated matching of 3-D 
with 2-D features include [13, 19, 21, 5, 29, 14, 11, 161 
whereas in [30] the automated matching is possible when 
artificial markers are placed in t.he scene. 

2 Problem Formulation 
Formally, our input consists of the pair ( D ( S ) ,  I(S)) 

of a scene’s S range scan D and set of images I. We 
assume that both the camera & range sensors view the 
same part of the real scene, so that the 3-D and 2-D 
views have significant) overlap (figure 1). The locations 
of the cameras which produce the images I is unknown 
and must be automatically recovered. Thus the output 
is the pose Pi = {Ri, TilPp;, fi} which describes (a) the 
transformation (rotation Ri & translation Ti) from the 
range-sensor to each camera-sensor’s coordinate system 
and (b) the mapping (internal camera parameters) from 
the 3-D camera frames of reference to the 2-D image 
frames of reference (we optimize wrt the principal point 
Pp; and focal length f and we assume no distortion). 

The pose estimation involves the following stages. 
A) Extraction of two feature sets F ~ D  and F ~ D  (3- 

D & 2-D linear segments from the range and image 
data-sets) [27]. B) Grouping of the 3-D and 2-D fea- 
ture sets into clusters of parallel 3-D lines L ~ D  and 
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converging 2-D lines LZD (global properties) [sec- 
tion 31. C) Computation of an initial pose estimate 
PO = {R,O)Pp, f}  (rotation and internal camera pa- 
rameters) by utilizing the directions defined by the sets 
L ~ D  and L 2 D  [section 41. D) Grouping of the 3-D and 
2-D line segments into higher level structures of 3-D 
and 2-D rectangles R ~ D  and R20 (local properties) 
and extraction of 3-D and 2-D graphs G ~ D  and G ~ D  of 
rectangles (repetitive pattern of scene and image rect- 
angles) [section 51. E) Automatic selection of a matched 
set of rectangular features C" and computation of a pose 
P o  = d(C"IP0) by running a pose estimator algorithm 
d (computation of a coarse pose estimate). Refine- 
ment PR = R(P" ,  L ~ D ,  L 2 D )  of the estimated pose P o  
by using all available information computed so far (com- 
putation of a fine pose estimate) [section 61. 

The following sections describe all steps in more de- 
tail. 

Figure 1: The pose estimation problem. The 3-D model 
of the scene is represented in the coordinate system of 
the range sensor. The image. taken from the 2-D camera 
needs to be registered with the 3-D model. 

3 Vanishing Point Extraction & Clus- 
tering 3-D lines 

Previously we have developed robust methods for 
generating 3-D and 2-D line-sets from 3-D and 2-D im- 
agery [27]. In this paper, matched 2-D k 3-D clusters 
of lines are used for. recovering rotation and for camera 
internal self-calibration. In the 2-D domain the extrac- 
tion of vanishing points provides a natural clustering of 
lines into sets which correspond to  parallel 3-D lines 
whereas in the 3-D domain the clustering into sets of 
parallel 3-D lines is direct. 

The most characteristic property of perspective pro- 
jection is the fact that  a set of parallel 3-D lines is 
mapped to  a set of 2-D lines which intersect a t  a com- 
mon point on the image plane. This point of intersec- 
tion can be a point at infinity when the corresponding 
3-D direction is parallel to the image plane. In order 
to  handle all possible points of intersection (even points 
a t  infinity) we need to  represent 2-D points and 2-D 

'Those lines define vanishing points on the image space. 

lines as antipodal-points in the Gaussian sphere Then, 
the intersection of two 2-D lines 112 (represented with 
the two antipodal points f N l z  on the sphere) and 
(*Ni2) is the 2-D point v which is mapped to  the an- 
tipodal points -IN12 x Ni2 on the Gaussian sphere and 
can be represented by a pair (4 ,  e ) ,  where 0 5 9 5 2n 
and 0 5 0 5 7r/2 [25]. 

There are many methods for the automatic computa- 
tion of the major image vanishing points (see [2, 4, 181). 
Our approach involves the computation of all pairwise 
intersections between the extracted image lines and the 
creation of a 2-D histogram of those intersections. The  
histogram is defined over the 2-D domain of the dis- 
cretized surface of the Gaussian sphere. Then a search 
for the peaks of the histogram is performed. Each peak 
corresponds to  directions towards which a large number 
of 2-D lines converge. 
. The end result is a set of major vanishing points 

VP = { V I , . .  . , U , } ,  where VPi = (q5i1&) Each van- 
ishing point is supported by a set of 2-D lines and the 
desired clustering L ~ D  = { L 2 D 1  , . . . , L z D , , }  has been 
accomplished. If the number of major vanishing points 
NuPS is known a-priori (in urban environments this num- 
ber is almost always three) then we can select the NuPS 
largest clusters from the set LZD as our result and so 
LZD = { L 2 D l , . .  . , L 2 D N v p s }  and vp = { V i , . .  . , W N , , , } .  

Extracting the number NvPs is a n  easy task (it is equiv- 
elant to  identifying the major modes of the l-D his- 
togram of directions of 2-D lines on the plane [18] ), 

The clustering of the extracted 3-D lines into sets 
of parallel lines is a n  easier task than the extraction 
of vanishing points. We are using a classic unsuper- 
vised nearest neighbor clustering algorithm [15]. The 
NuPS larger clusters of 3-D lines provide the desired 
grouping of 3-D lines into clusters of parallel lines 
L ~ D  = { L ~ D ~  , . . . , L ~ D ~ , , .  } along with the average 3-D 
direction of each cluster U3D = { V b 1 ,  . . . , h ~ ~ , ~ ~  }. 

4 Initial pose estimation 
The rotation computation is based on the fact that  

the relative orientation between two 3-D coordinate sys- 
tems 0 and 0' can be computed if two matching direc- 
tions between the two systems are known. In this case 
there is a closed-form solution for the rotation [9] and 
we can write R = R(nllniln2,n;), where ni and ni 
are corresponding orientations expressed in the coordi- 
nate systems 0 and 0'. In our case, the direction of 
the 3-D lines which produce the vanishing point wi is 
the unit vector n; = (vi - COP)/ll(wa - COP)\\  (COP 
is the center of projection of the camera), expressed in 
the coordinate system of the camera sensor (section 3). 
This direction can be matched with a scene direction nf 
which is expressed in the coordinate system of the range 
sensor and which has been provided by the 3-D cluster- 
ing module (section 3) .  So, the rotation computation is 
reduced to  the problem of finding t8wo pairs of matching 
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3-D directions 8~ 2-D vanishing points 

(nf, ni) E U3D x VP. 

The camera center of projection (principal point and 
focal length) can be computed by three such pairs of 
directions (see [4, 31). 

5 Extracting 3-D & 2-D rectangles 
Calculating the translation requires the exact match- 

ing of local 3-D and 2-D features and global properties 
alone are not enough. Since 3-D points are hard to 
localize in the 3-D data set and since we have already 
developed a method for the reliable and accurate extrac- 
tion of 3-D lines [27] we will match 2-D with 3-D linear 
features. In order to  reduce the search-space of possi- 
ble matches we move up in the feature hierarchy and 
group the 3-D and 2-D lines into graphs of rectangular 
& quadrangular structures. 

The geometry of the projection of a 3-D rectangle 
on a 2-D image quadrangle is shown in figure 2. 3-D 
rectangles which are formed by pairs of lines of direc- 
tions (Vue,, Vhor) have corresponding 2-D quadrangles 
which are formed by pairs of 2-D lines which converge 
to the vanishing points (vue,.,vho,). That means that 
in order to extract corresponding 3-D rectangles & 2-D 
quadrangles we need to utilize the extracted clusters of 
3-D & 2-D lines. 

For the following discussion we will call one of the 
two scene directions vertical (Vue,) and the other one 
horizontal (Vhor) .  We assume that the vertical direc- 
tion is oriented from the bottom to the top of the scene 
whereas the horizontal from left to  right. Analogously 
we call vue,. and Vh,, the vanishing points which corre- 
spond to the directions Vue, and v h o r .  

We can formulate the 3-D and 2-D rectangle extrac- 
tion problem as follows: The input is two pairs of 3- 
D directions G,,, Vh,, E U3D and 2-D vanishing points 
uuer ,  Vhor  tvp along with the 3-D L J D ~ ,  L3D1 t L3D 
and 2-D L ~ D ~ ,  L ~ D ~  E L ~ D  (section 3) clusters that sup- 
port them. The output is a set of 3-D rectangles & 
2-D quadrangles R ~ D  and R ~ D  and two corresponding 
graphs G3D and C&D describing the spatial relationship 
among structures in R ~ D  and R ~ D  respectively. 

Following, this notation a 3-D rectangle is a planar 
3-D structure whose sides can be tagged as l,, or ldovrn 

if are parallel to the \io, direction and as l l e j t  or l rzgh t  
if are parallel to the Vue, direction (figure 2 ) .  Also we 
can define three relationships between rectangles which 
lie on the same scene plane: right of, top ofand in or out 
of. The exact same representation can be used for the 
2-D quadrangles. In order to use the same notation and 
define spatial relationships between 2-D quadrangles we 

need to transform them to 2-D rectangles. This can 
be done if we rotate the two vanishing points vue, and 
vhor (and similarly transform all 2-D lines which they 
support them) such that they are parallel to  the image 
plane. 

Range Sensor cmrdlnate syslem 

I\ 

Camera Coordinate system 

Figure 2: 3-D rectangle formed by lines parallel to  the 
scene directions Vue, and Vhor and its corresponding 2- 
D quadrangle formed by 2-D lines which meet at the 
image vanishing points V u e ,  and vhor.  

The 3-D rectangle and 2-D quadrangle algorithms 
are almost identical. They differ in the following man- 
ner: 2-D case: Quadrangles (instead of rectangles) 
need to  be extracted (see figure 2). However, with van- 
ishing points already computed it is possible to undo 
the perspective effect and map quadrangles to rectan- 
gles. 3-D case: A check for coplanarity of the linear 
segments that form the borders of the rectangle is re- 
quired. 

We present an algorithm that can be applied in both 
2-D and 3-D cases. The vertical and horizontal lines 
are directed according to the Vu,, and Vhor orientations 
(figure 2). Thus each line can be represented as a pair of 
points (Pstart ,  P e n d ) .  The major steps of the algorithm 
are: A) Traverse all vertical lines (PVstart ,  PVend) and 
record their closest horizontal lines ( P H s t a r t , ,  PHend,). 
The distance between a vertical and a horizontal line is 
defined as the distance between their closest endpoints. 
Horizontal lines whose distance is greater than maxd 
(user supplied threshold) are not considered as candi- 
dates for closeness. B) Traverse the horizontal lines 
and check for patterns of four, three or two sided rect- 
angles by utilizing the spatial relationships extracted in 
the previous step '. C) Compute the graphs that de- 
scribe the spatial relationships among rectangles. More 
details can be found in [as]. 

Concluding, we have formulated and solved the prob- 
lem of extracting 3-D & 2-D rectangles from pairs of 3- 
D directions (Vue,., Vhor) E U3D and their matching pairs 

2The camera calibration is performed before the computation 
of the rotation. since the rotation computation assumes a cali- 
brated camera. 

3Normally, our input consists of lines which do not define com- 
plete four-sicled rectangles. That  is why we allow the representa- 
tion and extraction of incomplete rectangles. 
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of 2-D vanishing points ( w u e r t ,  u h o r )  EVP (section 3). 
The output of this module is pairs of sets of 3-D and 
2-D rectangles ( R ~ D ~ , & D ~ ) .  In section 6 we will de- 
scribe how we utilize the extracted sets of rectangles for 
the computation of a coarse pose estimate. 

6 Pose Estimation 
The last part of the pose computation module is the 

calculation of the camera translation with respect to 
the range sensor by matching local 3-D & 2-D features 
between the range and image data sets. 

In section 4 3-D scene directions are matched with 
2-D image vanishing points in order to solve for the 
camera rotation. If we have N such matches (nf, ni) of 

scene and image directions then there are M = ( 
pairs of the form ((nf,  ni), (nj,nj)). In section 5 we 
described a method to  compute 3-D & 2-D rectangles 
( R 3 D k ,  & D k )  from clusters of 3-D and 2-D lines, and 
pairs of the above pairs of matched scene and image 
directions. Since we have M such pairs, we can compute 
M pairs of sets of 3-D & 2-D rectangles ( & D ~ ,  & ? D k )  

and the set s = p ( R 3 ~ ~  X & D 1 )  U . . . U P ( R 3 D M  X 

R2D,)4 describes the space of every possible matching 
configuration between 3-D and 2-D rectangles. 

Matching between a set of 3-D and 2-D rectan- 
gles will provide us a coarse pose estimate. Explor- 
ing every possible combination of matches is an in- 
tractable problem since we need to consider an  ex- 
ponentially large number of possibilities. In order to 
solve the problem we follow the RANSAC framework 
introduced in [lo]. Instead of considering all possible 
matches we are randomly sampling the search space 

( R 3 D 1  x B 2 D 1 ) U ( R 3 D 2  xR2D2)U.-*U(fi3D~ x f i 2 D ~ )  of 
3-D and 2-D rectangular structures. Each sample C,,, 
consists of a fixed number nran of pairs of 3-D and 2- 
D rectangles, where n,,, is the minimum number of 
matches that can produce a reliable pose-estimate. Ev- 
ery sample C,.,, produces a pose estimate which is being 
verified and a matching score Qmatch is computed, and 
we select as correct the match which produces the max- 
imum. Our algorithm sets the score Q m a t c h  to equal the 
number of 3-D rectangles which map (when projected 
to the image) to  an extracted 2-D quadrangle (larger is 
better). What remains to be defined is how do we decide 
when two 2-D rectangles are close with respect to each 
other '. This decision is based on an adaptive threshold 
which depends on the relative size of pairs of rectan- 
gles. Finally, the pose estimation algorithm A from a 
set of matched 3-D and 2-D lines (we can view each 
rectangle as a set of four lines) is described in detail in 
[17]. In the implementation of the RANSAC procedure 
the pose estimator d optimizes only with respect to the 

4 P ( A )  is the powerset of a set A. 
5N0te that 2-D quadrangles are transformed to 2-D rectangles 

when we extract the vanishing points which produce them. 

translation since the rotation is already known to us. 
If we want to ensure with probability Pr. that a t  

least one of our random selections corresponds to a 
valid match then the maximum number of steps is 
N,,, = log(1 - P r ) / l o g ( l  - b)  where b is the prob- 
ability of randomly selecting a sample of nran cor- 
rect matches [lo]. If we assume that in our scene 
there are K pairs of 3-D and 2-D rectangles that can 
be correctly matched then b = (K/L)nran  and L = 
1 (&Dl x B 2 D 1 )  U ( R 3 D z  x R 2 D z )  u.. .U (R3Dht  x R ~ D M )  1 
is the number of all possible pairs of 3-D and 2-D rect- 
angles. A' is unknown to  us we set it equal to  1/3L for 
our experiments. Note that the lower the probability 
of correct matches b the larger the number of required 
steps N,,,. 

The coarse estimate computed using the RANSAC 
method is very important because it provides an initial 
solution which can be subsequently refined and lead to 
a final pose estimate. The refinement involves the pro- 
jection of all 3-D lines of the extracted clusters L ~ D  on 
the 2-D image assuming the coarse pose estimate Po 
and so a set of projected 3-D lines ~ ( L s D )  is formed. 
Each individual projected cluster is compared with the 
groups of extracted 2-D lines LZD and new line matches 
among the 3-D and 2-D data  sets are verified. The in- 
creased number of line matches results in better pose 
estimation. 

7 Results 
The recovered 3-D model of the urban building is 

shown in figure 3a. In figures 3b and 3c the clustering 
of the automatically extracted 3-D lines is presented 
along with the computed 3-D rectangles (the cluster- 
ing is shown for two different views of the model). The 
three major vanishing points and clusters of 2-D lines 
are shown in figures 4a and 4b. The automatically com- 
puted principal point of the cameras is also shown; it 
is the point of intersection of vanishing point directions 
on the image. The next set of figures (4c,4d) displays 
the results of 2-D rectangle extraction and the outcome 
of the coarse pose estimation algorithm. The extracted 
2-D rectangles (black) are shown overlaid with the pro- 
jection (white) of those 3-D rectangles which produce 
the maximum matching score Qmatch (Qmatch is 9 for 
the first view and 8 for the second view). The final 
pose (section 6) is visually verified in figures 4e and 
4f where the extracted 3-D lines shown in figures 3c 
and 3d respectively are projected on the 2-D images 
assuming the final pose (shown in white). The ex- 
tracted 2-D lines are shown in black. As you can see 
the projected 3-D lines are very well aligned with the 
2-D data-sets, which means that both the registratioii 
and the feature extraction algorithms produce accurate 
results. The number of samples the RANSAC algo- 
rithm tried was 8457 (6 seconds on an  Onyx2) for the 
first view and 223831 (2 minutes and 29 seconds) for 
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Figure 3:  a) 3-D model of the scene from [ 2 i ] .  b,c) Clus- 
t,ers of 3-D lines (gray-level encodes different directions) 
and extracted 3-D rectangles (rectangles are rendered 
as solids of different color for clarity). 

the second view. Finally, the two images in figure 5 
present the texture-mapped 3-D models using the com- 
puted calibration parameters and pose estimate on the 
two views of the model. The  texture map, also visu- 
ally verifies the accuracy of our method. The final pose 
estimates are T = (3.71, -2.93, 12.29)T (in meters), 
R = { 175.65', (0.017,0.99, O.O1)T (angle-axis represen- 
tation) for the first view and T = (1.35, -2.5, 10.lO)T, 
R = {178.86", ($0.0,0.99, O.O1)T for the second. 

8 Summary 
We have developed a method to accurately register 

a range with an  image data  set in urban environments. 
We are exploiting the parallelism and orthogonality con- 
straints that  naturally exist in such environments in or- 
der to  match extracted sets of rectangular structures. 
The use of a RANSAC technique for the computation 
of an  optimal match between the data-sets is feasible 
due to the reduction of the search space from the set of 
3-D and 2-D lines to  the set of 3-D and 2-D rectan- 
gles. One problem with RANSAC is the computation 
of maximum number of steps that must be performed. 
The method is completely automatic, except of the as- 
sumption that we know the match between the Nvps (in 
our case 3) scene and vanishing point directions. 
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