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ABSTRACT

When Are Nonconvex Optimization Problems Not Scary?

Ju Sun

Nonconvex optimization is NP-hard, even the goal is to compute a local minimizer. In applied disciplines,

however, nonconvex problems abound, and simple algorithms, such as gradient descent and alternating

direction, are often surprisingly effective. The ability of simple algorithms to find high-quality solutions for

practical nonconvex problems remains largely mysterious.

This thesis focuses on a class of nonconvex optimization problems which can be solved to global optimality

with polynomial-time algorithms. This class covers natural nonconvex formulations of central problems

in signal processing, machine learning, and statistical estimation, such as sparse dictionary learning (DL),

generalized phase retrieval (GPR), and orthogonal tensor decomposition. For each of the listed problems, the

nonconvex formulation and optimization lead to novel and often improved computational guarantees.

This class of nonconvex problems has two distinctive features: (i) All local minimizer are also global. Thus

obtaining any local minimizer solves the optimization problem; (ii) Around each saddle point or local maximizer,

the function has a negative directional curvature. In other words, around these points, the Hessian matrices have

negative eigenvalues. We call smooth functions with these two properties (qualitative) X functions, and

derive concrete quantities and strategy to help verify the properties, particularly for functions with random

inputs or parameters. As practical examples, we establish that certain natural nonconvex formulations for

complete DL and GPR are X functions with concrete parameters.

Optimizing X functions amounts to finding any local minimizer. With generic initializations, typical iterative

methods at best only guarantee to converge to a critical point that might be a saddle point or local maximizer.

Interestingly, the X structure allows a number of iterative methods to escape from saddle points and local

maximizers and efficiently find a local minimizer, without special initializations. We choose to describe

and analyze the second-order trust-region method (TRM) that seems to yield the strongest computational

guarantees. Intuitively, second-order methods can exploit Hessian to extract negative curvature directions



around saddle points and local maximizers, and hence are able to successfully escape from the saddles and

local maximizers of X functions. We state the TRM in a Riemannian optimization framework to cater to

practical manifold-constrained problems. For DL and GPR, we show that under technical conditions, the

TRM algorithm finds a global minimizer in a polynomial number of steps, from arbitrary initializations.
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Chapter 1

Introduction

Everything should be made as simple as possible, but no simpler.

Albert Einstein

The whole line of research contained in this thesis was inspired by a curious experiment, which concerns

learning compact representation for a given data collection.

1.1 An intriguing experiment with real images

An image
Patches

Y ∈ Rn×p

We focus on learning compact representation for a collection of image patches. Specifically, we divide a

given greyscaled image into non-overlapping patches, which are then converted into vectors and stacked

column-wise into a data matrix Y ∈ Rn×p. The task is seeking a factorizationAX such that:

Y ≈ AX, A ∈ Rn×m,X ∈ Rm×p, and X as sparse as possible.

Here one can think of columns of A as a representation basis for the given image patches, andX as the

coefficients that encode the patches with respect to the basis. Finding such sparsifying basis for given visual
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data proves critical to image compression and classification [DeV98, DVDD98, Tem03, DeV09, Can02, MP10a,

Ela10, MBP14].

For simplicity, we shall try to learn orthogonalA, and consider a natural nonconvex formulation

minimizeA∈Rn×n,X∈Rn×p λ ‖X‖1 +
1

2
‖AX − Y ‖2F , subject to A ∈ On. (1.1.1)

Formulation (1.1.1) attempts to find a pair (A,X) that best trades off sparsity and fidelity to the observed

data Y . Here ‖·‖1
.
=
∑
i,j |Xij | promotes sparsity of the coefficientsX , ‖·‖F is the usual Frobenius norm of

matrices, and λ is a tunable parameter that trades off coefficient sparsity and quality of approximation. On

denotes the set of orthogonal matrices in Rn×n, i.e., orthogonal group of order n.

Problem (1.1.1) is in no way convex. The objective is nonconvex due to the bilinear map (A,X) 7→ AX .

More interestingly, this bilinear map induces intrinsic symmetry to the optimization space. Indeed, for any

pair of feasible (A,X), (AΠΣ,Σ−1Π−1X) for all permutation matrix Π and all diagonal sign matrix1 Σ

produce exactly the same objective value to (1.1.1). This implies that there are combinatorially many global

minimizers to (1.1.1), and they are generally2 isolated from each other in the space! Moreover, the orthogonal

group On is a nonconvex set.

To derive a concrete algorithm for (1.1.1), one can deploy the alternating direction method (ADM)3, i.e.,

alternately minimizing the objective function with respect to one variable while fixing the other. The iteration

sequence actually takes a very simple form: for k = 1, 2, 3, . . . ,

Xk = Sλ
[
A>k−1Y

]
, Ak = UV > for UDV > = SVD

(
Y X>k

) 4
whereSλ [·]denotes thewell-known soft-thresholding operator [DJ94,Don95] acting elementwise onmatrices,

i.e., Sλ [x]
.
= sign (x) max (|x| − λ, 0) for any scalar x.

Figure 1.1 shows what we obtained using the simple ADM algorithm, with independent and randomized

initializations:

Across many natural images, the algorithm seems to always produce the same solution for each

1...i.e., with ±1 on the diagonal.
2For a fixed global minimizer (A?,X?), it is easy to see that all its equivalent copies due to signed permutations are isolated from

each other. The situation gets slightly complicated when there are other global minimizers that are not equivalent to (A?,X?) by the
intrinsic symmetry. Our comment pertains to the generic case when the set of all the global minimizers does not form a connected
subset in the product space On × Rn×p.

3This method is also called alternating minimization or (block) coordinate descent method. see, e.g., [BT89, Tse01] for classic results
and [ABRS10, BST14] for several interesting recent developments.

4In other words,Ak is the orthogonal matrix arising from the polar decomposition of Y X>k .
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Figure 1.1: Alternating direction method for (1.1.1) on uncompressed real images seems to always produce the same
solution! Top: Each image is 512 × 512 in resolution and encoded in the uncompressed pgm format (uncompressed
images to prevent possible bias towards standard bases used for compression, such as DCT or wavelet bases). Each
image is evenly divided into 8× 8 non-overlapping image patches (4096 in total), and these patches are all vectorized
and then stacked as columns of the data matrix Y . Bottom: Given each Y , we solve (1.1.1) 100 times with independent
and randomized (uniform over the orthogonal group) initializationA0. The plots show the values of ‖A∗∞Y ‖1 across
the independent repetitions. They are virtually the same and the relative differences are less than 10−3!

instance, regardless of the initialization.

This observation implies the heuristic ADM algorithm may always converge to a global minimizer! 5 Equally

surprising is that the phenomenon has been observed consistently on real images6. One may imagine only

generic (e.g., random) data typically have “favorable” structures.

1.2 Nonconvex optimization: theory and practice

The above numerical surprise is a culmination of empirical optimism about nonconvex optimization. Many

tasks in applied disciplines can be naturally formulated as nonconvex optimization problems. Simple

algorithms, such as gradient descent and alternating direction method, often work surprisingly well in

producing good solutions.

5Technically, the converge to global solutions is surprising because even convergence of ADM to critical points is atypical, see, e.g.,
[ABRS10, BST14] and references therein.

6Actually the same phenomenon is also observed on simulated data when the coefficient matrix obeys appropriate probability
models.
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Figure 1.2: A convex and a nonconvex function in R2. (Left) f(x, y) = x2 + y2 is convex; (Right) When ai through fi are
independent Gaussians, f(x, y) =

∑2
i=1 ai sin(bix+ ciy) + di cos(eix+ fiy) typically is nonconvex with many spurious

local minimizers, besides the global one.

In theory, however, finding global minimizers to nonconvex problems is a daunting task. Generally,

even verifying a feasible point is a local minimizer is NP-hard [MK87]. Assuming favorable local geometry

and close initialization, local convergence results in optimization typically guarantee that iterative methods

produce sequences that converge to a local minimizer [Ber99]. This is obviously not satisfactory as general

nonconvex functions can have many spurious local minimizers that are not global (as illustrated in Figure 1.2),

and close initialization to even a local minimizer is often unavailable. For general initializations, under

technical conditions, global convergence results at best7 only guarantee that iterative sequences converge to

critical points that might be saddle points or local maximizers [Ber99, BAC16], which are undesired.

The gap between theory and practice of nonconvex optimization is evident. The surprising effectiveness

of simple algorithms on nonconvex problems lacks a clear explanation. It is tempting to ask what nonconvex

problems are easy to solve, andwhy in practice simple or even heuristic algorithms often succeed in producing

high-quality solutions from generic or random initializations.

1.3 Contribution of this thesis

In this thesis, we make a step towards bridging the gap under the hypothesis that

Certain nonconvex optimization problems have a benign structure when the input are large and

random/generic. This benign structure allows “initialization-free” iterative methods to efficiently find

a global minimizer.

7...sequence convergence is not always guaranteed.
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Specifically, our contributions include the following:

1. We identify a family of structured nonconvex problems that admit efficient numerical methods for

global optimization. This family has a benign geometric structure: (1) All local minimizers are also

global; (2) The objective has negative directional curvature around any saddle point or local maximizer.

The first property implies absence of spurious local minimizers; the second allows any iterative method

that is capable of escaping from saddle points and local maximizers to find a local, and hence global

minimizer.

2. We show that this benign geometric structure exists for natural nonconvex formulations of com-

plete dictionary learning (CDL) and generalized phase retrieval (GPR) under suitable assumptions on

the data [SQW15a, SQW16]. These results, together with analogous results established recently on

orthogonal tensor decomposition [GHJY15] and noisy phase synchronization and community de-

tection [Bou16, BBV16], underscore the relevance and promise of the geometric structure to central

problems in signal processing, machine learning, statistical estimation, and numerous proximal fields.

Moreover, the geometric analysis, together with appropriate numerical algorithm, produces novel

computational guarantees for these problems. For CDL, we derive the first polynomial-time algorithm

for recovering complete dictionaries, when the coefficients have up to linear sparsity (Theorem 6.3). For

GPR, we show that generic and reasonably large number of measurements allow recovery of phaseless

signals with “initialization-free” numerical methods (Theorem 14.10).

3. The geometric structure facilitates flexible algorithm design. As alluded to above, this benign geometry

allows any algorithm with saddle-escaping capability to find a global minimizer, without special

initializations. Possibilities include second-order methods such as trust-region method [CGT00, NP06,

ABG07, SQW15b], curvilinear search [Gol80], and first-ordermethods such as noisy/stochastic gradient

descent [GHJY15], or even deterministic gradient descent with random initializations [LSJR16]. We

describe and analyze second-order trust-region algorithms for CDL and GPR that find the respective

global minimizers (up to numerical precision) in polynomial number of iterations, from arbitrary

initializations.8

Overall, the geometric framework and analysis we develop here for nonconvex optimization proves effective

8Qualitatively, other methods we mentioned do not necessarily enjoy the same convergence guarantee. For example, first-order
methods cannot ensure convergence to a global minimizer from an arbitrary initialization in a deterministic manner, as saddle point is
an attractor for vanilla gradient descent method. Known guarantees either involve randomness in the initialization, or in the iterative
step, or both [GHJY15, LSJR16].
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on a number of practical problems, and provides a coherent explanation to why “initialization-free” iterative

methods can succeed on these problems. The framework and analytic strategy seem to hold promise to many

other practical tasks that can be naturally phrased as nonconvex optimization problems.

1.4 Alternative approaches to nonconvex problems

There are numerous generic numerical methods and algorithms developed for tackling nonconvex opti-

mization, mostly centered around the field of global optimization [HPVT00, HP13]. Here we focus on two

principled approaches on which recent surge of provable solutions of nonconvex problems is based.

Convex Nonconvex

x
x0

x0x

Figure 1: Convex and nonconvex sets. A set is convex if we can select any pair of points x, x0

in the set, and the line segement joining them lies entirely within the set. The set to the left has
this property, while the set to the right does not.

NonconvexConvex

x

f(x)

x

f(x)

Figure 2: Two optimization problems min f(x). The objective f at left appears to be amenable
to global optimization, while the one at right appears to be more challenging.

amenable to global optimization – a “gradient descent” type algorithm, that simply determined
which direction to move by considering the slope of the graph of the function, would easily “ski”
down to the global minimum.

The notion of convexity formalizes this property. Convexity is a geometric property. It is conve-
nient to first introudce the notion of a convex set, and then extend this definition to functions. A
set C ✓ Rn is convex if for every pair of points x, x0 2 C, the line segment obtained by joining the
two points also lies entirely in C:

Definition 1.1 (Convex set). C ✓ Rn is convex if

8 x, x0 2 C, ↵ 2 [0, 1], ↵x + (1� ↵)x0 2 C. (1.2)

Figure 1 gives an example of two sets, one of which is convex and one of which is not.

Example 1.2 (Convex sets). Show that the following are convex:

• Every a�ne subspace.

• Every norm ball Bk·k = {x | kxk  1}.

• The empty set.

• Any intersection C = C1 \ C2 of two convex sets C1, C2.

2
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Figure 1.3: Illustration of convex relaxation and initialization plus local refinement approaches to nonconvex problems.
(Left) Convex relaxation. A tractable convex surrogate may be hard to find, or suboptimal in performance and expensive
in computation. (Right) Initialization plus local refinement. Finding a good initialization poses significant practical
challenges.

The first one is convex relaxation, bywhich one transforms nonconvex problems into convex ones. Roughly

speaking, there are two levels at which convex relaxation can occur.

• The basic version (Figure 1.3 (Left)) convexifies the objective function and/or the constraint set in the

original space. Natural choices are the convex envelope (or biconjugate)(see, e.g., [HUL93b]) for the

objective function and convex hull (see, e.g., [HUL93a]) for the constraint set, which together provide

the tightest convex approximation to the original problem but might be computationally intractable9.

Thus, further or hierarchical relaxations over these are often performed. For the resulting convex

problem, one then proves by convex analytic tools that for well structured instances the minimizer is a

global minimizer to the original nonconvex problem. This strategy has manifested itself in theoretical

and practical advances on recovery of structured signals (e.g., sparse vectors and low-rank matrices,

and more [Can14]; see also [CRPW12, Bac10, NYWR09, ALMT14, Tro15a]) in the past decade.

9A well-known family of NP-hard convex problems are copositive programming; see, e.g., [Bur12]. Of course, generally convex
envelope and convex hull cannot even be conveniently represented algebraically, let alone be computed with.
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• The more sophisticated and versatile version involves transformation of the optimization space. For ex-

ample, Lagrangian dual problems are always concave [Ber99], though they do not always provide useful

relaxation to primal problems. Semidefinite programming (SDP) relaxation is a principal approach to

deriving approximate solution to quadratic constrained quadratic programs (QCQP) [NWY00], notable

results including approximating the MAX-CUT problem [GW95] and solving the trust-region subprob-

lem [RW97]. SDP relaxation also finds numerous applications in combinatorial optimization, control

theory (linear matrix inequalities [BEGFB94]), moment problems, among others [NWY00, AL12]. Re-

cently, hierarchical SDP relaxation has been used to approximate sum-of-squares (SOS) optimization,

which produces novel computational bounds for a number of nonconvex problems [Par03, Las07,

BKS13b, BS14].

Convex relaxation is attractive because it builds on the solid grounds of convex analysis and optimization.

However, it does not always ensure correctness, i.e., reproducing the true global minimizer to the originating

nonconvex problem, nor even computational tractability. For example, in tensor recovery and nonnegative

low-rank approximation, natural convex relaxations are not amenable to efficient computations [HL13, Vav09].

In other cases, although natural convex relaxations are tractable, they are provably suboptimal compared

to information-theoretic optimum. Examples include simultaneous structure estimation [OJF+12], tensor

recovery [MHWG14], sparse PCA [BR13], and dictionary learning [SWW12].

Another pitfall of convex relaxation is the computational burden it entails. In fact, it is not uncommon

that the relaxed problem is a generic SDP, for which generic state-of-art interior-point method based solvers

cannot even scale up to medium-size instances. First-order solvers that trade off numerical accuracy for speed

(e.g., [OCPB13]) might ameliorate the issue10, but may still be slow compared to nonconvex alternatives.11

The second principled approach involves problem-dependent initializations and subsequent local refine-

ments (Figure 1.3 (Right)). This is the methodology adopted by most recently emerging works on provable

nonconvex heuristics. This line of work includes12 low-rank matrix recovery [KMO10, JNS13, Har14, HW14,

NNS+14, JN14, SL14, WCCL15, SRO15, ZL15, TBSR15, CW15], tensor recovery [JO14, AGJ14a, AGJ14b,

AJSN15, GHJY15], structured element pursuit [QSW14, HSSS15], dictionary learning [AAJ+13, AGM13,

AAN13, ABGM14, AGMM15, SQW15a], mixed regression [YCS13, SA14c], blind deconvolution [LWB13,

10In [OCPB13], when the cone of interest is the semidefinite cone, there is a need to perform full eigen-decomposition and projection
onto the cone, which is still expensive for large-scale problems.

11A notable structured case is when the target solution is known to be low-rank. Then one can apply the factorization trick [BM03]
and solve the resulting nonconvex problem. However, the working mechanism is not fully understood; for recent progress, see [BBV16]
and the references therein.

12See also a webpage maintained by the current author: http://sunju.org/research/nonconvex/.

http://sunju.org/research/nonconvex/
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LJ15, LLJB15], generalized phase retrieval [NJS13, CLS15b, CC15,WWS15, SQW16], super resolution [EW15],

phase synchronization [Bou16], numerical linear algebra [JJKN15], and so forth. An initialization that is

reasonably close to the target solution is evidently critical here; in practice, especially when the attraction basin

is small, however, requiring a close initialization almost amounts to solving the problem – which is obviously

not easy. Moreover, the “initialization-dependent” theory does not match up empirical observations, in

which “initialization-free” algorithms seem to work surprisingly well.

Our approach also follows the nonconvex path, targeting both theoretical soundness and computational

practicality. We provide a complete geometric picture of the function landscape; in contrast, assuming close

initialization, local refinement analyses are all local in nature. Benign structure of the global geometry allows

“initialization-free” iterative methods to solve the nonconvex problems, which sheds light on empirical

observations and bear potential to other nonconvex problems we have not covered.

Other provable methods include graduated optimization and reformulation into tensor problems. The

former solves a well-constructed sequence of nonconvex problems of increasing complexity to gradually

approach the target solution. The technique has proved useful to a number of computer vision and learning

problems [BZ87, TC96, MFI15a, MFI15b], but may be very tricky to deploy in general. The latter mostly

deals with statistical estimation problems and exploits structure in higher-order moment tensors to extract

useful information of the input data [AGH+14, AHJK13, SA14b, SA14a]. Sufficient closeness of finite-sample

estimates to their expectations is critical to ensuring stable algorithmic performance, which often incurs large

sample complexity.

1.5 Organization

The rest of the thesis is organized as follows. In Chapter 2 we will introduce the X functions which is the

central element of this thesis, provide qualitative and quantitative descriptions, and discuss the trust-region

methodwhich can be used as a generic method for minimizingX functions. We then spend two lengthy parts,

Part II and III, presenting two practical problems, complete (sparse) dictionary learning (CDL) and generalized

phase retrieval (GPR), that admit natural nonconvex formulations which lie in the X family. Backgrounds of

the problems, detailed geometric characterization of the nonconvex formulations and demonstration they lie

in the X family, and rigorous proof of convergence of the trust-region method tailored to both cases will

be presented. We close this thesis (Part IV) by pointing to other important nonconvex problems arising in

recent literature that belong to the X family, and discussing open problems and future directions. Each part
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or section normally starts with a detailed outline of the local content. The Appendix collects auxiliary results

used in proofs in various sections.
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Chapter 2

X Functions

...in fact, the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity.

R. Tyrrell Rockafellar

Rockafellar is right in separating convex problems from nonconvex ones based on general tractability.

However, for most practical problems natural optimization formulations are nonconvex and convex relaxation

does not always produce tractable or practical solutions, as we discussed in Section 1.4. On the other hand,

there are important nonconvex problems, both classic and new, thatwe can solve using very simple and natural

iterative methods. In this chapter, we start to uncover a benign geometric structure that delineates a family

of tractable nonconvex problems. We shall motivate the structure with the classical eigenvector problem

(Section 2.1), and then move to a qualitative definition that is convenient for understanding (Section 2.2),

and a quantitative definition that is important to provable algorithms (Section 2.3). We will defer novel

concrete examples arising from practical problems to the ensuing chapters, but will explain why the geometric

structure can be exploited for efficient optimization (Section 2.4) and describe the second-order trust-region

method. We will then discuss proof strategy to verifying the geometric structure for particular problems, and

to establishing algorithmic convergence based on the trust-region method (Section 2.5). Finally, we close this

chapter by touching on implementation issue of the trust-region method towards practicality (Section 2.6).

We prefer to make most of our technical statements in Riemannian manifold settings. Concise introduction

to the basics can be found in these excellent monographs: [HMG94, Rap97, AMS09].
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2.1 The eigenvector problem

The eigenvector problem is fundamental to all applied disciplines. It is considered to be well solved and

ready for off-the-shelf applications [GVL12]; however, its natural formulation is nonconvex. For a symmetric

matrixA ∈ Rn×n, consider the Rayleigh quotient formulation for finding the bottom eigenvector:

minimizex∈Rn fEV (x)
.
= x>Ax subject to ‖x‖2 = 1. (2.1.1)

Assume eigenvalues ofA are λ1 > λ2 ≥ · · · ≥ λn−1 > λn, with the corresponding eigenvectors v1, . . . ,vn.

Problem (2.1.1) is nonconvex because the constraint set {x : ‖x‖2 = 1} is the unit sphere in Rn, which is not

a convex set. 1

Figure 2.1: Function landscape of a simple
eigenvector problem inR3. In this example,
A = diag(1, 0,−1). Obviously the eigen-
values are 1, 0,−1, and the correspond-
ing eigenvectors are ±e1, ±e2, and ±e3,
which are global maximizers, ridable sad-
dle points, and global minimizers, respec-
tively. Around the saddle points ±e2, the
function has a negative curvature along the
±e3 direction.

Despite the nonconvexity, one can explicitly locate the critical points of (2.1.1): they are exactly the signed

eigenvectors, ±v1, . . . ,±vn. Moreover, by examining the second-order geometry2, we can classify critical

points of fEV more precisely (see. e.g., Proposition 4.6.2 of [AMS09]):

The only global minimizers are ±vn; the only global maximizers are ±v1; the intermediate

eigenvectors vk’s (i.e., the remaining critical points) are saddle points, around each there is a

negative curvature in ±vn direction.

Figure 2.1 shows the landscape of fEV for A = diag(1, 0,−1), for which obviously ±e3 are the global

minimizers, and ±e2 are the saddle points. Note that around ±e2, fEV has a negative curvature in the ±e3

direction.

1In fact, when treated as a function defined on the sphere, a particular Riemannian manifold, the function is not convex in geodesic
sense either. The reason is that the two only global minimizers vn and−vn are isolated on the sphere, while geodesic convexity implies
the set of global minimizers be geodesically totally convex – similar to the Euclidean-space results; see, e.g., Section 3.7 of [Udr94] or
Section 6.2 of [Rap97].

2One can either introduce a Lagrange multiplier and verify the second-order sufficient conditions (see, e.g., Sections 3.1 & 3.2
of [Ber99]), or treat the function as defined on the sphere and resort to Riemannian gradient and Hessian (see, e.g., Section 4.6
of [AMS09]) for the analysis.
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The landscape of fEV on the sphere differs significantly from our typical “mental picture” of nonconvex

functions as possessing many spurious local minimizers – here all local minimizers are also global. The

negative directional curvature around each saddle point of fEV is also important for analysis and computation

– we shall explain this in the next sections. The successes of efficient iterative methods to compute eigenvalues

and eigenvectors of general symmetric matrices hinge on these nice geometric structures; this deep connection

becomes evident when these iterative methods are interpreted from the Riemannian optimization standpoint,

see, e.g., relevant chapters of [HMG94, AMS09].

2.2 X functions: qualitative version

Inspired by the eigenvector problem (chronologically, by the sparse dictionary learning problem of Part II first),

we single out a class of nonconvex problems that seems structured enough to admit efficient optimization

methods.

Definition 2.1 (X functions: qualitative version I) LetM be a Riemannian manifold. A twice continuously

differentiable function f :M 7→ R is said to be in the X class if:

(P-1) All local minimizers of f are also global minimizers;

(P-2) All saddle points of f have a negative directional curvature.

(P-1) rules out the presence of spurious local minimizers other than the global ones; (P-2) may appear extra-

neous to many and deserves more elaboration. For simplicity, consider a twice continuously differentiable

Figure 2.2: Illustration of ridable saddles vs. generic saddles. At a ridable saddle, the Hessian has a negative eigenvalue,
whereas general saddles may be shaped by higher-order derivatives in directions where second-order derivatives vanish.
Shown in the plot are functions f(x, y) = x2 − y2 (Left) and g(x, y) = x3 − y3 (Right). For g, both first- and second-order
derivatives vanish at (0, 0), and the local function landscape is determined by the third-order derivatives. In both plots,
red curves indicate local ascent directions and blue curves indicate local descent directions.
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function f : Rn 7→ R. Critical points are points x ∈ Rn such that∇f(x) = 0. By definition, saddle points of

f are those critical points which are neither local maximizers nor local minimizers. In other words, a critical

point x is a saddle point of f if for every ε > 0, the ε-neighborhood of x contains simultaneously an x−

such that f(x−) < f(x) and an x+ such that f(x+) > f(x). While saddle points are typically illustrated

in textbooks as being literally saddle shaped (Figure 2.2, Left), they do not necessarily be so – particularly,

around saddle points the function f does not necessarily have a negative curvature in any direction (Figure 2.2,

Right). Technically, textbook saddle points are those whose Hessian has a negative eigenvalue, which induces

a negative curvature direction; we shall call these prototypical saddles as ridable saddles.

Definition 2.2 (Ridable saddles; also strict saddles in [GHJY15]) LetM be a Riemannian manifold and

consider a twice continuously differentiable function f :M 7→ R. A point x ∈M is said to be a ridable saddle

point if its Riemannian Hessian Hess f(x) has a negative eigenvalue on TxM, i.e., the tangent space ofM at x.

By comparison, other types of saddles arise only when the Hessian is positive semidefinite (possibly 0) at a

critical point such that there exists a direction in which the second-order variation also vanishes. In this case,

the directional function landscape is determined by higher-order information, which renders the current

critical point either a local minimizer, a local maximizer, or an unridable saddle point.

The reason we favor ridable saddles is that there is a natural descent direction that can be exploited

efficiently by iterative methods; we shall detail on this in the ensuing sections. For the sake of performing

numerical optimization, we will augment (P-2) above slightly, extending it into a characterization of all critical

points.

Definition 2.3 (X functions: qualitative version II) LetM be a Riemannian manifold. A twice continu-

ously differentiable function f :M 7→ R is said to be in the X class if:

(P-1) All local minimizers of f are also global minimizers;

(P-2A) For all local minimizers, Hess f � 0;

(P-2B) For all other critical points, λmin(Hess f) < 0.

Moreover, f is said to be a ridable-saddle function (also strict-saddle function [GHJY15]) if (P-2A) and (P-2B)

hold.

(P-2A), together with smoothness, implies the function is locally strongly convex around any local minimizer.

This is a typical assumption to be made even to establish a local convergence result. (P-2B) requires all saddle

points be ridable saddles, and also around each local maximizer f has a negative directional curvature. The
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latter precludes the existence of a full-dimensional plateau of local maximizers – where an interior local

maximizer does not admit any local descent direction.

One might think (P-2A) and (P-2B) are artificial and possibly demanding, but in fact ridable functions

are prevalent. A smooth function f : M 7→ R is called Morse if all critical points are non-degenerate, i.e.,

with full-rank Hessians. It is easy to see that all Morse functions are ridable-saddle functions. The abundance

of Morse functions is a fundamental result in Morse theory, which says the Morse functions form an open,

dense subset of all smooth functionsM 7→ R– a generic smooth function is Morse!3

2.3 X functions: quantitative version

The qualitative definition for X functions (Definition 2.3) carves out the structured nonconvex problems of

interest, but is not adequate for numerical computation and algorithmic analysis. It lacks in two aspects:

(1) description of noncritical points. Numerical optimization methods mostly entail iterative sequences

that move across numerous noncritical points before finally converging to a critical point; (2) quantitative

description of critical points. For example, (P-2A) does not prevent Hess f from being arbitrarily close to

positive semidefinite, which leads to dramatically different algorithmic behaviors for iterative methods as

compared to strongly definite cases. (P-2B) suffers from similar deficiency.

We now provide a quantitative definition for X functions that alleviates the above problems and provides

concrete workable quantities.

Definition 2.4 (X functions: quantitative version) LetM be a Riemannian manifold. A twice continuously

differentiable function f :M 7→ R is said to be in the X class with parameter (α, β, δ, γ) (α, β, δ, γ > 0) if:

(No spurious minimizers) All local minimizers of f are also global minimizers,

and f is a (α, β, γ, δ) ridable-saddle function (also strict-saddle function [GHJY15] 4) defined as follows: any

point x ∈M obeys at least one of the following:

(Strong gradient) ‖f(x)‖ ≥ β;

(Negative curvature) There exists v ∈ TxM with ‖v‖ = 1 such that 〈Hess f(x)[v],v〉 ≤ −α;

(Strong convexity around minimizers) There exists a local minimizer x? such that ‖x− x?‖ ≤ δ, and for all

y ∈M with ‖x? − y‖ ≤ 2δ, 〈Hess f(y)[v],v〉 ≥ γ for any v ∈ TyM with ‖v‖ = 1.

3See, e.g., Section 2.2.c of [Mat02], or Section 1.2 of [Nic11] for the precise statement and proof. In fact, Section 2.2.c of [Mat02] proves
the result by showing an arbitrarily small generic linear perturbation to a non-Morse function turns the function into a Morse function.

4WhenM is Rn or Cn, the two definitions coincide. It is interesting to see if the two agree in general settings. Particularly, [GHJY15]
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The “no spurious minimizers” condition is simple and inherits from the qualitative version. To define a

quantitative ridable-saddle function, we divide the Riemannian manifoldM into two subsets: one is far apart

from any critical point, signified by having gradients with large magnitudes (“strong gradient”, characterized

by β), and one consists of neighborhoods of critical points. We further divide the second into two subsets:

one consists of neighborhoods of local maximizers or saddle points where at each point the function has a

negative directional curvature (“negative curvature”, characterized by α), and one consists of neighborhoods

of local minimizers where the function is locally strongly convex around each local minimizer (“strongly

convexity around minimizers", characterized by γ, δ).

2.4 Algorithm: second-order trust-region method

X functions have no spurious local minimizers, and thus finding any local minimizer solves the associated

minimization problems. Without assuming special initializations, typical iterative methods only guarantee

to converge to critical points at best, which might be saddles points or local maximizers that obviously are

not desired. So the central task for iterative methods here is avoiding being trapped by saddle points and

local maximizers.

A number of iterative methods are empirically observed to be immune to saddle points and local maxi-

mizers, with varied theoretical guarantees and empirical efficiencies. These methods include second-order

methods such as trust-region method [CGT00, NP06, ABG07, SQW15b], curvilinear search [Gol80], and

first-order methods such as noisy/stochastic gradient descent [GHJY15], or even deterministic gradient

descent with random initializations [LSJR16]. In this thesis we focus on the second-order trust-region method

that produces strong computational guarantees for minimizing X functions (polynomial-time algorithm

without special initializations5) with relatively simple proof.6

The reason second-order methods can help escape from ridable saddle points or local maximizers with

negative direction curvature is simple. Consider, for simplicity, a twice continuously differentiable function

deals only with manifold defined by equalities of the form ci(x) = 0 with differentiable function c, which excludes many manifolds of
interest, such as symmetric positive definite matrices of a fixed dimension. See this page: http://www.manopt.org/tutorial.html#
manifolds for more examples. See also discussion in Introduction of this paper [ABG07] on the (incompatible) relationship between
manifold optimization and constrained optimization in the Euclidean space.

5... provided theX parameters and smoothness parameters of the problem at hand are treated as constant, or if not, their dependency
on the problem size is “reasonable” – α, β, γ are reasonably large (say bounded from below by inverse polynomial of problem size) and
Lipschitz constants are reasonably small (say bounded above by polynomials of problem size).

6We believe that the curvilinear search method [Gol80] very likely has similar computational guarantees on X functions. Since we
are mostly concerned with understanding the X property of practical nonconvex problems, we will not pursue a rigorous analysis of
this method in this thesis.

http://www.manopt.org/tutorial.html#manifolds
http://www.manopt.org/tutorial.html#manifolds
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f : Rn 7→ R and a saddle point x0 ∈ Rn of f . Around x0, the second-order Taylor approximation to f is:

f̂(δ;x0) = f(x0) +
1

2
δ>∇2f(x0)δ.

If ∇2f(x0) has a negative eigenvalue λ− with its corresponding eigenvector v−, setting δ0 = tv− leads to

f̂(δ0;x0)− f(x0) = −1

2
t2 |λ−| < 0.

When t is reasonably small such that the second-order Taylor approximation of f̂ to f is reasonably accurate

(i.e., higher-order information is negligible) within a t-neighborhood of x0, moving in v− direction induces a

strict decrease to the function value. In other words, v− is a local descent direction. Analogous argument

explains why local maximizers with a negative directional curvature are not attractors of second-order

methods.

For nonconvex problems, the Hessian∇2f(x) is not always definite. A natural way of dealing with both

definite and indefinite Hessians consistently is performing optimization within locally restricted regions

– calling to the trust-region method (TRM). For a function f : Rn → R and an unconstrained optimization

problem

minimizex∈Rn f (x) ,

typical (second-order) TRM proceeds by successively forming quadratic approximations to f at the current

iterates,

f̂(δ;x(k−1))
.
= f(x(k−1)) +∇>f(x(k−1))δ +

1

2
δ>Q(x(k−1))δ, (2.4.1)

whereQ
(
x(k−1)

)
is a proxy for the Hessian matrix∇2f

(
x(k−1)

)
, which encodes the second-order geometry.

The next movement direction is determined by seeking a minimizer of f̂
(
δ;x(k−1)

)
over a small region,

normally a norm ball ‖δ‖p ≤ ∆, called the trust region, inducing the well studied trust-region subproblem:

δ(k) .
= arg min
δ∈Rn,‖δ‖p≤∆

f̂(δ;x(k−1)), (2.4.2)

where ∆ is called the trust-region radius that controls how far the movement can be made. Norms p = 1, 2,∞

and their rescaled versions are often used in practice; we focus on p = 2 since efficient algorithms exist to

solve (2.4.2) in this case7, see e.g., [MS83, RW97, CGT00, FW04, HK14]. Once δ(k) is found, the next iterate is

7For the p = 1,∞ cases, there are no known efficient algorithms to solve them globally, though the problem is considerably
ameliorated in practice as reasonable approximate solutions to (2.4.2) still suffice to guarantee convergence of TRM; see relevant
discussions in Section 7.8 of [CGT00].
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determined by the updating formula

x(k) = x(k−1) + δ(k).

Detailed introductions to the classical TRM can be found in the texts [CGT00, NW06].

TRM can naturally be adapted for optimization over Riemannian manifolds [ABG07, AMS09]:

minimizex∈M f(x). (2.4.3)

The canonical quadratic approximation at the current iterate now takes the form

f̂(δ;x(k−1))
.
= f(x(k−1)) +

〈
grad f(x(k−1)), δ

〉
+

1

2

〈
Hess f(x(k−1))[δ], δ

〉
, (2.4.4)

where grad f(x) and Hess f(x) are the Riemannian gradient and Riemannian Hessian of f at point x, acting

on TxM and the approximation is defined for any δ ∈ TxM; related concepts are briefly illustrated in

Figure 2.3. The trust-region subproblem becomes

O

q
TqSn−1

δ

expq(δ)

Sn−1

Figure 2.3: Illustrations of the tangent space and
exponential map, and explanation of quadratic
approximation for functions over Riemannian
manifolds. Here the exemplar manifold is the
sphere Sn−1. Let B(q, ε) be the ball centered at
q with radius ε. Exponential map is a canonical
way of “pulling” a vector δ ∈ TqM∩B(q, ε) toM
for small ε.8One can define a function f(δ; q) :
TqM ∩ B(q, ε) 7→ R as f(δ; q) .

= f ◦ expq(δ).
Then quadratic approximation (2.4.4) is just the
second-order Taylor expansion of f(δ; q) around
the point q .

= x(k−1).

δ(k) .
= arg min
δ∈T

x(k−1)M,‖δ‖2≤∆

f̂(δ;x(k−1)). (2.4.5)

Most manifolds of practical interest are embedded submanifolds of Rm×n and the tangent space is a subspace

of Rm×n. For an x(k−1) ∈M and an orthonormal basis U for Tx(k−1)M, one can solve (2.4.5) by solving the

recast Euclidean trust-region subproblem

ξ(k) .
= arg min
‖ξ‖2≤∆

f̂(Uξ;x(k−1)). (2.4.6)

Then we have δ(k) = Uξ(k). The point x(k−1) + δ(k) lies in Txk−1M, but generally it is not onM. We need

8Generally exponential map is only locally defined in a neighborhood around the origin of the tangent space. It suffices for our
purposes however, as we only care about local approximation of the function.
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to pull it back to the manifold by performing a retraction step Rx(k−1)(·) (e.g., by exponential map for any

Riemannian manifold, or Euclidean projection for embedded submanifolds of Euclidean spaces [AM12]).

Hence the update formula reads

x(k) = Rx(k−1)(x(k−1) + δ(k)). (2.4.7)

It is possible to run TRM on general constrained problems beyond the Riemannian manifold setting;

see, e.g., [CGT00]. To derive provable algorithms for these problems, second-order geometry of Lagrangian

function plays a pivotal role. [GHJY15] deals with problems with only equality constraints.

2.5 Sketch of proof ideas

We have described the (Riemannian) second-order trust-region method that is powerful enough to escape

from saddle points and local maximizers of X functions and finally find a local/global minimizer of X

functions, from arbitrary initializations. Thus, the key challenge is how to determine whether a given

function lies in the X family. We will provide an overview of the strategy we have developed in our

works [SQW15a, SQW16, SQW15b] – details occupy main bodies of next two parts. Then, we will discuss

how to establish concrete convergence rates of the trust-region algorithms. Applying these ideas to our

problems [SQW15a, SQW16] involves local adaptation of definition of X functions and the trust-region

method.

2.5.1 Identifying X functions

To recognize an X function, a natural idea is to analytically locate the critical points and then analyze

their Hessians. This may work for very simple cases (e.g., low-order polynomials9), but will fail badly in

general as locating critical points itself may already involve algebraic equations that are not amenable to

analytic techniques10. Drawing analog from convex analysis, it appears the best one can hope is to figure out

operational rules that preserve the X -ness such that complex X functions can be constructed from simple

ones – this likely requires intensive further research efforts.

9One classical example is the eigenvector problem we presented in Section 2.1; see, e.g., Section 4.6 of [AMS09] for proof; see also
discussion in [SQW15b].

10In fact, if explicit locating critical points could be done analytically in general, one can solve all bounded optimization problems
with polynomial numbers of critical points efficiently.
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In this thesis, we focus on nonconvex problems of the form

minimizex F (x)
.
=

1

m

m∑
k=1

f(x;yk) subject to x ∈M, (2.5.1)

whereM is a Riemannian manifold and {yk} is an ensemble of observations that often bears randomness.

This framework is powerful enough to encompass many problems arising in signal processing and machine

learning, typically in recovery of structured signals where f is a penalty to promote the desired structure

in the solution; here we will briefly describe complete (sparse) dictionary learning (CDL) and generalized phase

retrieval (GPR) as concrete examples – again, substantial amounts of details are included in the next two parts;

more practical examples appearing in the literature will be discussed in Chapter 19.

Example 2.5 (Complete (Sparse) Dictionary Learning [SQW15a] (CDL)) Arising in signal processing and

machine learning, dictionary learning tries to approximate a given data matrix Y ∈ Rn×p as the product of a

dictionaryA and a sparsest coefficient matrixX . In recovery setting, assuming Y = A0X0 withA0 complete

(square and invertible), Y and X0 have the same row space. Under appropriate (probabilistic) model on X0,

it makes sense to recover one row of X0 each time by finding the sparsest direction11in row(Y ) through the

optimization:

minimizeq
∥∥q>Y ∥∥

0
subject to q 6= 0,

which can be relaxed as a nonconvex problem

minimizeF (q)
.
=

1

p

p∑
k=1

h(q>yk) subject to ‖q‖2 = 1 [i.e., q ∈ Sn−1]. (2.5.2)

Here h(·) is a smooth approximation to the |·| function which promotes sparsity and yk is the k-th column of Y , a

proxy of Y . The manifoldM is Sn−1 here.

Example 2.6 (Generalized Phase Retrieval [SQW16] (GPR)) For complex signal x ∈ Cn, generalized

phase retrieval (PR) tries to recover x from nonlinear measurements of the form yk = |a∗kx|, for k = 1, . . . ,m,

where {ak} is a set of known random complex vectors (say i.i.d. sub-Gaussian). This task has occupied the central

place in imaging systems for scientific discovery [SEC+15], among many others. Assuming i.i.d. Gaussian

11The absolute scale is not recoverable.
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measurement noise, a natural formulation for GPR is

minimizez∈Cn F (z)
.
=

1

4m

m∑
k=1

(
y2
k − |a∗kz|2

)2

, (2.5.3)

which is a 4-th order polynomial and is nonconvex. The manifoldM here is Cn.

One salient feature about the above recovery problems is that there are clear objects of interest to be

recovered as global minimizers of the respective nonconvex formulations. According to Definition 2.4, to

show the nonconvex formulations lie in the X family, it is natural to show the nonconvex functions are locally

strongly convex around the target minimizers but have no other minimizers (by demonstrating either strong

gradients or negative directional curvatures) outside these neighborhoods. Specifically, one can start with

verifying the ridable-saddle property:

Verifying the ridable-saddle property: PartitionM into three regions, corresponding to the strong

gradient, negative curvature, and local strongly convex regions in Definition 2.4 respectively, and check the

respective associated quantities.

How to divide the regions outside the vicinity of the target minimizers into gradient and curvature regions

is tricky and problem-dependent. One coupled challenge is acquiring knowledge of directions with negative

curvature when the gradient is weak. Our current strategy is first gaining intuition from low-dimensional

plot of the function landscape and then trying to extrapolate the visual structural division to high dimensions.

To complete the geometric characterization, one then show that all local minimizer are also global:

Verifying all local minimizers are global: Show all target minimizers are surrounded by a local strongly

convex region and verify the targets are indeed local minimizers, say, by checking gradients and all target

minimizers carry the same function value.

That each target minimizer has a strongly convex neighborhood should already be accounted for in the

above explicit division ofM into three regions. The target minimizers are the only minimizers, as each local

strongly convex region can have at most one local minimizer.

Derivatives of (2.5.1) likely are also sum of random quantities when the input data {yk} are random. Thus,

it is natural to follow a typical expectation-concentration path for the analysis [BLM13]: first demonstrate

the expected version of the function verifies the X property by working with the expected derivatives, and

then show the various derivative terms in the divided regions concentrate well around their respective

expectations, whenm is reasonably large. Moreover, to show the gradient is strong in the strong gradient
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region, it suffices to show a directional derivative is strong – the latter again entails choosing a direction to

work on, but showing scalar concentration is often easier than the vector counterpart.

2.5.2 Proving convergence of trust-region method

For simplicity, we assume the trust-region size parameter ∆ is fixed to a small value. This ensures that local

quadratic approximations model the local behaviors of the function reasonably accurately, such that the

qualitative effect of a local movement on the objective can be gauged from that on the local approximation.

We also assume trust-region subproblems are solved exactly.

Based on the above idealizations, each step at a negative-curvature or strong-gradient point decreases the

objective value by a concrete amount. To see the reason, consider the Euclidean case for simplicity. When

gradient is strong, taking δ = −∆ · ∇f(x) leads to

f̂(δ;x) = f(x)−∆ ‖∇f(x)‖22 +
1

2
∆2 (∇f)

>∇2f(x)∇f

≤ f(x)−∆ ‖∇f(x)‖22 +
1

2
∆2 ‖∇f(x)‖22

∥∥∇2f(x)
∥∥ .

Hence ∆ is sufficiently small, f̂(δ;x) − f(x) < 0. On the other hand, when the curvature is negative in a

certain direction, say δ0, with curvature parameter α0, then taking

δ =


−∆

sign(δ>0 ∇f(x))δ0
‖sign(δ>0 ∇f(x))δ0‖

2

∇f(x) 6= 0,

∆ δ0
‖δ0‖2

∇f(x) = 0

leads to

f̂(δ;x) ≤ f(x)− 1

2
α0∆2.

Thus, with additional assumptions such as compact sub-level set on the function, we conclude that the iterate

sequence finally moves into the strongly convex neighborhood of a minimizer. Then a trust-region step

is either constrained (i.e., the trust-region constraint is active) such that it also deceases the objective by a

concrete amount (the reason is the same as that for the strong gradient point), or unconstrained, which is a

good indicator that the target minimizer is within a radius ∆. In the latter case, the algorithm behaves much

like the classical Newton method and quadratic sequence convergence can be shown. [SQW15a, SQW16]

include detailed arguments for our two examples.
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2.6 Running trust-region algorithms in practice

Fixing a small step size and solving trust-region subproblem exactly ease the analysis, but also render

the TRM algorithm impractical. In practice, the trust-region subproblem is never exactly solved, and the

trust-region step size is adjusted to the local geometry, say by backtracking. It is possible to modify our

algorithmic analysis to account for inexact subproblem solvers and adaptive step size; for sake of brevity, we

do not pursue it in this thesis. Recently, [BAC16] has made progress towards this direction.

We close this chapter by introducing the Manopt toolbox [BMAS14]12. Manopt is a user-friendly Matlab

toolbox that implements several sophisticated solvers for tackling optimization problems over Riemannian

manifolds. The most developed solver is based on the TRM. This solver uses the truncated conjugate gradient

(tCG; see, e.g., Section 7.5.4 of [CGT00]) method to (approximately) solve the trust-region subproblem (vs.

the exact solver in our analysis). It also dynamically adjusts the step size using backtracking. However,

the original implementation (Manopt 2.0) is not adequate for our purposes. Their tCG solver uses the

gradient as the initial search direction, which does not ensure that the TRM solver can escape from saddle

points [ABG07, AMS09]. We modify the tCG solver, such that when the current gradient is small and there is

a negative curvature direction (i.e., the current point is near a saddle point or a local maximizer for f(z)), the

tCG solver explicitly uses the negative curvature direction13 as the initial search direction. This modification

ensures the TRM solver always escapes saddle points/local maximizers with negative directional curvature.

Hence, the modified TRM algorithm based on Manopt is expected to have the same qualitative behavior as

the idealized version we described above, with better scalability. We will perform our numerical simulations

using the modified TRM algorithm whenever necessary.

12Available online: http://www.manopt.org.
13...adjusted in sign to ensure positive correlation with the gradient – if it does not vanish.

http://www.manopt.org
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Part II

Complete (Sparse) Dictionary Learning
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In this part, we consider the problem of recovering a complete (i.e., square and invertible) matrix A0,

from Y ∈ Rn×p with Y = A0X0, providedX0 is sufficiently sparse. This recovery problem is central to

the theoretical understanding of dictionary learning, which seeks a sparse representation for a collection

of input signals and finds numerous applications in modern signal processing and machine learning. We

give the first efficient algorithm that provably recoversA0 whenX0 has O (n) nonzeros per column, under

suitable probability model forX0. In contrast, prior efficient algorithms either only guarantee recovery in

the super-sparse regime (O(
√
n) nonzeros per column inX0), or require solving multiple rounds of sum of

squares to attain the O
(
n1−δ) regime for any constant δ ∈ (0, 1), which is only of theoretical interest.

Our algorithm centers around solving a nonconvex optimization problem with a spherical constraint

set, and hence is naturally phrased in the language of manifold optimization. To show this apparently hard

problem is tractable, we prove that with high probability (w.h.p.) the function lies in the X family (Chapter 2),

particularly devoid of spurious local minimizers. This benign geometric structure allows us to design a

Riemannian trust-region algorithm over the sphere that provably converges to a local minimizer with an

arbitrary initialization, despite the presence of saddle points.

This part is organized as follows. In Chapter 3 we motivate the dictionary learning problem and overview

main ingredients of our nonconvex approach. In Chapter 4 we present our main geometric results that

confirm the central nonconvex problem to be solved lie in the X family. In Chapter 5 we present necessary

technical machinery and results for convergence proof of the Riemannian trust-region algorithm over the

sphere. Solving the nonconvex problem recovers one row ofX0 each time. We will present an algorithmic

pipeline that entails solving multiple instances of the nonconvex problem to sequentially recover all rows of

X0, and hence alsoA0, in Chapter 6. After presenting simulations to corroborate our theory in Chapter 7,

we wrap up the main content in Chapter 8 by discussing possible improvement and future directions. All

major proofs of geometrical and algorithmic results are deferred to Chapter 9 and Chapter 10, respectively.

Chapter 11 augments the technical content presented in Chapter 6. Recurring technical tools and auxiliary

results for the proofs are included in Appendix A and Appendix B.

This part is based on our technical report:

Complete Dictionary Recovery over the Sphere. http://arxiv.org/abs/1504.06785

The codes to reproduce all the figures and experimental results can be found online:

https://github.com/sunju/dl_focm

http://arxiv.org/abs/1504.06785
https://github.com/sunju/dl_focm
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Chapter 3

Introduction

...in effect, uncovering the optimal codebook structure of naturally

occurring data involves more challenging empirical questions than any

that have ever been solved in empirical work in the mathematical

sciences.

Donoho et al [DVDD98], in Data compression and harmonic analysis

Given p signal samples from Rn, i.e., Y .
= [y1, . . . ,yp] ∈ Rn×p, is it possible to construct anm-element

dictionary A .
= [a1, . . . ,am] withmmuch smaller than p, such that Y ≈ AX and the coefficient matrixX has

as few nonzeros as possible? In other words, this model dictionary learning (DL) problem seeks a concise

representation for a collection of input signals. Concise signal representations play a central role in signal

compression, and also prove useful for many other important tasks, such as signal acquisition, denoising,

and classification.

Traditionally, concise signal representations have relied heavily on explicit analytic bases constructed in

nonlinear approximation and harmonic analysis. This constructive approach has proved highly successfully;

the numerous theoretical advances in these fields (see, e.g., [DeV98, Tem03, DeV09, Can02, MP10a] for

summary of relevant results) provide ever more powerful representations, ranging from the classic Fourier to

modern multidimensional, multidirectional, multiresolution bases, including wavelets, curvelets, ridgelets,

and so on. However, two challenges confront practitioners in adapting these results to new domains: which

function class best describes signals at hand, and consequently which representation is most appropriate.

These challenges are coupled, as function classes with known “good” analytic bases are rare.

Around 1996, neuroscientists Olshausen and Field discovered that sparse coding, the principle of encoding
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a signal with few atoms from a learned dictionary, reproduces important properties of the receptive fields of

the simple cells that perform early visual processing [OF96, OF97]. The discovery has spurred a flurry of

algorithmic developments and successful applications for DL in the past two decades, spanning classical

image processing, visual recognition, compressive signal acquisition, and also recent deep architectures for

signal classification (see, e.g., [Ela10, MBP14] for review this development).

The learning approach is particularly relevant to modern signal processing and machine learning, which

deal with data of huge volume and great variety (e.g., images, audios, graphs, texts, genome sequences,

time series, etc). The proliferation of problems and data seems to preclude analytically deriving optimal

representations for each new class of data in a timely manner. On the other hand, as datasets grow, learning

dictionaries directly from data looks increasingly attractive and promising. When armed with sufficiently

many data samples of one signal class, by solving the model DL problem, one would expect to obtain a

dictionary that allows sparse representation for the whole class. This hope has been borne out in a number

of successful examples [Ela10, MBP14] and theories [MP10b, VMB11, MG13, GJB+13].

3.1 Theoretical and algorithmic challenges

In contrast to the above empirical successes, the theoretical study of DL is still developing. For applications

in which DL is to be applied in a “hands-free” manner, it is desirable to have efficient algorithms which

are guaranteed to perform correctly, when the input data admit a sparse model. There have been several

important recent results in this direction, which we will review in Section 3.4, after our sketching main results.

Nevertheless, obtaining algorithms that provably succeed under broad and realistic conditions remains an

important research challenge.

To understand where the difficulties arise, we can consider a model formulation, in which we attempt to

obtain the dictionaryA and coefficientsX which best trade-off sparsity and fidelity to the observed data:

minimizeA∈Rn×m,X∈Rm×p λ ‖X‖1 +
1

2
‖AX − Y ‖2F , subject to A ∈ A. (3.1.1)

Here, ‖X‖1
.
=
∑
i,j |Xij | promotes sparsity of the coefficients, λ ≥ 0 trades off the level of coefficient sparsity

and quality of approximation, and A imposes desired structures on the dictionary.

This formulation is nonconvex: the admissible set A is typically nonconvex (e.g., orthogonal group,

matriceswith normalized columns)1, while themost daunting nonconvexity comes from the bilinearmapping:

1For example, in nonlinear approximation and harmonic analysis, orthonormal basis or (tight-)frames are preferred; to fix the scale
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(A,X) 7→ AX . Because (A,X) and
(
AΠΣ,Σ−1Π∗X

)
result in the same objective value for the model

formulation (3.1.1), whereΠ is any permutationmatrix, andΣ any diagonal matrix with {±1} on its diagonal,

we should expect the problem to have combinatorially many global minimizers. Moreover, these minimizers

are generally isolated, and hence the problem does not appear to be amenable to convex relaxation (see

similar discussions in, e.g., [GS10] and [GW11]).2 This contrasts sharply with problems in sparse recovery

and compressed sensing, in which simple convex relaxations are often provably effective [DT09, OH10,

CLMW11, DGM13, MT14, MHWG14, CRPW12, CSV13, ALMT14, Can14]. Is there any hope to obtain global

solutions to the DL problem? The numerical surprise we encountered at the start of this thesis (i.e., Section 1.1)

supports a positive answer.

3.2 Dictionary recovery and our results

In this part (Part II), we take a step towards explaining the surprising effectiveness of simple optimization

methods for DL. We focus on the dictionary recovery (DR) setting: given a data matrix Y generated as

Y = A0X0, where A0 ∈ A ⊆ Rn×m and X0 ∈ Rm×p is “reasonably sparse”, try to recover A0 and X0.

Here recovery means to return any pair
(
A0ΠΣ,Σ−1Π∗X0

)
, where Π is a permutation matrix and Σ is a

nonsingular diagonal matrix, i.e., recovering up to sign, scale, and permutation.

To define a reasonably simple and structured problem, we make the following assumptions:

• The target dictionary A0 is complete, i.e., square and invertible (m = n). In particular, this class

includes orthogonal dictionaries. Admittedly overcomplete dictionaries tend to be more powerful for

modeling and to allow sparser representations. Nevertheless, most classic hand-designed dictionaries

in common use are orthogonal. Orthobases are competitive in performance for certain tasks such as

image denoising [BCJ13], and admit faster algorithms for learning and encoding. 3

• The coefficient matrixX0 follows the Bernoulli-Gaussian (BG) model with rate θ: [X0]ij = ΩijVij , with

ambiguity discussed in the text, a common practice is to require thatA to be column-normalized. There is no obvious reason to believe
that convexifying these constraint sets would leave the optima unchanged. For example, the convex hull of the orthogonal group On is
the operator norm ball

{
X ∈ Rn×n : ‖X‖ ≤ 1

}
. If there are no effective symmetry breaking constraints, any convex objective function

tends to have minimizers inside the ball, which obviously will not be orthogonal matrices. Other ideas such as lifting may not play
together with the objective function, nor yield tight relaxations (see, e.g., [BKS13a, BR14]).

2Semidefinite programming (SDP) lifting may be one useful general strategy to convexify bilinear inverse problems, see, e.g.,
[ARR14, CM14]. However, for problems with general nonlinear constraints, it is unclear whether the lifting always yield tight relaxation,
consider, e.g., [BKS13a, BR14] again.

3Empirically, there is no systematic evidence supporting that overcomplete dictionaries are strictly necessary for good performance
in all published applications (though [OF97] argues for the necessity from neuroscience perspective). Some of the ideas and tools
developed here for complete dictionaries may also apply to certain classes of structured overcomplete dictionaries, such as tight frames.
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Ωij ∼ Ber (θ) and Vij ∼ N (0, 1), where all the different random variables are jointly independent. We

write compactlyX0 ∼i.i.d. BG (θ).

We prove the following result:

Theorem 3.1 (Informal statement of our results) For any θ ∈ (0, 1/3), given Y = A0X0 with A0 a

complete dictionary andX0 ∼i.i.d. BG (θ), there is a polynomial-time algorithm that recoversA0 andX0 with

high probability (at least 1−O(p−6)) whenever p ≥ p? (n, 1/θ, κ (A0) , 1/µ) for a fixed polynomial p? (·), where

κ (A0) is the condition number ofA0 and µ is a parameter that can be set as cn−5/4 for a fixed constant c > 0.

Obviously, even ifX0 is known, one needs p ≥ n to make the identification problem well posed. Under our

particular probabilistic model, a simple coupon collection argument implies that one needs p ≥ Ω
(

1
θ log n

)
to

ensure all atoms inA0 are observed with high probability (w.h.p.). To ensure that an efficient algorithm exists

may demand more. Our result implies when p is polynomial in n, 1/θ and κ(A0), recovery with efficient

algorithm is possible.

The parameter θ controls the sparsity level ofX0. Intuitively, the recovery problem is easy for small θ and

becomes harder for large θ.4 It is perhaps surprising that an efficient algorithm can succeed up to constant θ,

i.e., linear sparsity inX0. Compared to the case whenA0 is known, there is only at most a constant gap in

the sparsity level one can deal with.

For DR, our result gives the first efficient algorithm that provably recovers completeA0 and sparseX0

whenX0 has O(n) nonzeros per column under appropriate probability model. Section 3.4 provides detailed

comparison of our result with other recent recovery results for complete and overcomplete dictionaries.

3.3 Main ingredients and innovations

In this section we describe three main ingredients that we use to obtain the stated result.

3.3.1 A nonconvex formulation

Since Y = A0X0 and A0 is complete, row (Y ) = row (X0) (row (·) denotes the row space of a matrix)

and hence rows of X0 are sparse vectors in the known (linear) subspace row (Y ). We can use this fact

to first recover the rows of X0, and subsequently recover A0 by solving a system of linear equations. In

4Indeed, when θ is small enough such that columns ofX0 are predominately 1-sparse, one directly observes scaled versions of the
atoms (i.e., columns ofX0); whenX0 is fully dense corresponding to θ = 1, recovery is never possible as one can easily find another
completeA′0 and fully denseX′0 such that Y = A′0X

′
0 withA′0 not equivalent toA0.
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fact, for X0 ∼i.i.d. BG (θ), rows of X0 are the n sparsest vectors (directions) in row (Y ) w.h.p. whenever

p ≥ Ω (n log n) [SWW12]. Thus one might try to recover rows ofX0 by solving

minimize ‖q∗Y ‖0 subject to q 6= 0. (3.3.1)

The objective is discontinuous, and the domain is an open set. In particular, the homogeneity constraint is

unconventional and tricky to deal with. Since the recovery is up to scale, one can remove the homogeneity

by fixing the scale of q. Known relaxations [SWW12, DH14] fix the scale by setting ‖q∗Y ‖∞ = 1, where

‖·‖∞ is the elementwise `∞ norm. The optimization problem reduces to a sequence of convex programs,

which recover (A0,X0) for very sparseX0, but provably break down when columns ofX0 has more than

O (
√
n) nonzeros, or θ ≥ Ω (1/

√
n). Inspired by the success of nonconvex heuristic in our image experiment

(Section 1.1), we work with a nonconvex alternative5:

minimize f(q; Ŷ )
.
=

1

p

p∑
k=1

hµ (q∗ŷk) , subject to ‖q‖ = 1, (3.3.2)

where Ŷ ∈ Rn×p is a proxy for Y (i.e., after appropriate processing), k indexes columns of Ŷ , and ‖·‖ is the

usual `2 norm for vectors. Here hµ (·) is chosen to be a convex smooth approximation to |·|, as plotted against

Figure 3.1: Illustration of the smooth
`1 surrogate used in sparse dictio-
nary recovery. The function is cho-
sen to be infinitely differentiable such
that later on second-order informa-
tion can be extracted from second-
order derivatives.

the |·| function in Figure 3.1; namely,

hµ (z) = µ log cosh(z/µ), (3.3.3)

which is infinitely differentiable and µ controls the smoothing level.6 The spherical constraint is nonconvex.

Hence, a-priori, it is unclear whether (3.3.2) admits efficient algorithms that attain global optimizers. Sur-

prisingly, simple descent algorithms for (3.3.2) exhibit very striking behavior: on many practical numerical

5A similar formulation was proposed in [ZP01] in the context of blind source separation; see also [QSW14].
6In fact, there is nothing special about this choice and we believe that any valid smooth (twice continuously differentiable) approxi-

mation to |·|would work and yield qualitatively similar results. We also have some preliminary results showing the latter geometric
picture remains the same for certain nonsmooth functions, such as a modified version of the Huber function, though the analysis
involves handling a different set of technical subtleties. The algorithm also needs additional modifications.



CHAPTER 3. INTRODUCTION 31

✲�

✲✁✂✄

✁

✁✂✄

�

✲�

✲✁✂✄

✁

✁✂✄

�

✁✂�✵

✁✂☎

✁✂☎☎

✁✂☎✆

✁✂☎✝

✁✂☎✵

✁✂✞

Slightly%more%formally%…!
Lemma:%Suppose))))))))))))))))))),)and)))))))))))))))))).)Then…)2

…)and)so)…)every%local%optimizer%of%%%%%%%%%%%%%%%%%is%a%target%point.%+

Strongly%convex 

Nonzero%gradient 

Negative%curvature 

Figure 3.2: Why is dictionary learning over Sn−1 tractable? Assume the target dictionaryA0 is orthogonal. Left: Large
sample objective function EX0 [f (q)]. The only local minimizers are the columns ofA0 and their negatives. Center: the
same function, visualized as a height above the plane a⊥1 (a1 is the first column ofA0). Right: Around the optimizer,
the function exhibits a small region of strong convexity, a region of strong gradient, and finally a region in which the
direction away from the target minimizer is a direction of negative curvature.

examples7, they appear to produce global solutions. Our next section will uncover interesting geometrical

structures underlying the phenomenon.

3.3.2 A glimpse into high-dimensional function landscape

For the moment, suppose A0 is orthogonal, and take Ŷ = Y = A0X0 in (3.3.2). Figure 3.2 (left) plots

EX0
[f (q;Y )] over S2 (n = 3). Remarkably, EX0

[f (q;Y )] has no spurious local minimizers. In fact, every

local minimizer q̂ produces a row ofX0: q̂∗Y = αe∗iX0 for some α 6= 0. Moreover, there are saddle points,

each with an obvious negative curvature direction connecting two neighboring local minimizers. Thus,

qualitatively EX0
[f (q;Y )] is an X function over Sn−1.

To better illustrate the point, we take the particular caseA0 = I and project the upper hemisphere above

the equatorial plane e⊥3 onto e⊥3 . The projection is bijective and we equivalently define a reparameterization

g : e⊥3 7→ R of f . Figure 3.2 (center) plots the graph of g. Obviously the only local minimizers are 0,±e1,±e2,

and they are also global minimizers. Moreover, the apparent nonconvex landscape has interesting structures

around 0: when moving away from 0, one sees successively a strongly convex region, a nonzero gradient

region, and a region where at each point one can always find a direction of negative curvature, as shown

schematically in Figure 3.2 (right). This geometry implies that at any nonoptimal point, there is always at

least one direction of descent. Thus, any algorithm that can take advantage of the descent directions will

likely converge to one global minimizer, irrespective of initialization.

Two challenges stand out when implementing this idea. For geometry, one has to show similar structure

7... not restricted to the model we assume here forA0 andX0.
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exists for general completeA0, in high dimensions (n ≥ 3), when the number of observations p is finite (vs.

the expectation in the experiment). For algorithms, we need to be able to take advantage of this structure

without knowing A0 ahead of time. In Section 3.3.3, we describe a trust-region method over the sphere

which addresses the latter challenge.

Geometry for orthogonal A0. In this case, we take Ŷ = Y = A0X0. Since f (q;A0X0) = f (A∗0q;X0),

the landscape of f (q;A0X0) is simply a rotated version of that of f (q;X0), i.e., whenA0 = I . Hence we

will focus on the case whenA0 = I . Among the 2n symmetric sections of Sn−1 centered around the signed

basis vectors ±e1, . . . ,±en, we work with the symmetric section around en as an example. The result will

carry over to all sections with analogous arguments; together this provides a complete characterization of

the function f (q;X0) over Sn−1.

We again invoke the projection trick described above, this time onto the equatorial plane e⊥n . This can be

formally captured by the reparameterization mapping:

q (w) =

(
w,

√
1− ‖w‖2

)
, w ∈ Bn−1, (3.3.4)

where w is the new variable in e⊥n ∩ Bn−1 and Bn−1 is the unit ball in Rn−1. We first study the composition

g (w;X0)
.
= f (q (w) ;X0) over the set

Γ
.
=

{
w : ‖w‖ <

√
4n−1

4n

}
. (3.3.5)

It can be verified the section we chose to work with is contained in this set8.

Our analysis characterizes the properties of g (w;X0) by studying three quantities

∇2g (w;X0) ,
w∗∇g (w;X0)

‖w‖ ,
w∗∇2g (w;X0)w

‖w‖2

respectively over three consecutive regions moving away from the origin, corresponding to the three regions

in Figure 3.2 (right). In particular, through typical expectation-concentration style argument, we show that

(Theorem 4.1 & Corollary 4.2) there exists a positive constant c such that

∇2g (w;X0) � 1

µ
cθI,

w∗∇g (w;X0)

‖w‖ ≥ cθ, w∗∇2g (w;X0)w

‖w‖2
≤ −cθ (3.3.6)

over the respective regions w.h.p., confirming our low-dimensional observations described above. In particu-

8Indeed, if 〈q, en〉 ≥ |〈q, ei〉| for any i 6= n, 1− ‖w‖2 = q2
n ≥ 1/n, implying ‖w‖2 ≤ n−1

n
< 4n−1

4n
. The reason we have defined

an open set instead of a closed (compact) one is to avoid potential “artificial” local minimizers located on the boundary.
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lar, the favorable structure we observed for n = 3 persists in high dimensions, w.h.p., even when p is large

yet finite, for the caseA0 is orthogonal. Moreover, the local minimizer of g (w;X0) over Γ is very close to 0,

within a distance of O (µ).

Geometry for completeA0. For general complete dictionariesA0, we hope that the function f retains the

nice geometric structure discussed above. We can ensure this by “preconditioning” Y such that the output

looks as if being generated from a certain orthogonal matrix, possibly plus a small perturbation. We can then

argue that the perturbation does not significantly affect the properties of the graph of the objective function.

Write

Y =
√
pθ (Y Y ∗)−1/2

Y . (3.3.7)

Note that forX0 ∼i.i.d. BG (θ), E [X0X
∗
0 ] / (pθ) = I . Thus, one expects Y Y ∗/ (pθ) = A0X0X

∗
0A
∗
0/ (pθ) to

behave roughly likeA0A
∗
0 and hence Y to behave like

(A0A
∗
0)
−1/2

A0X0 = UV ∗X0 (3.3.8)

where we write the SVD of A0 as A0 = UΣV ∗. It is easy to see UV ∗ is an orthogonal matrix. Hence the

preconditioning scheme we have introduced is technically sound.

Our analysis shows that Y can be written as

Y = UV ∗X0 + ΞX0, (3.3.9)

where Ξ is a matrix with small magnitude. Simple perturbation argument shows that (Theorem 4.3 &

Corollary 4.4) the constant c in (3.3.6) is at most shrunk to c/2 for allw when p is sufficiently large. Thus, the

qualitative aspects of the geometry have not been changed by the perturbation.

Our w space calculation confirms that g(w) is an X function with concrete parameters. We will discuss

the implication on the original function f(q) after our main geometric results in Section 4.1.

3.3.3 A second-order algorithm on the sphere: Riemannian trust-region method

We do not knowA0 ahead of time, so our algorithm needs to take advantage of the structure described above

without knowledge ofA0. Intuitively, this seems possible as the descent direction in the w space appears

to also be a local descent direction for f over the sphere. Another issue is that although the optimization

problem has no spurious local minimizers, it does have many ridable saddle points (Figure 3.2). As discussed
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in Section 2.4, we can use second-order information to guarantee to escape from ridable saddle points in a

trust-region framework. We specialize the Riemannian trust-region method in Section 2.4 to the sphere.

O

q
TqSn−1

δ

expq(δ)

Sn−1

Figure 3.3: Illustrations of the tan-
gent space TqSn−1 and exponential
map expq (δ) defined on the sphere
Sn−1.

Consider an iterate sequence q(0), q(1), q(2), . . . over Sn−1. At any q ∈ Sn−1, the tangent space to the

sphere is TqSn−1 .
= {v : v∗q = 0} (see Figure 3.3) and the exponential map is

expq(δ) = q cos ‖δ‖ +
δ

‖δ‖ sin ‖δ‖ .

Thus, to forma local quadratic approximation to f(q) around the current iterate q(k), we consider f(expq(k)(δ)) :

Tq(k) 7→ R and its second-order Taylor approximation

f̂(δ; q(k))
.
= f(q(k)) +

〈
∇f(q(k)), δ

〉
+

1

2
δ∗
(
∇2f(q(k))−

〈
∇f(q(k)), q(k)

〉
I
)
δ. (3.3.10)

Let PT
q(k)Sn−1

.
= I−q(k)

(
q(k)

)∗ be the orthoprojector onto Tq(k)Sn−1. The Riemannian gradient and Hessian

can be read from the above quadratic approximation as:

gradf
(
q(k)

)
.
= PT

q(k)Sn−1∇f(q(k)),

Hessf
(
q(k)

)
.
= PT

q(k)Sn−1

(
∇2f(q(k))−

〈
∇f(q(k)), q(k)

〉
I
)
PT

q(k)Sn−1 .

One can then deploy the transformation trick discussed in Section 2.4 to solve the Riemannian trust-region

subproblem

minimizeδ∈T
q(k)Sn−1, ‖δ‖2≤∆ f̂

(
δ; q(k)

)
. (3.3.11)

Once an optimizer δ? is obtained, the next iterate is determined as

q(k+1) .
= expq(k) (δ?) = q(k) cos ‖δ?‖ + δ?

‖δ?‖ sin ‖δ?‖ . (3.3.12)

As seen from Figure 3.3, the movement to the next iterate is “along the direction"9 of δ? while staying over

the sphere.

9Technically, moving along the geodesic whose velocity at time zero is δ?.
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Based on the geometric characterizations, we prove that w.h.p., the algorithm converges to a local mini-

mizer when the parameter ∆ is sufficiently small. Specifically, we show that (1) a trust-region step in the

negative curvature and strong gradient regions decreases the objective value by at least a fixed amount; (2)

the trust-region iterate sequence will finally move to and stay in the strongly convex region, and converge to

a local minimizer with an asymptotic quadratic rate. In short, the geometric structure implies that from any

initialization, the iterate sequence converges to a close approximation to the target solution in a polynomial

number of steps.

3.4 Prior arts and connections

It is far too ambitious to include here a comprehensive review of the exciting developments of DL algorithms

and applications after the pioneer work [OF96]. We refer the reader to Chapter 12 - 15 of the book [Ela10] and

the survey paper [MBP14] for summaries of relevant developments in image analysis and visual recognition.

In the following, we focus on reviewing recent developments on the theoretical side of DL, and draw

connections to problems and techniques that are relevant to the current work.

Theoretical Dictionary Learning. The theoretical study of DL in the recovery setting started only very

recently. [AEB06] was the first to provide an algorithmic procedure to correctly extract the generating

dictionary. The algorithm requires exponentially many samples and has exponential running time; see

also [HS11]. Subsequent work [GS10, GW11, Sch14a, Sch14b, Sch15] studied when the target dictionary is

a local optimum of natural recovery criteria (“local correctness”). These meticulous analyses show that

polynomially many samples are sufficient to ensure local correctness under natural assumptions. However,

these results do not imply that one can design efficient algorithms to obtain the desired local optimizer and

hence the dictionary.

[SWW12] initiated the on-going research effort to provide efficient algorithms that globally solve DR.

They showed that one can recover a complete dictionaryA0 from Y = A0X0 by solving a certain sequence of

linear programs, whenX0 is a sparse random matrix with O(
√
n) nonzeros per column. [AAJ+13, AAN13]

and [AGM13, AGMM15] give efficient algorithms that provably recover overcomplete (m ≥ n) and incoherent

dictionaries, based on a combination of {clustering or spectral initialization} and local refinement. These

algorithms again succeed when X0 has Õ(
√
n) 10 nonzeros per column. Recent work [BKS14] provides

10The Õ suppresses some logarithm factors.
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the first polynomial-time algorithm that provably recovers most “nice” overcomplete dictionaries when

X0 has O(n1−δ) nonzeros per column for any constant δ ∈ (0, 1). However, the proposed algorithm runs

in super-polynomial time when the sparsity level goes up to O(n). Similarly, [ABGM14] also proposes a

super-polynomial (quasipolynomial) time algorithm that guarantees recovery with (almost) O (n) nonzeros

per column. By comparison, we give the first polynomial-time algorithm that provably recovers complete

dictionaryA0 whenX0 has O (n) nonzeros per column.

Aside from efficient recovery, other theoretical work on DL includes results on identifiability [AEB06,

HS11, WY15], generalization bounds [MP10b, VMB11, MG13, GJB+13], and noise stability [GJB14].

Finding Sparse Vectors in a Linear Subspace. We have followed [SWW12] and cast the core problem as

finding the sparsest vectors in a given linear subspace, which is also of independent interest. Under a planted

sparse model11, [DH14] shows solving a sequence of linear programs similar to [SWW12] can recover sparse

vectors with sparsity up to O (p/
√
n), sublinear in the vector dimension. [QSW14] improved the recovery

limit to O (p) by solving a nonconvex sphere constrained problem similar to (3.3.2)12 via an alternating

direction algorithm. The idea of seeking rows ofX0 sequentially by solving the above core problem sees

precursors in [ZP01] for blind source separation, and [GN10] for matrix sparsification. [ZP01] also proposed

a nonconvex optimization similar to (3.3.2) here and that employed in [QSW14].

Nonconvex Optimization Problems. For other nonconvex optimization problems of recovery of structured

signals13, including low-rank matrix completion/recovery [KMO10, JNS13, Har14, HW14, NNS+14, JN14,

SL14, ZL15, TBSR15, CW15], phase retreival [NJS13, CLS15b, CC15, WWS15], tensor recovery [JO14, AGJ14b,

AGJ14a, AJSN15], mixed regression [YCS13, LWB13], structured element pursuit [QSW14], and recovery

of simultaneously structured signals [LWB13], numerical linear algebra [JJKN15], the initialization plus

local refinement strategy adopted in theoretical DL [AAJ+13, AAN13, AGM13, AGMM15, ABGM14] is also

crucial: nearness to the target solution enables exploiting the local geometry of the target to analyze the local

refinement.14 By comparison, we provide a complete characterization of the global geometry, which admits

efficient algorithms without any special initialization. The idea of separating the geometric analysis and

11... where one sparse vector embedded in an otherwise random subspace.
12The only difference is that they chose to work with the Huber function as a proxy of the ‖·‖1 function.
13This is a body of recent work studying nonconvex recovery up to statistical precision, including, e.g., [LW11, LW13, WLL14, BWY14,

WGNL14, LW14, Loh15, SLLC15].
14The powerful framework [ABRS10, BST14] to establish local convergence of ADM algorithms to critical points applies to DL/DR

also, see, e.g., [BJQS14, BQJ14, BJS14]. However, these results do not guarantee to produce global optima.
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algorithmic design may also prove valuable for other nonconvex problems discussed above.

Optimization over Riemannian Manifolds. Our trust-region algorithm on the sphere builds on the exten-

sive research efforts to generalize Euclidean numerical algorithms to (Riemannian) manifold settings. We

refer the reader to the monographs [Udr94, HMG94, AMS09] for survey of developments in this field. In

particular, [EAS98] developed Newton and conjugate-gradient methods for the Stiefel manifolds, of which

the sphere is a special case. [ABG07] generalized the trust-region methods to Riemannian manifolds. We

cannot, however, adopt the existing convergence results that concern either global convergence (convergence

to critical points) or local convergence (convergence to a local minimum within a radius), or the forthcoming

generic results on convergence to second-order necessary points [BAC16] under weaker assumptions. The

particular geometric structure forces us to piece together different arguments to obtain the specialized global

result.

(a) Correlated Gaussian, θ = 0.1 (b) Correlated Uniform, θ = 0.1 (c) Independent Uniform, θ = 0.1

(d) Correlated Gaussian, θ = 0.9 (e) Correlated Uniform, θ = 0.9 (f) Independent Uniform, θ = 1

Figure 3.4: Asymptotic function landscapes in R3 when rows ofX0 are not independent for sparse dictionary learn-
ing. W.l.o.g., we again assume A0 = I . In (a) and (d), X0 = Ω � V , with Ω ∼i.i.d. Ber(θ) and columns ofX0 i.i.d.
Gaussian vectors obeying vi ∼ N (0,Σ2) for symmetric Σ with 1’s on the diagonal and i.i.d. off-diagonal entries
distributed as N (0,

√
2/20). Similarly, in (b) and (e), X0 = Ω �W , with Ω ∼i.i.d. Ber(θ) and columns of X0 i.i.d.

vectors generated as wi = Σui with ui ∼i.i.d. Uniform[−0.5, 0.5]. For comparison, in (c) and (f),X0 = Ω �W with
Ω ∼i.i.d. Ber(θ) andW ∼i.i.d. Uniform[−0.5, 0.5]. Here � denote the elementwise product, and the objective function
is still based on the sparsity surrogate in (3.3.2).

Independent Component Analysis (ICA) and Other Matrix Factorization Problems. DL can also be

considered in the general framework of matrix factorization problems, which encompass the classic principal
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component analysis (PCA), ICA, and clustering, and more recent problems such as nonnegative matrix

factorization (NMF), multi-layer neural nets (deep learning architectures). Most of these problems are NP-

hard. Identifying tractable cases of practical interest and providing provable efficient algorithms are subject

of on-going research endeavors; see, e.g., recent progresses on NMF [AGKM12], and learning deep neural

nets [ABGM13, SA14c, NP13, LSSS14].

ICA factors a data matrix Y as Y = AX such that A is square and rows ofX are as independent as

possible [HO00, HKO01]. In theoretical study of the recovery problem, it is often assumed that rows ofX0

are (weakly) independent (see, e.g., [Com94, FJK96, AGMS12]). Our i.i.d. probability model onX0 implies

rows ofX0 are independent, aligning our problem perfectly with the ICA problem. More interestingly, the

log cosh objective we analyze here was proposed as a general-purpose contrast function in ICA that has not

been thoroughly analyzed [Hyv99], and algorithm and analysis with another popular contrast function, the

fourth-order cumulants, indeed overlap with ours considerably [FJK96, AGMS12]15. While this interesting

connection potentially helps port our analysis to ICA, it is a fundamental question to ask what is playing the

vital role for DR, sparsity or independence.

Figure 3.4 helps shed some light in this direction, where we again plot the asymptotic objective landscape

with the natural reparameterization as in Section 3.3.2. From the left and central panels, it is evident even

without independence,X0 with sparse columns induces the familiar geometric structureswe saw in Figure 3.2;

such structures are broken when the sparsity level becomes large. We believe all our later analyses can be

generalized to the correlated cases we experimented with. On the other hand, from the right panel16, it seems

with independence, the function landscape undergoes a transition as sparsity level grows - target solution

goes from minimizers of the objective to the maximizers of the objective. Without adequate knowledge of

the true sparsity, it is unclear whether one would like to minimize or maximize the objective. This suggests

sparsity, instead of independence, is critical to success of our method for DR.

15Nevertheless, the objective functions are apparently different. Moreover, we have provided a complete geometric characterization of
the objective, in contrast to [FJK96, AGMS12]. We believe the geometric characterization could not only provide insight to the algorithm,
but also help improve the algorithm in terms of stability and also finding all components.

16We have not showed the results on the BG model here, as it seems the structure persists even when θ approaches 1. We suspect the
“phase transition” of the landscape occurs at different points for different distributions and Gaussian is the outlying case where the
transition occurs at 1.
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Chapter 4

High-Dimensional Function Landscapes

There is no Royal Road to geometry.

Euclid

In this chapter, we present a quantitative characterization of the objective f(q) over the sphere, enriching

the qualitative description we provided in Section 3.3.2. To characterize the function landscape of f (q;X0)

over Sn−1, we mostly work with the function

g (w)
.
= f (q (w) ;X0) =

1

p

p∑
k=1

hµ
(
q (w)

∗
(x0)k

)
, (4.0.1)

induced by the reparametrization

q (w) =

(
w,

√
1− ‖w‖2

)
, w ∈ Bn−1. (4.0.2)

In particular, we focus our attention to the smaller set

Γ =

{
w : ‖w‖ <

√
4n− 1

4n

}
, (4.0.3)

because q (Γ) contains all points q ∈ Sn−1 with n ∈ arg maxi∈±[n] q
∗ei and we can characterize other parts of

f on Sn−1 using projection onto other equatorial planes. Note that over Γ, qn =
(

1− ‖w‖2
)1/2

≥ 1
2
√
n
.

Section 4.1 contains precise statements of the geometric results, and discussion of their implications.

Section 4.2 collects key intermediate results towards proving the results for orthogonalA0, and Section 4.3

discusses how to extend the results of the orthogonal case to the complete case by a perturbation argument.

Detailed proofs to most technical claims are deferred to Chapter 9.
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4.1 Main geometric theorems

Theorem 4.1 (High-dimensional landscape - orthogonal dictionary) Suppose A0 = I and hence Y =

A0X0 = X0. There exist positive absolute constants c? and C, such that for any θ ∈ (0, 1/2) and µ <

min
{
caθn

−1, cbn
−5/4

}
, whenever

p ≥ C

µ2θ2
n3 log

n

µθ
, (4.1.1)

the following hold simultaneously with high probability:

∇2g(w;X0) � c?θ

µ
I ∀w s.t. ‖w‖ ≤ µ

4
√

2
, (4.1.2)

w∗∇g(w;X0)

‖w‖ ≥ c?θ ∀w s.t. µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5
(4.1.3)

w∗∇2g(w;X0)w

‖w‖2
≤ −c?θ ∀w s.t. 1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
, (4.1.4)

and the function g(w;X0) has exactly one local minimizer w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
,

which satisfies

‖w? − 0‖ ≤ min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (4.1.5)

In particular, with this choice of p, the probability the claim fails to hold is at most 4np−10 + θ(np)−7 +

exp (−0.3θnp) + cd exp
(
−cepµ2θ2/n2

)
. Here ca to ce are all positive absolute constants.

Here q (0) = en, which exactly recovers the last row ofX0. Though the unique local minimizer w? may

not be 0, it is very near to 0.1 Hence the resulting q (w?) produces a close approximation to xn0 . Note that

q (Γ) (strictly) contains all points q ∈ Sn−1 such that n = arg maxi∈±[n] q
∗ei. We can characterize the graph

of the function f (q;X0) in the vicinity of other signed basis vector ±ei simply by changing the plane e⊥n

to e⊥i . Doing this 2n times (and multiplying the failure probability in Theorem 4.1 by 2n), we obtain a

characterization of f (q;X0) over the entirety of Sn−1.2 The result is captured by the next corollary.

Corollary 4.2 SupposeA0 = I and hence Y = A0X0 = X0. There exists a positive absolute constant C, such

that for any θ ∈ (0, 1/2) and µ < min
{
caθn

−1, cbn
−5/4

}
, whenever p ≥ C

µ2θ2n
3 log n

µθ , with probability at

least 1− 8n2p−10− θ(np)−7− exp (−0.3θnp)− cc exp
(
−cdpµ2θ2/n2

)
, the function f (q;X0) has exactly 2n

1As can be seen from the proof, the reasonw? may not be 0 is exactly that p is finite.
2In fact, it is possible to pull the very detailed geometry captured in (4.1.2) through (4.1.4) back to the sphere (i.e., the q space) also;

analysis of the Riemannian trust-region algorithm later does part of these. We will stick to this simple global version here.
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local minimizers over the sphere Sn−1. In particular, there is a bijective map between these minimizers and signed

basis vectors {±ei}i, such that the corresponding local minimizer q? and b ∈ {±ei}i satisfy

‖q? − b‖ ≤
√

2 min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (4.1.6)

Here ca to cd are positive absolute constants (possibly different from that in the above theorem).

Proof By Theorem 4.1, over q (Γ), q (w?) is the unique local minimizer. Suppose not. Then there exist

q′ ∈ q (Γ)with q′ 6= q (w?) and ε > 0, such that f (q′;X0) ≤ f (q;X0) for all q ∈ q (Γ) satisfying ‖q′ − q‖ < ε.

Since the mapping w 7→ q (w) is 2
√
n-Lipschitz (Lemma 9.7), g (w (q′) ;X0) ≤ g (w (q) ;X0) for all w ∈ Γ

satisfying ‖w (q′)−w (q)‖ < ε/ (2
√
n), implyingw (q′) is a localminimizer different fromw?, a contradiction.

Let ‖w? − 0‖ = η. Straightforward calculation shows

‖q (w?)− en‖2 =
(

1−
√

1− η2
)2

+ η2 = 2− 2
√

1− η2 ≤ 2η2.

Repeating the argument 2n times in the vicinity of other signed basis vectors±ei gives 2n local minimizers of

f . Indeed, the 2n symmetric sections cover the sphere with certain overlaps, and a simple calculation shows

that no such local minimizer lies in the overlapped regions (due to nearness to a signed basis vector). There

is no extra local minimizer, as such local minimizer is contained in at least one of the 2n symmetric sections,

resulting two different local minimizers in one section, contradicting the uniqueness result we obtained

above.

Though the 2n isolated local minimizers may have different objective values, they are equally good in the

sense any of them produces a close approximation to a certain row ofX0. As discussed in Section 3.3.2, for

casesA0 is an orthobasis other than I , the landscape of f (q;Y ) is simply a rotated version of the one we

characterized above.

The function landscape for general completeA0 is characterized as below.

Theorem 4.3 (High-dimensional landscape - complete dictionary) SupposeA0 is complete with its con-

dition number κ (A0). There exist positive absolute constants c? and C, such that for any θ ∈ (0, 1/2) and

µ < min
{
caθn

−1, cbn
−5/4

}
, when

p ≥ C

c2?θ
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
(4.1.7)

and write Y .
=
√
pθ (Y Y ∗)−1/2

Y , UΣV ∗ = SVD (A0), the following hold simultaneously with high probabil-
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ity:

∇2g(w;V U∗Y ) � c?θ

2µ
I ∀w s.t. ‖w‖ ≤ µ

4
√

2
, (4.1.8)

w∗∇g(w;V U∗Y )

‖w‖ ≥ 1

2
c?θ ∀w s.t. µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5
(4.1.9)

w∗∇2g(w;V U∗Y )w

‖w‖2
≤ −1

2
c?θ ∀w s.t. 1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
, (4.1.10)

and the function g(w;V U∗Y ) has exactly one local minimizerw? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
,

which satisfies

‖w? − 0‖ ≤ µ

7
. (4.1.11)

In particular, with this choice of p, the probability the claim fails to hold is at most 4np−10 + θ(np)−7 +

exp (−0.3θnp) + p−8 + cd exp
(
−cepµ2θ2/n2

)
. Here ca to ce are all positive absolute constants.

Corollary 4.4 SupposeA0 is complete with its condition number κ (A0). There exist positive absolute constants

c? andC, such that for any θ ∈ (0, 1/2) and µ < min
{
caθn

−1, cbn
−5/4

}
, when p ≥ C

c2?θ
max

{
n4

µ4 ,
n5

µ2

}
κ8 (A0)

log4
(
κ(A0)n
µθ

)
and Y .

=
√
pθ (Y Y ∗)−1/2

Y , UΣV ∗ = SVD (A0), with probability at least 1 − 8n2p−10 −

θ(np)−7 − exp (−0.3θnp) − p−8 − cd exp
(
−cepµ2θ2/n2

)
, the function f

(
q;V U∗Y

)
has exactly 2n local

minimizers over the sphere Sn−1. In particular, there is a bijective map between these minimizers and signed basis

vectors {±ei}i, such that the corresponding local minimizer q? and b ∈ {±ei}i satisfy

‖q? − b‖ ≤
√

2µ

7
. (4.1.12)

Here ca to cd are positive absolute constants (possibly different from that in the above theorem).

We will omit the proof as it is almost identical to that of Corollary 4.2.

From the above results, it is clear that all local minimizers of f(q) over Sn−1 are “global” in the sense that

any of them produces a close approximation to a row ofX0 and finding them all approximately recovers

all rows ofX0. Moreover, any g(w) for one of the 2n symmetric sections is ridable-saddle with concrete

parameters. A natural question is whether f(q) is a also ridable-saddle function, which together with the

above globalness implies f is qualitatively an X function over the sphere.

The answer is indeed yes. Instead of presenting a rigorous technical statement and detailed proof, we

include here just an informal argument. Our analysis of the trust-region algorithm runs back and forth in the

w and q space, and it turns out such a lack will not affect our arguments there.
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Again we work with one of the symmetric sections first. It is easy to verify the following fact (see proof of

Lemma 5.11 on Page 119):

〈grad f(q), q − en/qn〉 = 〈w,∇g(w)〉 .

Thus, 〈grad f(q), q − en/qn〉 6= 0 if and only if 〈w,∇g(w)〉 6= 0, implying that grad f(q) will never be zero in{
q(w) : µ/(4

√
2) ≤ ‖w‖ ≤ 1/(20

√
5)
}
. Moreover, it is shown in Lemma 5.9 below that the Riemannian Hes-

sian is positive definite for any point in the spherical region
{
q(w) : ‖w‖ ≤ µ/(4

√
2)
}
. Moreover, Theorem 4.1

and Theorem 4.3 imply that around each point in {w : 1/(20
√

5) ≤ ‖w‖ ≤
√

(4n− 1)/(4n)}, g(w) is strictly

concave locally in ±w direction. Intuitively, through the q(w) mapping, the function f(q) is geodesically

strictly concave along the geodesic curve connecting ±en. Repeating the above arguments for all 2n symmet-

ric sections, and then noting any point on the sphere is covered by one out of the strong gradient, strongly

convex, and negative directional curvature regions, we can conclude that f(q) is indeed a ridable-saddle

function (with concrete parameters that we have not estimated), and hence also an “approximate” X function

over the sphere.

4.2 Sketch of proof ideas for orthogonal dictionaries

The proof of Theorem 4.1 is conceptually straightforward: one shows that EX0
[g (w;X0)] has the claimed

properties, and then proves that each of the quantities of interest concentrates uniformly about its expectation.

The detailed calculations are nontrivial.

The next three propositions show that in the expected function landscape, we see successively strongly

convex region, nonzero gradient region, and directional negative curvature region when moving away from

zero, as depicted in Figure 3.2 and sketched in Section 3.3.2. Note that in this case

EX0
[g (q;X0)] = Ex∼i.i.d.BG(θ) [hµ (q∗ (w)x)] .

Proposition 4.5 There exists an absolute constant c > 0, such that for every θ ∈ (0, 1/2) and any Rh ∈(
0,
√

4n−1
4n

)
, if µ ≤ cmin

{
θR2

hn
−1, Rhn

−5/4
}
, it holds for every w satisfying Rh ≤ ‖w‖ ≤

√
4n−1

4n that

w∗∇2
wE [hµ (q∗ (w)x)]w

‖w‖2
≤ − θ

2
√

2π
.

Proof See Section 9.1.1 on Page 80.
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Proposition 4.6 For every θ ∈ (0, 1/2) and every µ ≤ 9/50, it holds for every w satisfying rg ≤ ‖w‖ ≤ Rg,

where rg = µ/(6
√

2) and Rg = (1− θ)/(10
√

5), that

w∗∇wE [hµ(q∗ (w)x)]

‖w‖ ≥ θ

20
√

2π
.

Proof See Section 9.1.2 on Page 86.

Proposition 4.7 For every θ ∈ (0, 1/2), and every µ ≤ 1/(20
√
n), it holds for every w satisfying ‖w‖ ≤

µ/(4
√

2) that

E
[
∇2
whµ (q∗ (w)x)

]
� θ

25
√

2πµ
I.

Proof See Section 9.1.3 on Page 88.

To prove that the above hold qualitatively for finite p, i.e., the function g (w;X0), we will first prove that

for a fixedw each of the quantity of interest concentrate about their expectation w.h.p., and the function is

nice enough (Lipschitz) such that we can extend the results to all w via a discretization argument. The next

three propositions provide the desired pointwise concentration results.

Proposition 4.8 Suppose 0 < µ ≤ 1/
√
n. For every w ∈ Γ, it holds that for any t > 0,

P

[∣∣∣∣∣w∗∇2g(w;X0)w

‖w‖2
− E

[
w∗∇2g(w;X0)w

‖w‖2

]∣∣∣∣∣ ≥ t
]
≤ 4 exp

(
− pµ2t2

512n2 + 32nµt

)
.

Proof See Page 92 under Section 9.1.4.

Proposition 4.9 For every w ∈ Γ, it holds that for any t > 0,

P
[∣∣∣∣w∗∇g(w;X0)

‖w‖ − E
[
w∗∇g(w;X0)

‖w‖

]∣∣∣∣ ≥ t] ≤ 2 exp

(
− pt2

8n+ 4
√
nt

)
.

Proof See Page 93 under Section 9.1.4.

Proposition 4.10 Suppose 0 < µ ≤ 1/
√
n. For every w ∈ Γ ∩ {w : ‖w‖ ≤ 1/4}, it holds that for any t > 0,

P
[∥∥∇2g(w;X0)− E

[
∇2g(w;X0)

]∥∥ ≥ t] ≤ 4n exp

(
− pµ2t2

512n2 + 32µnt

)
.

Proof See Page 93 under Section 9.1.4.
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The next three propositions provide the desired Lipschitz results. Here ‖·‖∞ returns the largest of

elementwise magnitudes.

Proposition 4.11 (Hessian Lipschitz) Fix any rS ∈ (0, 1). Over the set Γ∩{w : ‖w‖ ≥ rS}, w
∗∇2g(w;X0)w

‖w‖2

is LS-Lipschitz with

LS ≤
16n3

µ2
‖X0‖3∞ +

8n3/2

µrS
‖X0‖2∞ +

48n5/2

µ
‖X0‖2∞ + 96n5/2 ‖X0‖∞ .

Proof See Page 99 under Section 9.1.5.

Proposition 4.12 (Gradient Lipschitz) Fix any rg ∈ (0, 1). Over the set Γ ∩ {w : ‖w‖ ≥ rg}, w
∗∇g(w;X0)
‖w‖

is Lg-Lipschitz with

Lg ≤
2
√
n ‖X0‖∞
rg

+ 8n3/2 ‖X0‖∞ +
4n2

µ
‖X0‖2∞ .

Proof See Page 99 under Section 9.1.5.

Proposition 4.13 (Lipschitz for Hessian around zero) Fix any rN ∈
(
0, 1

2

)
. Over the setΓ∩{w : ‖w‖ ≤ rN},

∇2g(w;X0) is LN-Lipschitz with

LN ≤
4n2

µ2
‖X0‖3∞ +

4n

µ
‖X0‖2∞ +

8
√

2
√
n

µ
‖X0‖2∞ + 8 ‖X0‖∞ .

Proof See Page 100 under Section 9.1.5.

Integrating the above pieces, Section 9.2 provides a complete proof of Theorem 4.1.

4.3 Extending to complete dictionaries

As hinted in Section 3.3.2, instead of proving things from scratch, we build on the results we have obtained

for orthogonal dictionaries. In particular, we will work with the preconditioned data matrix

Y
.
=
√
pθ (Y Y ∗)−1/2

Y (4.3.1)

and show that the function landscape f
(
q;Y

)
looks qualitatively like that of orthogonal dictionaries (up to

a global rotation), provided that p is large enough.

The next lemma shows Y can be treated as being generated from an orthobasis with the same BG

coefficients, plus small noise.
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Lemma 4.14 For any θ ∈ (0, 1/2), supposeA0 is complete with condition numberκ (A0) andX0 ∼i.i.d. BG (θ).

Provided p ≥ Cκ4 (A0) θn2 log(nθκ (A0)), one can write Y as defined in (4.3.1) as

Y = UV ∗X0 + ΞX0,

for a certain Ξ obeying ‖Ξ‖ ≤ 20κ4 (A)
√

θn log p
p , with probability at least 1− p−8. Here UΣV ∗ = SVD (A0),

and C > 0 is an absolute constant.

Proof See Page 104 under Section 9.3.

Notice that UV ∗ above is orthogonal, and that landscape of f(q;Y ) is simply a rotated version of that

of f(q;V U∗Y ), or using the notation in the above lemma, that of f(q;X0 + V U∗ΞX0) = f(q;X0 + Ξ̃X0)

assuming Ξ̃
.
= V U∗Ξ. So similar to the orthogonal case, it is enough to consider this “canonical” case, and

its “canonical” reparametrization:

g
(
w;X0 + Ξ̃X0

)
=

1

p

p∑
k=1

hµ

(
q∗ (w) (x0)k + q∗ (w) Ξ̃ (x0)k

)
.

The following lemmaprovides quantitative comparison between the gradient andHessian of g
(
w;X0 + Ξ̃X0

)
and that of g (w;X0).

Lemma 4.15 There exist positive constants Ca and Cb, such that for all w ∈ Γ,∥∥∥∇wg(w;X0 + Ξ̃X0)−∇wg (w;X0)
∥∥∥ ≤ Can

µ
log (np) ‖Ξ̃‖,∥∥∥∇2

wg(w;X0 + Ξ̃X0)−∇2
wg (w;X0)

∥∥∥ ≤ Cb max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np) ‖Ξ̃‖

with probability at least 1− θ (np)
−7 − exp (−0.3θnp).

Proof See Page 105 under Section 9.3.

Combining the above two lemmas, it is easy to see when p is large enough, ‖Ξ̃‖ = ‖Ξ‖ is then small enough

(Lemma 4.14), and hence the changes to the gradient and Hessian caused by the perturbation are small. This

gives the results presented in Theorem 4.3; see Section 9.3 for a detailed proof. In particular, for the p chosen

in Theorem 4.3, it holds that ∥∥∥Ξ̃∥∥∥ ≤ cc?θ(max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

(4.3.2)

for a constant c > 0 which can be made arbitrarily small by making the constant C in p large.
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Chapter 5

Finding One Local Minimizer via the

Riemannian Trust-Region Method

Nevertheless, it remains conceivable that the measure relations of space

in the infinitely small are not in accordance with the assumptions of our

geometry [Euclidean geometry], and, in fact, we should have to assume

that they are not if, by doing so, we should ever be enabled to explain

phenomena in a more simple way.

Bernhard Riemann

The geometric results in the preceding chapter show that each local minimizer of f(q; Ŷ ) over Sn−1

approximately recovers a row of X0 and by finding all local minimizers one can recover all rows of X0.

So the central question left is how to efficiently obtain these local minimizers. In this chapter, we focus on

finding any one local minimizer out of the many; we will discuss how to sequentially find more based on

the result here and hence to recoverX0 in the next chapter. The presence of saddle points has motivated

us to develop a (second-order) Riemannian trust-region algorithm over the sphere; the existence of descent

directions at nonoptimal points drives the trust-region iteration sequence towards one of the minimizers

asymptotically. We will prove that under our model assumptions, the algorithm efficiently produces a close

approximation (up to numerical precision) to one of the minimizers. Throughout the exposition, basic

knowledge of Riemannian geometry is assumed. We will try to keep the technical requirement minimal

possible; the reader can consult the excellent monograph [AMS09] for relevant background and details.
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We will provide a self-contained development of trust-region method over the sphere in Section 5.1

with implementation details, followed by main convergence results in Section 5.2. We will then sketch how

to prove the convergence results for orthogonal and complete dictionaries in Section 5.3 and Section 5.4,

respectively. Details proofs are deferred to Chapter 10.

5.1 The Riemannian trust-region algorithm over the sphere

We are interested to seek one local minimizer of the problem

minimize f(q; Ŷ )
.
=

1

p

p∑
k=1

hµ(q∗ŷi) subject to q ∈ Sn−1. (5.1.1)

For a function f(q) in the Euclidean space, the typical TRM starts from some initialization q(0) ∈ Rn, and

produces a sequence of iterates q(1), q(2), . . . , by repeatedly minimizing a quadratic approximation f̂ to the

objective function f(q), over a ball centered about the current iterate.

Here, we are interested in the restriction of f(q) to the unit sphere Sn−1. Instead of directly approximating

the function in Rn, we form quadratic approximations of f in the tangent space of Sn−1. Recall that the

tangent space of a sphere at a point q ∈ Sn−1 is TqSn−1 = {δ ∈ Rn : q∗δ = 0}, i.e., the set of vectors that are

orthogonal to q. Consider the exponential map expq(δ)
.
= q cos ‖δ‖+δ/ ‖δ‖ ·sin ‖δ‖ that maps a neighboring

point δ of 0 on TqSn−1 to a point near q on Sn−1. The function f ◦ expq(δ) obviously is smooth and we expect

Taylor expansion around 0 a good approximation of the function, at least in the vicinity of 0. Taylor’s theorem

gives

f ◦ expq(δ) = f(q) +
〈
∇f(q; Ŷ ), δ

〉
+

1

2
δ∗
(
∇2f(q; Ŷ )−

〈
∇f(q; Ŷ ), q

〉
I
)
δ +O(‖δ‖3).

We therefore form the “quadratic” approximation f̂ (δ; q) : TqSn−1 7→ R as

f̂(δ; q, Ŷ )
.
= f(q) +

〈
∇f(q; Ŷ ), δ

〉
+

1

2
δ∗
(
∇2f(q; Ŷ )−

〈
∇f(q; Ŷ ), q

〉
I
)
δ. (5.1.2)

Given the previous iterate q(k−1), the TRM produces the next iterate by generating a solution δ̂ to

minimizeδ∈T
q(k−1)Sn−1, ‖δ‖≤∆ f̂(δ; q(k−1)), (5.1.3)

and then “pull” the solution δ̂ from TqSn−1 back to Sn−1. If we choose the exponential map to pull back the
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movement δ̂,1 the next iterate then reads

q(k) = q(k−1) cos ‖δ̂‖+
δ̂

‖δ̂‖
sin ‖δ̂‖. (5.1.4)

We have motivated (5.1.2) and hence the algorithm in an intuitive way from the Taylor approximation to

the function f over Sn−1. To understand its properties, it is useful to interpret it as a Riemannian trust-region

method over the manifold Sn−1. The class of algorithms are discussed in detail in the monograph [AMS09].

In particular, the quadratic approximation (5.1.2) can be obtained by noting that the function f ◦ expq(δ; Ŷ ) :

TqSn−1 7→ R obeys

f ◦ expq(δ; Ŷ ) = f(q; Ŷ ) +
〈
δ, grad f(q; Ŷ )

〉
+

1

2
δ∗Hess f(q; Ŷ )δ +O(‖δ‖3),

where grad f(q; Ŷ ) and Hess f(q; Ŷ ) are the Riemannian gradient and Riemannian Hessian [AMS09] respec-

tively, defined as

grad f(q; Ŷ )
.
= PTqSn−1∇f(q; Ŷ ),

Hess f(q; Ŷ )
.
= PTqSn−1

(
∇2f(q; Ŷ )−

〈
∇f(q; Ŷ ), q

〉
I
)
PTqSn−1 ,

with PTqSn−1
.
= I−qq∗ the orthoprojector onto the tangent space TqSn−1. We will use these standard notions

in analysis of the algorithm.

To solve the subproblem (5.1.3) numerically, we can take any matrix U ∈ Rn×(n−1) whose columns form

an orthonormal basis for Tq(k−1)Sn−1, and produce a solution ξ̂ to

minimize‖ξ‖≤∆ f̂(Uξ; q(k−1)), (5.1.5)

where by (5.1.2),

f̂(Uξ; q(k−1)) = f(q) +
〈
U∗∇f(q(k−1)), ξ

〉
+

1

2
ξ∗
(
U∗∇2f(q(k−1); Ŷ )U −

〈
∇f(q(k−1); Ŷ ), q(k−1)

〉
In−1

)
ξ.

Solution to (5.1.3) can then be recovered as δ̂ = Uξ̂. The problem (5.1.5) is an instance of the classic trust region

subproblem, i.e., minimizing a quadratic function over an `2 norm ball, which can be solved in polynomial time,

either by root finding methods [MS83, CGT00] or by semidefinite programming (SDP) [RW97, YZ03, FW04,

HK14]. We brief discuss how SDP can be used to solve the subproblem exactly here; our implementation in

1The exponential map is only one of the many possibilities; also for general manifolds other retraction schemes may be more practical.
See exposition on retraction in Chapter 4 of [AMS09].
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simulations are based on the modified Manopt implementation discussed in Section 2.6. We introduce

ξ̃ = [ξ∗, 1]
∗
, Θ = ξ̃ξ̃∗, M =

 A b

b∗ 0

 , (5.1.6)

where A = U∗(∇2f(q(k−1); Ŷ ) −
〈
∇f(q(k−1); Ŷ ), q(k−1)

〉
I)U and b = U∗∇f(q(k−1); Ŷ ). The resulting

SDP to solve is

minimize Θ 〈M ,Θ〉 , subject to tr(Θ) ≤ ∆2 + 1, 〈En+1,Θ〉 = 1, Θ � 0, (5.1.7)

where En+1 = en+1e
∗
n+1. Once the problem (5.1.7) is solved to its optimal Θ?, one can provably recover the

optimal solution ξ? of (5.1.5) by computing the SVD of Θ? = ŨΣṼ ∗, and extract as a subvector by the first

n− 1 coordinates of the principal eigenvector ũ1 (see Appendix B of [BV04]).

5.2 Main convergence results

By specializing general results on the Riemannian TRM (see, e.g., Chapter 7 of [AMS09]), it is not difficult to

prove that the iterates sequence q(k) described above converges to a critical point of the objective f(q) over

Sn−1. In this section, we show that under our probabilistic assumptions, a stronger result can be obtained

(see also [BAC16]). Specifically, the iterative algorithm is guaranteed to produce a close approximation to a

local minimizer of the objective function, in a number of iterations that is polynomial in the problem size.

The arguments described in Chapter 4 show that with high probability every local minimizer of f produces

a close approximation of one row ofX0. Taken together, this implies that the algorithm efficiently produces

a close approximation to one row ofX0.

Our next two theorems summarize the convergence results for orthogonal and complete dictionaries,

respectively.

Theorem 5.1 (TRM convergence - orthogonal dictionary) Suppose the dictionaryA0 is orthogonal. There

exists a positive constant C, such that for all θ ∈ (0, 1/2), and µ < min
{
caθn

−1, cbn
−5/4

}
, whenever

exp(n) ≥ p ≥ Cn3 log n
µθ/(µ

2θ2), (5.2.1)

with probability at least 1− 8n2p−10 − θ(np)−7 − exp (−0.3θnp)− p−10 − cc exp
(
−cdpµ2θ2/n2

)
, the Rie-

mannian trust-region algorithm with input data matrix Ŷ = Y , any initialization q(0) on the sphere, and a step
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size satisfying

∆ ≤ min

{
cec?θµ

2

n5/2 log3/2 (np)
,

cfc
3
]θ

3µ

n7/2 log7/2 (np)

}
, (5.2.2)

returns a solution q̂ ∈ Sn−1 which is ε near to one of the local minimizers q? (i.e., ‖q̂ − q?‖ ≤ ε) in

max

{
cgn

6 log3 (np)

c3?θ
3µ4

,
chn

c2]θ
2∆2

}
f(q(0)) + log log

cic?θµ

εn3/2 log3/2 (np)
(5.2.3)

iterations. Here c?, c] as defined in Theorem 4.1 and Lemma 5.9 respectively (c? and c] can be set to the same

constant value), and ca, cb are the same constants as defined in Theorem 4.1, cc through ci are other positive

constants.

Theorem 5.2 (TRM convergence - complete dictionary) Suppose the dictionaryA0 is complete with condi-

tion numberκ (A0). There exists a positive constantC, such that for all θ ∈ (0, 1/2), andµ < min
{
caθn

−1, cbn
−5/4

}
,

whenever

exp(n) ≥ p ≥ C

c2?θ
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
, (5.2.4)

with probability at least 1− 8n2p−10 − θ(np)−7 − exp (−0.3θnp)− 2p−8 − cc exp
(
−cdpµ2θ2/n2

)
, the Rie-

mannian trust-region algorithm with input data matrix Y .
=
√
pθ (Y Y ∗)−1/2

Y where UΣV ∗ = SVD (A0),

any initialization q(0) on the sphere and a step size satisfying

∆ ≤ min

{
cec?θµ

2

n5/2 log3/2 (np)
,

cfc
3
]θ

3µ

n7/2 log7/2 (np)

}
(5.2.5)

returns a solution q̂ ∈ Sn−1 which is ε near to one of the local minimizers q? (i.e., ‖q̂ − q?‖ ≤ ε) in

max

{
cgn

6 log3 (np)

c3?θ
3µ4

,
chn

c2]θ
2∆2

}
f(q(0)) + log log

cic?θµ

εn3/2 log3/2 (np)
(5.2.6)

iterations. Here c?, c] as defined in Theorem 4.1 and Lemma 5.9 respectively (c? and c] can be set to the same

constant value), and ca, cb are the same constants as defined in Theorem 4.1, cc through ci are other positive

constants.

Our convergence results show that for any target accuracy ε > 0 the algorithm terminates within polynomially

many steps. Our estimate of the number of steps is pessimistic: our analysis has assumed a fixed step size ∆

and the running time is a relatively large degree polynomial in p and n, while on typical numerical examples

the algorithm with adaptive step size produces a solution in relatively few (∼ 100) iterations. Nevertheless,

our goal in stating the above results is not to provide a tight analysis, but to prove that the Riemannian TRM
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algorithm finds a local minimizer in polynomial time. For nonconvex problems, this is not entirely trivial –

results of [MK87] show that in general it is NP-hard to find a local minimizer of a nonconvex function.

5.3 Useful technical results and sketch of proof for orthogonal dictio-

naries

The reason that our algorithm is successful derives from the geometry depicted in Figure 3.2 and formalized

in Theorem 4.1. Basically, the sphere Sn−1 can be divided into three regions. Near each local minimizer, the

function is strongly convex, and the algorithm behaves like a standard (Euclidean) TRM algorithm applied to

a strongly convex function – in particular, it exhibits a quadratic asymptotic rate of convergence. Away from

local minimizers, the function always exhibits either a strong gradient, or a direction of negative curvature

(an eigenvalue of the Hessian which is bounded below zero). The Riemannian TRM algorithm is capable of

exploiting these quantities to reduce the objective value by at least a fixed amount in each iteration. The total

number of iterations spent away from the vicinity of the local minimizers can be bounded by comparing this

constant to the initial objective value. Our proofs follow exactly this line and make the various quantities

precise.

5.3.1 Basic facts about the sphere

For any point q ∈ Sn−1, the tangent space TqSn−1 and the orthoprojector PTqSn−1 onto TqSn−1 are given by

TqSn−1 = {δ ∈ Rn : q∗δ = 0} ,

PTqSn−1 = I − qq∗ = UU∗,

whereU ∈ Rn×(n−1) is an arbitrary orthonormal basis for TqSn−1 (note that the orthoprojector is independent

of the basis U we choose). Moreover, for any δ ∈ TqSn−1, the exponential map expq(δ) : TqSn−1 7→ Sn−1 is

given by

expq(δ) = q cos ‖δ‖ +
δ

‖δ‖ sin ‖δ‖ .
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Let∇f(q) and∇2f(q) denote the usual (Euclidean) gradient and Hessian of f w.r.t. q in Rn. For our specific

f defined in (5.1.1), it is easy to check that

∇f
(
q; Ŷ

)
=

1

p

p∑
k=1

tanh

(
q∗ŷk
µ

)
ŷk, (5.3.1)

∇2f
(
q; Ŷ

)
=

1

p

p∑
k=1

1

µ

[
1− tanh2

(
q∗ŷk
µ

)]
ŷkŷ

∗
k. (5.3.2)

Since Sn−1 is an embedded submanifold of Rn, the Riemannian gradient and Riemannian Hessian defined

on TqSn−1 are given by

grad f(q; Ŷ ) = PTqSn−1∇f(q; Ŷ ), (5.3.3)

Hess f(q; Ŷ ) = PTqSn−1

(
∇2f(q; Ŷ )−

〈
∇f(q; Ŷ ), q

〉
I
)
PTqSn−1 ; (5.3.4)

so the second-order Taylor approximation for the function f is

f̂
(
δ; q, Ŷ

)
= f(q; Ŷ ) +

〈
δ, grad f(q; Ŷ )

〉
+

1

2
δ∗Hess f(q; Ŷ )δ, ∀ δ ∈ TqSn−1.

The first order necessary condition for unconstrained minimization of function f̂ over TqSn−1 is

grad f(q; Ŷ ) + Hess f(q; Ŷ )δ? = 0; (5.3.5)

if Hess f(q) is positive semidefinite and has full rank n− 1 (hence “non-degenerate"2), the unique solution δ?

is

δ? = −U (U∗ [Hess f(q)]U)
−1
U∗ grad f(q),

which is also invariant to the choice of basisU . Given a tangent vector δ ∈ TqSn−1, let γ(t)
.
= expq(tδ) denote

a geodesic curve on Sn−1. Following the notation of [AMS09], let

Pτ←0
γ : TqSn−1 → Tγ(τ)Sn−1

denotes the parallel translation operator, which translates the tangent vector δ at q = γ(0) to a tangent vector

at γ(τ), in a “parallel” manner. In the sequel, we identify Pτ←0
γ with the following n × n matrix, whose

restriction to TqSn−1 is the parallel translation operator (the detailed derivation can be found in Chapter 8.1

2Note that the n× nmatrix Hess f(q; Ŷ ) has rank at most n− 1, as the nonzero q obviously is in its null space. When Hess f(q; Ŷ )
has rank n− 1, it has no null direction in the tangent space. Thus, in this case it acts on the tangent space like a full-rank matrix.
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of [AMS09]):

Pτ←0
γ =

(
I − δδ∗

‖δ‖2

)
− q sin (τ ‖δ‖) δ

∗

‖δ‖ +
δ

‖δ‖ cos (τ ‖δ‖) δ
∗

‖δ‖

= I + (cos(τ ‖δ‖)− 1)
δδ∗

‖δ‖2
− sin (τ ‖δ‖) qδ

∗

‖δ‖ . (5.3.6)

Similarly, following the notation of [AMS09], we denote the inverse of this matrix by P0←τ
γ , where its

restriction to Tγ(τ)Sn−1 is the inverse of the parallel translation operator Pτ←0
γ .

5.3.2 Key steps towards the proof

Note that for any orthogonalA0, f (q;A0X0) = f (A∗0q;X0). In words, this is the above established fact that

the function landscape of f(q;A0X0) is a rotated version of that of f(q;X0). Thus, any local minimizer q? of

f(q;X0) is rotated toA0q?, one minimizer of f(q;A0X0). Also if our algorithm generates iteration sequence

q0, q1, q2, . . . for f(q;X0) upon initialization q0, it will generate the iteration sequenceA0q0,A0q1,A0q2, . . .

for f (q;A0X0). So w.l.o.g. it is adequate that we prove the convergence results for the caseA0 = I . So in

this section (Section 5.3), we write f(q) to mean f(q;X0).

We partition the sphere into three regions, for which we label as RI, RII, RIII, corresponding to the

strongly convex, nonzero gradient, and negative curvature regions, respectively (see Theorem 4.1). That

is, RI consists of a union of 2n spherical caps of radius µ

4
√

2
, each centered around a signed standard basis

vector ±ei. RII consist of the set difference of a union of 2n spherical caps of radius 1
20
√

5
, centered around

the standard basis vectors ±ei, and RI. Finally, RIII covers the rest of the sphere. We say a trust-region step

takes an RI step if the current iterate is in RI; similarly for RII and RIII steps. Since we use the geometric

structures derived in Theorem 4.1 and Corollary 4.2, the conditions

θ ∈ (0, 1/2), µ < min
{
caθn

−1, cbn
−5/4

}
, p ≥ C

µ2θ2
n3 log

n

µθ
(5.3.7)

are always in force.

At each step k of the algorithm, suppose δ(k) is a minimizer of the trust-region subproblem (5.1.3). We

call the step “constrained” if
∥∥δ(k)

∥∥ = ∆ (the minimizer lies on the boundary and hence the constraint is

active), and call it “unconstrained” if ‖δ(k)‖ < ∆ (the minimizer lies in the relative interior and hence the

constraint is not in force). Thus, in the unconstrained case the optimality condition is (5.3.5).

The next lemma provides some estimates about ∇f and∇2f that are useful in various contexts.
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Lemma 5.3 We have the following estimates about ∇f and ∇2f :

sup
q∈Sn−1

‖∇f (q)‖ .
= M∇ ≤

√
n ‖X0‖∞ ,

sup
q∈Sn−1

∥∥∇2f (q)
∥∥ .

= M∇2 ≤ n

µ
‖X0‖2∞ ,

sup
q,q′∈Sn−1,q 6=q′

‖∇f (q)−∇f (q′)‖
‖q − q′‖

.
= L∇ ≤

n

µ
‖X0‖2∞ ,

sup
q,q′∈Sn−1,q 6=q′

∥∥∇2f (q)−∇2f (q′)
∥∥

‖q − q′‖
.
= L∇2 ≤ 2

µ2
n3/2 ‖X0‖3∞ .

Proof See Page 108 under Section 10.1.

Our next lemma says if the trust-region step size ∆ is small enough, one Riemannian trust-region step reduces

the objective value by a certain amount when there is any descent direction.

Lemma 5.4 Suppose that the trust region size ∆ ≤ 1, and there exists a tangent vector δ ∈ TqSn−1 with

‖δ‖ ≤ ∆, such that

f(expq(δ)) ≤ f(q)− s

for some positive scalar s ∈ R. Then the trust region subproblem produces a point δ? with

f(expq(δ?)) ≤ f(q)− s+
1

3
ηf∆3,

where ηf
.
= M∇ + 2M∇2 + L∇ + L∇2 andM∇,M∇2 , L∇, L∇2 are the quantities defined in Lemma 5.3.

Proof See Page 109 under Section 10.2.

To show decrease in objective value for RII and RIII, now it is enough to exhibit a descent direction for

each point in these regions. The next two lemmas help us almost accomplish the goal. For convenience again

we choose to state the results for the “canonical” section that is in the vicinity of en and the projection map

q (w) = [w; (1− ‖w‖2)1/2], with the idea that similar statements hold for other symmetric sections.

Lemma 5.5 Suppose that the trust region size ∆ ≤ 1, w∗∇g(w)/ ‖w‖ ≥ βg for some scalar βg, and that

w∗∇g(w)/ ‖w‖ is Lg-Lipschitz on an open ball B
(
w, 3∆

2π
√
n

)
centered at w. Then there exists a tangent vector

δ ∈ TqSn−1 with ‖δ‖ ≤ ∆, such that

f(expq(δ)) ≤ f(q)−min

{
β2
g

2Lg
,

3βg∆

4π
√
n

}
.
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Proof See Page 110 under Section 10.3.

Lemma 5.6 Suppose that the trust-region size ∆ ≤ 1, w∗∇2g(w)w/ ‖w‖2 ≤ −βS, for some βS, and that

w∗∇2g(w)w/ ‖w‖2 is LS Lipschitz on the open ball B
(
w, 3∆

2π
√
n

)
centered at w. Then there exists a tangent

vector δ ∈ TqSn−1 with ‖δ‖ ≤ ∆, such that

f(expq(δ)) ≤ f(q)−min

{
2β3

S

3L2
S
,

3∆2βS
8π2n

}
.

Proof See Page 111 under Section 10.4.

One can take βg = βS = c?θ as shown in Theorem 4.1, and take the Lipschitz results in Section 4.2 (note

that ‖X0‖∞ ≤ 4 log1/2(np) w.h.p. by Lemma 9.11), repeat the argument for other 2n− 1 symmetric regions,

and conclude that w.h.p. the objective value decreases by at least a constant amount. The next proposition

summarizes the results.
Proposition 5.7 Assume (5.3.7). In regions RII and RIII, each trust-region step reduces the objective value by

at least

dII =
1

2
min

(
c2?caθ

2µ

n2 log (np)
,

3∆c?θ

4π
√
n

)
, and dIII =

1

2
min

(
c3?cbθ

3µ4

n6 log3 (np)
,

3∆2c?θ

8π2n

)
(5.3.8)

respectively, provided that

∆ <
ccc?θµ

2

n5/2 log3/2 (np)
, (5.3.9)

where ca through cc are positive constants, and c? is as defined in Theorem 4.1.

Proof We only consider the symmetric section in the vicinity of en and the claims carry on to others by

symmetry. If the current iterate q(k) is in the regionRII, by Theorem 4.1, w.h.p., we havew∗g (w) / ‖w‖ ≥ c?θ

for the constant c?. By Proposition 4.12 and Lemma 9.11, w.h.p., w∗g (w) / ‖w‖ is C2n
2 log (np) /µ-Lipschitz.

Therefore, By Lemma 5.4 and Lemma 5.5, a trust-region step decreases the objective value by at least

dII
.
= min

(
c2?θ

2µ

2C2n2 log (np)
,

3c?θ∆

4π
√
n

)
− c0n

3/2 log3/2 (np)

3µ2
∆3.

Similarly, if q(k) is in the regionRIII, by Proposition 4.11, Theorem4.1 andLemma9.11, w.h.p.,w∗∇2g (w)w/ ‖w‖2

is C3n
3 log3/2 (np) /µ2-Lipschitz and upper bounded by −c?θ. By Lemma 5.4 and Lemma 5.6, a trust-region

step decreases the objective value by at least

dIII
.
= min

(
2c3?θ

3µ4

3C2
3n

6 log3 (np)
,

3∆2c?θ

8π2n

)
− c0n

3/2 log3/2 (np)

3µ2
∆3.
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It can be easily verified that when ∆ obeys (5.3.8), (5.3.9) holds.

The analysis for RI is slightly trickier. In this region, near each local minimizer, the objective function is

strongly convex. So we still expect each trust-region step decreases the objective value. On the other hand, it

is very unlikely that we can provide a universal lower bound for the amount of decrease - as the iteration

sequence approaches one local minimizer, the movement is expected to be diminishing. Nevertheless, close

to the minimizer the trust-region algorithm takes “unconstrained” steps. For constrained RI steps, we will

again show reduction in objective value by at least a fixed amount; for unconstrained step, we will show the

distance between the iterate and the nearest local minimizer drops down rapidly.

The next lemma concerns the function value reduction for constrained RI steps.

Lemma 5.8 Suppose the trust-region size ∆ ≤ 1, and that at a given iterate k, Hess f
(
q(k)

)
� mHPT

q(k)Sn−1 ,

and
∥∥Hess f

(
q(k)

)∥∥ ≤MH . Further assume the optimal solution δ? ∈ Tq(k)Sn−1 to the trust-region subprob-

lem (5.1.3) satisfies ‖δ?‖ = ∆, i.e., the norm constraint is active. Then there exists a tangent vector δ ∈ Tq(k)Sn−1

with ‖δ‖ ≤ ∆, such that

f(expq(k)(δ)) ≤ f
(
q(k)

)
− m2

H∆2

MH
+

1

6
ηf∆3,

where ηf is defined the same as Lemma 5.4.

Proof See Page 112 under Section 10.5.

The next lemma provides an estimate ofmH . Again we will only state the result for the “canonical” section

with the “canonical” q(w) mapping.

Lemma 5.9 There exist positive constants C and c], such that for all θ ∈ (0, 1/2) and µ < θ/10, whenever

p ≥ Cn3 log n
θµ/(µθ

2), it holds with probability at least 1 − θ (np)
−7 − exp (−0.3θnp) − p−10 that for all q

with ‖w (q)‖ ≤ µ

4
√

2
,

Hess f (q) � c]
θ

µ
PTqSn−1 .

Proof See Page 113 under Section 10.6.

We know that ‖X0‖∞ ≤ 4 log1/2(np) w.h.p., and hence by the definition of Riemannian Hessian and

Lemma 5.3,

MH
.
= ‖Hess f(q)‖ ≤

∥∥∇2f(q)
∥∥ + ‖∇f(q)‖ ≤M∇2 +M∇ ≤

2n

µ
‖X0‖2∞ ≤

16n

µ
log(np),
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Combining this estimate and Lemma 5.9, and Lemma 5.4, we obtain a concrete lower bound for the reduction

of objective value for each constrained RI step.

Proposition 5.10 Assume (5.3.7). Each constrained RI trust-region step (i.e., ‖δ‖ = ∆) reduces the objective

value by at least

dI =
cc2?θ

2

µn log(np)
∆2, (5.3.10)

provided

∆ ≤
c′c2]θ

2µ

n5/2 log5/2(np)
. (5.3.11)

The constant c] is as defined in Lemma 5.9 and c, c′ are positive constants.

Proof We only consider the symmetric section in the vicinity of en and the claims carry on to others by

symmetry. We have that w.h.p.

‖Hess f(q)‖ ≤ 16n

µ
log(np), and Hess f(q) � c]

θ

µ
PTqSn−1 ,

where c] is as defined in Lemma 5.9. Combining these estimates with Lemma 5.4 and Lemma 5.8, one

trust-region step will find next iterate q(k+1) that decreases the objective value by at least

dI
.
=

c2]θ
2/µ2

2n log (np) /µ
∆2 − c0n

3/2 log3/2 (np)

µ2
∆3.

Finally, by the condition on ∆ in (5.3.11) and the assumed conditions (5.3.7), we obtain

dI ≥
c2]θ

2

2µn log(np)
∆2 − c0n

3/2 log3/2 (np)

µ2
∆3 ≥

c2]θ
2

4µn log(np)
∆2,

as desired.

By the proof strategy for RI we sketched before Lemma 5.8, we expect the iteration sequence ultimately

always takes unconstrained steps when it moves very near to a local minimizer. We will show that the

following is true: when ∆ is small enough, once the iteration sequence starts to take an unconstrained RI

step, it will take consecutive unconstrained RI steps afterwards. It takes two steps to show this: (1) upon an

unconstrained RI step, the next iterate will stay in RI. It is obvious we can make ∆ ∈ O(1) to ensure the next

iterate stays in RI ∪RII. To strengthen the result, we use the gradient information. From Theorem 4.1, we

expect the magnitudes of the gradients in RII to be lower bounded; on the other hand, in RI where points

are near local minimizers, continuity argument implies that the magnitudes of gradients should be upper
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bounded. We will show that when ∆ is small enough, there is a gap between these two bounds, implying

the next iterate stays in RI; (2) when ∆ is small enough, the step is in fact unconstrained. Again we will only

state the result for the “canonical” section with the “canonical” q(w) mapping. The next lemma exhibits an

absolute lower bound for magnitudes of gradients in RII.

Lemma 5.11 For all q satisfying µ

4
√

2
≤ ‖w (q)‖ ≤ 1

20
√

5
, it holds that

‖grad f (q)‖ ≥ 9

10

w∗∇g (w)

‖w‖ .

Proof See Page 119 under Section 10.7.

Assuming (5.3.7), Theorem 4.1 gives that w.h.p. w∗∇g(w)/ ‖w‖ ≥ c?θ. Thus, w.h.p, ‖grad f(q)‖ ≥ 9c?θ/10

for all q ∈ RII. The next lemma compares the magnitudes of gradients before and after taking an uncon-

strained RI step. This is crucial to providing upper bound for magnitude of gradient for the next iterate, and

also to establishing the ultimate (quadratic) sequence convergence.

Lemma 5.12 Suppose the trust-region size ∆ ≤ 1, and at a given iterate k, Hess f
(
q(k)

)
� mHPT

q(k)Sn−1 ,

and that the unique minimizer δ? ∈ Tq(k)Sn−1 to the trust region subproblem (5.1.3) satisfies ‖δ?‖ < ∆ (i.e., the

constraint is inactive). Then, for q(k+1) = expq(k) (δ?), we have

‖ grad f(q(k+1))‖ ≤ LH
2m2

H

‖ grad f(q(k))‖2,

where LH
.
= 5

2µ2n
3/2 ‖X0‖3∞ + 9

µn ‖X0‖2∞ + 9
√
n ‖X0‖∞.

Proof See Page 120 under Section 10.8.

We can now bound the Riemannian gradient of the next iterate as

‖ grad f(q(k+1))‖ ≤ LH
2m2

H

‖ grad f(q(k))‖2

≤ LH
2m2

H

‖[U∗Hess f(q(k))U ][U∗Hess f(q(k))U ]−1 grad f(q(k))‖2

≤ LH
2m2

H

∥∥∥Hess f(q(k))
∥∥∥2

∆2 =
LHM

2
H

2m2
H

∆2.

Obviously, one can make the upper bound small by tuning down ∆. Combining the above lower bound for

‖grad f(q)‖ for q ∈ RII, one can conclude that when ∆ is small, the next iterate q(k+1) stays in RI. Another

application of the optimality condition (5.3.5) gives conditions on ∆ that guarantees the next trust-region

step is also unconstrained. Detailed argument can be found in proof of the following proposition.
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Proposition 5.13 Assume (5.3.7). W.h.p, once the trust-region algorithm takes an unconstrained RI step (i.e.,

‖δ‖ < ∆), it always takes unconstrained RI steps, provided that

∆ ≤
cc3]θ

3µ

n7/2 log7/2 (np)
, (5.3.12)

Here c is a positive constant, and c] is as defined in Lemma 5.9.

Proof We only consider the symmetric section in the vicinity of en and the claims carry on to others by

symmetry. Suppose that step k is an unconstrained RI step. Then

‖w(q(k+1))−w(q(k))‖ ≤ ‖q(k+1) − q(k)‖ = ‖ expq(k)(δ)−q(k)‖

=
√

2− 2 cos ‖δ‖ = 2 sin(‖δ‖ /2) ≤ ‖δ‖ < ∆.

Thus, if ∆ ≤ 1
20
√

5
− µ

4
√

2
, q(k+1) will be in RI ∪RII. Next, we show that if ∆ is sufficiently small, q(k+1) will

be indeed in RI. By Lemma 5.12,∥∥∥grad f
(
q(k+1)

)∥∥∥ ≤ LH
2m2

H

∥∥∥grad f
(
q(k)

)∥∥∥2

≤ LHM
2
H

2m2
H

∥∥∥∥[U∗Hess f
(
q(k)

)
U
]−1

U∗ grad f
(
q(k)

)∥∥∥∥2

≤ LHM
2
H

2m2
H

∆2, (5.3.13)

where we have used the fact that∥∥∥δ(k)
∥∥∥ =

∥∥∥∥[U∗Hess f
(
q(k)

)
U
]−1

U∗ grad f
(
q(k)

)∥∥∥∥ < ∆,

as the step is unconstrained. On the other hand, by Theorem 4.1 and Lemma 5.11, w.h.p.

‖grad f (q)‖ ≥ βgrad
.
=

9

10
c?θ, ∀ q ∈ RII. (5.3.14)

Hence, provided

∆ <
mH

MH

√
2βgrad

LH
, (5.3.15)

we have q(k+1) ∈ RI.

We next show that when ∆ is small enough, the next step is also unconstrained. Straight forward

calculations give ∥∥∥∥U [U∗Hess f
(
q(k+1)

)
U
]−1

U∗ grad f
(
q(k+1)

)∥∥∥∥ ≤ LHM
2
H

2m3
H

∆2.
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Hence, provided that

∆ <
2m3

H

LHM2
H

, (5.3.16)

we will have ∥∥∥∥U [U∗Hess f
(
q(k+1)

)
U
]−1

U∗ grad f
(
q(k+1)

)∥∥∥∥ < ∆;

in words, the minimizer to the trust-region subproblem for the next step lies in the relative interior of the

trust region - the constraint is inactive. By Lemma 5.12 and Lemma 9.11, we have

LH = C1n
3/2 log3/2 (np) /µ2, (5.3.17)

w.h.p. for some constant C1. Combining this and our previous estimates ofmH ,MH , we conclude whenever

∆ ≤ min

{
1

20
√

5
− µ

4
√

2
,
c1µc]c

1/2
? θ3/2

n7/4 log7/4 (np)
,

c2µc
3
]θ

3

n7/2 log7/2 (np)

}
.

for some positive constants c1 and c2, w.h.p. our next trust-region step is also an unconstrained RI step.

Noting that c? and c] can be made the same by our definition, we make the claimed simplification on ∆. This

completes the proof.

Finally, we want to show that ultimate unconstrained RI iterates actually converges to one nearby local

minimizer rapidly. Lemma 5.12 has established the gradient is diminishing. The next lemma shows the

magnitude of gradient serves as a good proxy for distance to the local minimizer.

Lemma 5.14 Let q? ∈ Sn−1 such that grad f(q?) = 0, and δ ∈ Tq?Sn−1. Consider a geodesic γ(t) =

expq?(tδ), and suppose that on [0, τ ], Hess f(γ(t)) � mHPTγ(t)Sn−1 . Then

‖grad f(γ(τ))‖ ≥ mHτ ‖δ‖ .

Proof See Page 120 under Section 10.9.

To see this relates the magnitude of gradient to the distance away from the critical point, w.l.o.g., one can

assume τ = 1 and consider the point q = expq?(δ). Then

‖q? − q‖ =
∥∥expq?(δ)− q

∥∥ =
√

2− 2 cos ‖δ‖ = 2 sin(‖δ‖ /2) ≤ ‖δ‖ ≤ ‖grad f(q)‖ /mH ,

where at the last inequality above we have used Lemma 5.14. Hence, combining this observation with

Lemma 5.12, we can derive the asymptotic sequence convergence result as follows.
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Proposition 5.15 Assume (5.3.7) and the conditions in Lemma 5.13. Let q(k0) ∈ RI and the k0-th step the

first unconstrained RI step and q? be the unique local minimizer of f over one connected component of RI that

contains q(k0). Then w.h.p., for any positive integer k′ ≥ 1,∥∥∥q(k0+k′) − q?
∥∥∥ ≤ cc]θµ

n3/2 log3/2 (np)
2−2k

′

, (5.3.18)

provided that

∆ ≤
c′c2]θ

2µ

n5/2 log5/2(np)
. (5.3.19)

Here c] is as defined in Lemma 5.9 that can be made equal to cs? as defined in Theorem 4.1, and c, c′ are positive

constants.

Proof By the geometric characterization in Theorem 4.1 and corollary 4.2, f has 2n separated local minimizers,

each located in RI and within distance
√

2µ/16 of one of the 2n signed basis vectors {±ei}i∈[n]. Moreover, it

is obvious when µ ≤ 1, RI consists of 2n disjoint connected components. We only consider the symmetric

component in the vicinity of en and the claims carry on to others by symmetry.

Suppose that k0 is the index of the first unconstrained iterate in region RI, i.e., q(k0) ∈ RI. By Lemma

5.12, for any integer k′ ≥ 1, we have

∥∥∥grad f
(
q(k0+k′)

)∥∥∥ ≤ 2m2
H

LH

(
LH

2m2
H

∥∥∥grad f
(
q(k0)

)∥∥∥)2k
′

. (5.3.20)

where LH is as defined in Lemma 5.12,mH as the strong convexity parameter for RI defined above.

Now suppose q? is the unique local minimizer of f , lies in the same RI component that q(k0) is located.

Let γk′(t) = expq? (tδ) to be the unique geodesic that connects q? and q(k0+k′) with γk′(0) = q? and γk′(1) =

q(k0+k′). We have∥∥∥q(k0+k′) − q?
∥∥∥ ≤ ∥∥expq?(δ)− q?

∥∥ =
√

2− 2 cos ‖δ‖ = 2 sin(‖δ‖ /2)

≤ ‖δ‖ ≤ 1

mH

∥∥∥grad f
(
q(k0+k′)

)∥∥∥ ≤ 2mH

LH

(
LH

2m2
H

∥∥∥grad f
(
q(k0)

)∥∥∥)2k
′

,

where at the second line we have repeatedly applied Lemma 5.14.

By the optimality condition (5.3.5) and the fact that
∥∥δ(k0)

∥∥ < ∆, we have

LH
2m2

H

∥∥∥grad f
(
q(k0)

)∥∥∥ ≤ LH
2m2

H

MH

∥∥∥∥[U∗Hess f
(
q(k0)

)
U
]−1

U∗ grad f
(
q(k0)

)∥∥∥∥ ≤ LHMH

2m2
H

∆.
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Thus, provided

∆ <
m2
H

LHMH
, (5.3.21)

we can combine the above results and obtain∥∥∥q(k0+k′) − q?
∥∥∥ ≤ 2mH

LH
2−2k

′

.

Based on the previous estimates formH ,MH and LH , we obtain that w.h.p.,∥∥∥q(k0+k′) − q?
∥∥∥ ≤ c1c]θµ

n3/2 log3/2 (np)
2−2k

′

.

Moreover, by (5.3.21), w.h.p., it is sufficient to have the trust region size

∆ ≤
c2c

2
]θ

2µ

n5/2 log5/2(np)
.

Thus, we complete the proof.

Now we are ready to piece together the above technical propositions to prove Theorem 5.1.

Proof [of Theorem 5.1] Assuming (5.3.7) and in addition that

∆ < min

{
c1c?θµ

2

n5/2 log3/2 (np)
,

c2c
3
]θ

3µ

n7/2 log7/2 (np)

}

for small enough constants c1 and c2 and c?, c] as defined in Theorem 4.1 and Lemma 5.9 respectively (c? and

c] can be set to the same constant value), it can be verified that the conditions of all the above propositions

are satisfied.

By the preceding four propositions, a step will either be RIII, RII, or constrained RI step that decreases

the objective value by at least a certain fixed amount (we call this Type A), or be an unconstrained RI step

(Type B), such that all future steps are unconstrained RI and the sequence converges to one local minimizer

quadratically. Hence, regardless the initialization, the whole iteration sequence consists of consecutive Type

A steps, followed by consecutive Type B steps. Depending on the initialization, either the Type A phase or

the Type B phase can be absent. In any case, from q(0) it takes at most (note f(q) ≥ 0 always holds)

f
(
q(0)

)
min {dI, dII, dIII}

(5.3.22)

steps for the iterate sequence to start take consecutive unconstrained RI steps, or to already terminate. In

case the iterate sequence continues to take consecutive unconstrained RI steps, Proposition 5.15 implies that
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it takes at most

log log

(
c5c]θµ

εn3/2 log3/2 (np)

)
(5.3.23)

steps to obtain an ε-near solution to the q? that is contained in the connected subset of RI that the sequence

entered.

Thus, the number of iterations to obtain an ε-near solution to q? can be grossly bounded by

#Iter ≤ f
(
q(0)

)
min {dI, dII, dIII}

+ log log

(
c5c]θµ

εn3/2 log3/2 (np)

)

≤
[

min

{
c3c

3
?θ

3µ4

n6 log3 (np)
,
c4c

2
]θ

2

n
∆2

}]−1

f
(
q(0)

)
+ log log

(
c5c]θµ

εn3/2 log3/2 (np)

)
,

where we have assumed p ≤ exp(n) when comparing the various bounds. Finally, the claimed failure

probability comes from a simple union bound with careful bookkeeping.

5.4 Extending to convergence for complete dictionaries

Note that for any completeA0 with condition number κ (A0), from Lemma 4.14 we know when p is large

enough, w.h.p. one can write the preconditioned Y as

Y = UV ∗X0 + ΞX0

for a certain Ξ with small magnitude, and UΣV ∗ = SVD (A0). Since UV ∗ is orthogonal,

f (q;UV ∗X0 + ΞX0) = f (V U∗q;X0 + V U∗ΞX0) .

In words, the function landscape of f(q;UV ∗X0 + ΞX0) is a rotated version of that of f(q;X0 +V U∗ΞX0).

Thus, any local minimizer q? of f(q;X0 + V U∗ΞX0) is rotated to UV ∗q?, one minimizer of f(q;UV ∗X0 +

ΞX0). Also if our algorithm generates iteration sequence q0, q1, q2, . . . for f(q;X0 +V U∗ΞX0) upon initial-

ization q0, it will generate the iteration sequence UV ∗q0, UV ∗q1, UV ∗q2, . . . for f (q;UV ∗X0 + ΞX0). So

w.l.o.g. it is adequate that we prove the convergence results for the case f(q;X0 + V U∗ΞX0), correspond-

ing to A0 = I with perturbation Ξ̃
.
= V U∗Ξ. So in this section (Section 5.4), we write f(q; X̃0) to mean

f(q;X0 + Ξ̃X0).
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Theorem 4.3 has shown that when

θ ∈
(

0,
1

2

)
, µ ≤ min

{
caθ

n
,
cb
n5/4

}
, p ≥ C

c2?θ
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
, (5.4.1)

the geometric structure of the landscape is qualitatively unchanged and the c? constant can be replaced with

c?/2. Particularly, for this choice of p, Lemma 4.14 implies

‖Ξ̃‖ = ‖V U∗Ξ‖ ≤
∥∥∥Ξ̃∥∥∥ ≤ cc?θ(max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

(5.4.2)

for a constant c that can be made arbitrarily small by setting the constant C in p sufficiently large. The

whole proof is quite similar to that of orthogonal case in the last section. We will only sketch the major

changes below. To distinguish with the corresponding quantities in the last section, we use ·̃ to denote the

corresponding perturbed quantities here.

• Lemma 5.3: Note that

‖X0 + Ξ̃X0‖∞ ≤ ‖X0‖∞ + ‖Ξ̃X0‖∞ ≤ ‖X0‖∞ +
√
n‖Ξ̃‖‖X0‖∞ ≤ 3‖X0‖∞/2,

where by (5.4.2) we have used ‖Ξ̃‖ ≤ 1/(2
√
n) to simplify the above result. So we obtain

M̃∇ ≤
3

2
M∇, M̃∇2 ≤ 9

4
M∇2 , L̃∇ ≤

9

4
L∇, L̃∇2 ≤ 27

8
L∇2 .

• Lemma 5.4: Now we have

η̃f
.
= M̃∇ + 2M̃∇2 + L̃∇ + L̃∇2 ≤ 4ηf .

• Lemma 5.5 and Lemma 5.6 are generic and nothing changes.

• Proposition 5.7: We have now w∗g(w)/ ‖w‖ ≥ c?θ/2 by Theorem 4.3 and w.h.p. w∗∇g(w)/ ‖w‖ is

C1n
2 log(np)/µ-Lipschitz by Proposition 4.12 and the fact

∥∥∥X0 + Ξ̃X0

∥∥∥
∞
≤ 3 ‖X0‖∞ /2 shown above.

Similarly, w∗g(w)/ ‖w‖ ≤ −c?θ/2 by Theorem 4.3 and w∗∇2g(w)w/ ‖w‖2 is C2n
3 log3/2(np)/µ2-

Lipschitz. Moreover, η̃f ≤ 4ηf as shown above. Since there are only multiplicative constant changes to

the various quantities, we conclude

d̃II = c1dII, d̃III = c1dIII (5.4.3)
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provided

∆ <
c2c?θµ

2

n5/2 log3/2 (np)
. (5.4.4)

• Lemma 5.8: ηf is changed to η̃f with η̃f ≤ 4ηf as shown above.

• Lemma 5.9: By (5.3.2), we have

∥∥∥∇2f(q;X0)−∇2f(q; X̃0)
∥∥∥ ≤ 1

p

p∑
k=1

{
Lḧ‖Ξ̃‖ ‖xk‖

2
+

1

µ
‖xkx∗k − x̃kx̃∗k‖

}

≤ ‖Ξ̃‖
(
Lḧ + 2/µ+ ‖Ξ̃‖/µ

) p∑
k=1

‖xk‖2 ≤ ‖Ξ̃‖
(
Lḧ + 3/µ

)
n ‖X0‖2∞ ,

where Lḧ is the Lipschitz constant for the function ḧµ (·) and we have used the fact that ‖Ξ̃‖ ≤ 1.

Similarly, by 5.3.1,∥∥∥∇f(q;X0)−∇f(q; X̃0)
∥∥∥ ≤ 1

p

p∑
k=1

{
Lḣµ‖Ξ̃‖ ‖xk‖ + ‖Ξ̃‖ ‖xk‖

}
≤
(
Lḣµ + 1

)
‖Ξ̃‖√n ‖X0‖∞ ,

where Lḣ is the Lipschitz constant for the function ḣµ (·). Since Lḧ ≤ 2/µ2 and Lḣ ≤ 1/µ, and

‖X0‖∞ ≤ 4
√

log(np) w.h.p. (Lemma 9.11). By (5.4.2), w.h.p. we have∥∥∥∇f(q;X0)−∇f(q; X̃0)
∥∥∥ ≤ 1

2
c]θ, and

∥∥∥∇2f(q;X0)−∇2f(q; X̃0)
∥∥∥ ≤ 1

2
c]θ,

provided the constant C in (5.4.1) for p is large enough. Thus, by (5.3.4) and the above estimates we

have∥∥∥Hess f(q;X0)−Hess f(q; X̃0)
∥∥∥ ≤ ∥∥∥∇f(q;X0)−∇f(q; X̃0)

∥∥∥ +
∥∥∥∇2f(q;X0)−∇2f(q; X̃0)

∥∥∥
≤ c]θ ≤

1

2
c]
θ

µ
,

provided µ ≤ 1/2. So we conclude

Hess f(q; X̃0) � 1

2
c]
θ

µ
PTqSn−1 =⇒ m̃H ≥

1

2
c]
θ

µ
. (5.4.5)

• Proposition 5.10: From the estimate ofMH above Proposition 5.10 and the last point, we have∥∥∥Hess f(q; X̃0)
∥∥∥ ≤ 36

µ
log(np), and Hess f(q; X̃0) � 1

2
c]
θ

µ
PTqSn−1.

Also since η̃f ≤ 4ηf in Lemma 5.4 and Lemma 5.8, there are only multiplicative constant change to the
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various quantities. We conclude that

d̃I = c3dI (5.4.6)

provided that

∆ ≤
c4c

2
]θ

2µ

n5/2 log5/2(np)
. (5.4.7)

• Lemma 5.11 is generic and nothing changes.

• Lemma 5.12: L̃H ≤ 27LH/8.

• Proposition 5.13: All the quantities involved in determining ∆,mH ,MH , and LH , βgrad are modified

by at most constant multiplicative factors and changed to their respective tilde version, so we conclude

that the RTM algorithm always takes unconstrained RI step after taking one, provided that

∆ ≤
c5c

3
]θ

3µ

n7/2 log7/2 (np)
. (5.4.8)

• Lemma 5.14:is generic and nothing changes.

• Proposition 5.15: Again mH ,MH , LH are changed to m̃H , M̃H , and L̃H , respectively, differing by at

most constant multiplicative factors. So we conclude for any integer k′ ≥ 1,∥∥∥q(k0+k′) − q?
∥∥∥ ≤ c6c]θµ

n3/2 log3/2 (np)
2−2k

′

, (5.4.9)

provided

∆ ≤
c7c

2
]θ

2µ

n5/2 log5/2(np)
. (5.4.10)

The final proof to Theorem 4.3 is almost identical to that of Theorem 4.1, except for

∆ ≤ min

{
c8c?θµ

2

n5/2 log3/2 (np)
,

c9c
3
]θ

3µ

n7/2 log7/2 (np)

}
, (5.4.11)

ζ̃
.
= min

{
min

q ∈ RII∪RIII

f
(
q; X̃0

)
, max
q ∈ RI

f
(
q; X̃0

)}
, (5.4.12)

and hence all ζ is now changed to ζ̃, and also dI, dII, and dIII are changed to d̃I, d̃II, and d̃III as defined

above, respectively. The final iteration complexity to each an ε-near solution is hence

#Iter ≤
[

min

{
c10c

3
?θ

3µ4

n6 log3 (np)
,
c11c

2
]θ

2

n
∆2

}]−1

f
(
q(0)

)
+ log log

(
c12c]θµ

εn3/2 log3/2 (np)

)
.
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Hence overall the qualitative behavior of the algorithm is not changed, as compared to that for the orthogonal

case. Above c1 through c12 are all positive absolute constants.
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Chapter 6

Complete Algorithm Pipeline and Main

Results

An expert problem solver must be endowed with two incompatible

qualities – a restless imagination and a patient pertinacity.

Howard W. Eves

For orthogonal dictionaries, from Theorem 4.1 and Corollary 4.2, we know that all the minimizers q̂?

are O(µ) away from their respective nearest “target” q?, with q∗?Ŷ = αe∗iX0 for certain α 6= 0 and i ∈ [n]; in

Theorem 5.1, we have shown that w.h.p. the Riemannian TRM algorithm produces a solution q̂ ∈ Sn−1 that

is ε away to one of the minimizers, say q̂?. Thus, the q̂ returned by the TRM algorithm is O(ε+ µ) away from

q?. For exact recovery, we use a simple linear programming rounding procedure, which guarantees to exactly

produce the optimizer q?. We then use deflation to sequentially recover other rows ofX0. Overall, w.h.p. both

the dictionaryA0 and sparse coefficientX0 are exactly recovered up to sign permutation, when θ ∈ Ω(1), for

orthogonal dictionaries. We summarize relevant technical lemmas and main results in Section 6.1. The same

procedure can be used to recover complete dictionaries, though the analysis is slightly more complicated; we

present the results in Section 6.2. Our overall algorithmic pipeline for recovering orthogonal dictionaries is

sketched as follows.

1. Estimating one rowofX0 by theRiemannian TRMalgorithm. By Theorem 4.1 (resp. Theorem 4.3)

and Theorem 5.1 (resp. Theorem 5.2), starting from any q(0) ∈ Sn−1, when the relevant parameters

are set appropriately (say as µ? and ∆?), w.h.p., our Riemannian TRM algorithm finds a local
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minimizer q̂, with q? the nearest target that exactly recovers one row ofX0 and ‖q̂ − q?‖ ∈ O(µ)

(by setting the target accuracy of the TRM as, say, ε = µ).

2. Recovering one row ofX0 by rounding. To obtain the target solution q? and hence recover (up to

scale) one row ofX0, we solve the following linear program:

minimizeq

∥∥∥q∗Ŷ ∥∥∥
1
, subject to 〈r, q〉 = 1, (6.0.1)

with r = q̂. We show in Lemma 6.2 (resp. Lemma 6.4) that when 〈q̂, q?〉 is sufficiently large, implied

by µ being sufficiently small, w.h.p. the minimizer of (6.0.1) is exactly q?, and hence one row ofX0

is recovered by q∗?Ŷ .

3. Recovering all rows ofX0 by deflation. Once ` rows ofX0 (1 ≤ ` ≤ n−2) have been recovered, say,

by unit vectors q1
?, . . . , q

`
?, one takes an orthonormal basisU for [span

(
q1
?, . . . , q

`
?

)
]⊥, and minimizes

the new function h(z)
.
= f(Uz; Ŷ ) on the sphere Sn−`−1 with the Riemannian TRM algorithm

(though conservative, one can again set parameters as µ?, ∆?, as in Step 1) to produce a ẑ. Another

row ofX0 is then recovered via the LP rounding (6.0.1) with input r = Uẑ (to produce q`+1
? ). Finally,

by repeating the procedure until depletion, one can recover all the rows ofX0.

4. Reconstructing the dictionary A0. By solving the linear system Y = AX0, one can obtain the

dictionaryA0 = Y X∗0 (X0X
∗
0 )
−1.

6.1 Recovering orthogonal dictionaries

Theorem 6.1 (Main theorem - recovering orthogonal dictionaries) Assume the dictionaryA0 is orthogo-

nal and we take Ŷ = Y . Suppose θ ∈ (0, 1/3), µ? < min
{
caθn

−1, cbn
−5/4

}
, and p ≥ Cn3 log n

µ?θ
/
(
µ2
?θ

2
)
.

The above algorithmic pipeline with parameter setting

∆? ≤ min

{
ccc?θµ

2
?

n5/2 log5/2 (np)
,

cdc
3
?θ

3µ?

n7/2 log7/2 (np)

}
, (6.1.1)

recovers the dictionaryA0 andX0 in polynomial time, with failure probability bounded by cep−6. Here c? is as

defined in Theorem 4.1, and ca through ce, and C are all positive constants.

Towards a proof of the above theorem, it remains to be shown the correctness of the rounding and

deflation procedures.
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Proof of LP rounding. The following lemma showsw.h.p. the roundingwill return the desired q?, provided

the estimated q̂ is already near to it.

Lemma 6.2 (LP rounding - orthogonal dictionary) There exists a positive constant C, such that for all θ ∈

(0, 1/3), and p ≥ Cn2 log(n/θ)/θ, with probability at least 1−2p−10−θ(n−1)−7p−7−exp (−0.3θ(n− 1)p) ,

the rounding procedure (6.0.1) returns q? for any input vector r that satisfies

〈r, q?〉 ≥ 249/250.

Proof See Page 124 under Section 11.1.

Since 〈q̂, q?〉 = 1 − ‖q̂ − q?‖2/2, and ‖q̂ − q?‖ ∈ O(µ), it is sufficient when µ is smaller than some small

constant.

Proof sketch of deflation. We show the deflation works by induction. To understand the deflation proce-

dure, it is important to keep in mind that the “target” solutions
{
qi?
}n
i=1

are orthogonal to each other. W.l.o.g.,

supposewe have found the first ` unit vectors q1
?, . . . , q

`
?which recover the first ` rows ofX0. Correspondingly,

we partition the target dictionaryA0 andX0 as

A0 = [V ,V ⊥], X0 =

[
X

[`]
0

X
[n−`]
0

]
, (6.1.2)

where V ∈ Rn×`, andX [`]
0 ∈ R`×n denotes the submatrix with the first ` rows ofX0. Let us define a function:

f↓n−` : Rn−` 7→ R by

f↓n−`(z;W )
.
=

1

p

p∑
k=1

hµ(z∗wk), (6.1.3)

for any matrixW ∈ R(n−`)×p. Then by (3.3.2), our objective function is equivalent to

h(z) = f(Uz;A0X0) = f↓n−`(z;U∗A0X0) = f↓n−`(z;U∗V X [`]
0 +U∗V ⊥X [n−`]

0 ).

Since the columns of the orthogonalmatrixU ∈ Rn×(n−`) forms the orthogonal complement of span
(
q1
?, · · · , q`?

)
,

it is obvious that U∗V = 0. Therefore, we obtain

h(z) = f↓n−`(z;U∗V ⊥X [n−`]
0 ).

SinceU∗V ⊥ is orthogonal andX [n−`]
0 ∼i.i.d. BG(θ), this is another instance of orthogonal dictionary learning

problemwith reduced dimension. If we keep the parameter settings µ? and ∆? as Theorem 6.1, the conditions
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of Theorem 4.1 and Theorem 5.1 for all cases with reduced dimensions are still valid. So w.h.p., the TRM

algorithm returns a ẑ such that ‖ẑ − z?‖ ∈ O(µ?) where z? is a “target” solution that recovers a row ofX0:

z∗?U
∗V ⊥X [n−`]

0 = z∗?U
∗A0X0 = αe∗iX0, for some i 6∈ [`].

So pulling everything back in the original space, the effective target is q`+1
?

.
= Uz?, and Uẑ is our estimation

obtained from the TRM algorithm. Moreover,

‖Uẑ −Uz?‖ = ‖ẑ − z?‖ ∈ O(µ?).

Thus, by Lemma 6.2, one successfully recovers Uz? from Uẑ w.h.p. when µ? is smaller than a constant. The

overall failure probability can be obtained via a simple union bound and simplification of the exponential

tails with inverse polynomials in p.

6.2 Recovering complete dictionaries

By working with the preconditioned data samples Ŷ = Y
.
=
√
θp (Y Y ∗)−1/2

Y ,1 we can use a similar

procedure described above to recover complete dictionaries.

Theorem 6.3 (Main theorem - recovering complete dictionaries) Assume the dictionaryA0 is complete

with condition number κ (A0) and we take Ŷ = Y . Suppose θ ∈ (0, 1/3), µ? < min
{
caθn

−1, cbn
−5/4

}
, and

p ≥ C
c2?θ

max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
. The algorithmic pipeline with parameter setting

∆? ≤ min

{
ccc?θµ

2
?

n5/2 log5/2 (np)
,

cdc
3
?θ

3µ?

n7/2 log7/2 (np)

}
, (6.2.1)

recovers the dictionaryA0 andX0 in polynomial time, with failure probability bounded by cep−6. Here c? is as

defined in Theorem 4.1, and ca through cf , and C are all positive constants.

Similar to the orthogonal case, we need to show the correctness of the rounding and deflation procedures

so that the theorem above holds.

Proof of LP rounding The result of the LP rounding is only slightly different from that of the orthogonal

case in Lemma 6.2, so is the proof.

1In practice, the parameter θ might not be know beforehand. However, because it only scales the problem, it does not affect the
overall qualitative aspect of results.
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Lemma 6.4 (LP rounding - complete dictionary) There exists a positive constant C, such that for all θ ∈

(0, 1/3), and p ≥ C
c2?θ

max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
, with probability at least 1−3p−8−θ(n−1)−7p−7−

exp (−0.3θ(n− 1)p) , the rounding procedure (6.0.1) returns q? for any input vector r that satisfies

〈r, q?〉 ≥ 249/250.

Proof See Page 126 under Section 11.2.

Proof sketch of deflation. We use a similar induction argument as for the orthogonal case to show the

deflation works. Compared to the orthogonal case, the tricky part here is that the target vectors
{
qi?
}n
i=1

are

not necessarily orthogonal to each other, but they are almost so. W.l.o.g., let us again assume that q1
?, . . . , q

`
?

recover the first ` rows ofX0, and similarly partition the matrixX0 as in (6.1.2).

By Lemma 4.14 and (4.3.2), we can write Y = (Q + Ξ)X0 for some orthogonal matrix Q and small

perturbation Ξ with ‖Ξ‖ ≤ δ < 1/10 for some large p as usual. Similar to the orthogonal case, we have

h(z) = f(Uz; (Q+ Ξ)X0) = f↓n−`(z;U∗(Q+ Ξ)X0),

where f↓n−` is defined the same as in (6.1.3). Next, we show that the matrixU∗(Q+Ξ)X0 can be decomposed

asU∗V X [n−`]
0 +∆, whereV ∈ R(n−`)×n is orthogonal and∆ is a small perturbationmatrix. More specifically,

we show that

Lemma 6.5 Suppose the matricesU ∈ Rn×(n−`),Q ∈ Rn×n are orthogonal as defined above, Ξ is a perturbation

matrix with ‖Ξ‖ ≤ 1/20, then

U∗ (Q+ Ξ)X0 = U∗V X [n−`]
0 + ∆, (6.2.2)

where V ∈ Rn×(n−`) is a orthogonal matrix spans the same subspace as that ofU , and the norms of ∆ is bounded

by

‖∆‖`1→`2 ≤ 16
√
n ‖Ξ‖ ‖X0‖∞ , ‖∆‖ ≤ 16 ‖Ξ‖ ‖X0‖ , (6.2.3)

where ‖W ‖`1→`2 = sup‖z‖1=1 ‖Wz‖ = maxk ‖wk‖ denotes the max column `2-norm of a matrixW .

Proof See Page 126 under Section 11.3.

Since UV is orthogonal andX [n−`]
0 ∼i.i.d. BG(θ), we come into another instance of perturbed dictionary
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learning problem with reduced dimension

h(z) = f↓n−`(z;U∗V X [n−`]
0 + ∆).

Since our perturbation analysis in proving Theorem 4.3 and Theorem 5.2 solely relies on the fact that

‖∆‖`1→`2 ≤ C ‖Ξ‖
√
n ‖X0‖∞, it is enough to make p large enough so that the theorems are still applicable

for the reduced version f↓n−`(z;U∗V X [n−`]
0 + ∆). Thus, by invoking Theorem 4.3 and Theorem 5.2, the TRM

algorithm provably returns one ẑ such that ẑ is near to a perturbed optimal ẑ? with

ẑ∗?U
∗V X [n−`]

0 = z∗?U
∗V X [n−`]

0 + z∗?∆ = αe∗iX0, for some i 6∈ [`], (6.2.4)

where z? with ‖z?‖ = 1 is the exact solution. More specifically, Corollary 4.4 implies

‖ẑ − ẑ?‖ ≤
√

2µ?/7.

Next, we show that ẑ is also very near to the exact solution z?. Indeed, the identity (6.2.4) implies

(ẑ? − z?)∗U∗V X [n−`]
0 = z∗?∆

=⇒ ẑ? − z? =
[
(X

[n−`]
0 )∗V ∗U

]†
∆∗z? = U∗V

[
(X

[n−`]
0 )∗

]†
∆∗z? (6.2.5)

whereW † = (W ∗W )−1W ∗ denotes the pseudo inverse of a matrixW with full column rank. Hence, by

(6.2.5) we can bound the distance between ẑ? and z? by

‖ẑ? − z?‖ ≤
∥∥∥∥[(X [n−`]

0 )∗
]†∥∥∥∥ ‖∆‖ ≤ σ−1

min(X
[n−`]
0 ) ‖∆‖

By Lemma B.12, when p ≥ Ω(n2 log n), w.h.p.,

θp/2 ≤ σmin(X
[n−`]
0 (X

[n−`]
0 )∗) ≤

∥∥∥X [n−`]
0 (X

[n−`]
0 )∗

∥∥∥ ≤ ‖X0X
∗
0‖ ≤ 3θp/2.

Hence, combined with Lemma 6.5, we obtain

σ−1
min(X

[n−`]
0 ) ≤

√
2

θp
, ‖∆‖ ≤ 28

√
θp ‖Ξ‖ /

√
2,

which implies that ‖ẑ? − z?‖ ≤ 28 ‖Ξ‖. Thus, combining the results above, we obtain

‖ẑ − z?‖ ≤ ‖ẑ − ẑ?‖ + ‖ẑ? − z?‖ ≤
√

2µ?/7 + 28 ‖Ξ‖ .

Lemma 4.14, and in particular (4.3.2), for our choice of p as in Theorem 4.3, ‖Ξ‖ ≤ cµ2
?n
−3/2, where c can be
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made smaller by making the constant in p larger. For µ? sufficiently small, we conclude that

‖Uẑ −Uz?‖ = ‖ẑ − z?‖ ≤ 2µ?/7.

In words, the TRM algorithm returns a ẑ such that Uẑ is very near to one of the unit vectors
{
qi?
}n
i=1

, such

that (qi?)
∗Y = αe∗iX0 for some α 6= 0. For µ? smaller than a fixed constant, one will have

〈
Uẑ, qi?

〉
≥ 249/250,

and hence by Lemma 6.4, the LP rounding exactly returns the optimal solution qi? upon the input Uẑ.

The proof sketch above explains why the recursive TRM plus rounding works. The overall failure

probability can be obtained via a simple union bound and simplifications of the exponential tails with inverse

polynomials in p.



CHAPTER 7. NUMERICAL SIMULATIONS 76

Chapter 7

Numerical Simulations

The first principle is that you must not fool yourself – and you are the

easiest person to fool.

Richard Feynman

To corroborate our theory, we experiment with dictionary recovery on simulated data. For simplicity, we

focus on recovering orthogonal dictionaries and we declare success once a single row of the coefficient matrix

is recovered. The implementation is based on the Manopt package [BMAS14] with modifications described

in Section 2.6.

For the sameX0, function landscapes of general orthogonal A0 are exactly rotated versions of that of

A0 = I . Thus, w.l.o.g. we set the dictionary as A0 = I ∈ Rn×n. We fix p = 5n3 and 5n2 log n respectively,

and each column of the coefficient matrix X0 ∈ Rn×p has exactly k nonzero entries, chosen uniformly

random from
(

[n]
k

)
. These nonzero entries are i.i.d. standard normals. This is slightly different from the

Bernoulli-Gaussian model we assumed for analysis. For n reasonably large, these twomodels produce similar

behavior. For the sparsity surrogate defined in (3.3.3), we fix the parameter µ = 10−2.

To see how the admissible sparsity level varies with the dimension, which our theory primarily is about,

we vary the dictionary dimension n and the sparsity k both between 1 and 120;1 for every pair of (k, n),

we randomly generated T = 5 instances ofX0 and run the TRM algorithm independently from random

initializations. Because the optimal solutions are signed coordinate vectors {ei}ni=1, for a solution q̂ returned

1Storage is the bottleneck here, as for each instance an almost dense n× 5n3 matrix needs to be stored. On the other hand, in typical
applications of DL the dimension n is normally not significantly larger than 100.



CHAPTER 7. NUMERICAL SIMULATIONS 77

Figure 7.1: Phase transition for recovering a single sparse vector under the dictionary learning model with the sample
complexities p = 5n3 and p = 5n2 logn.

by the TRM algorithm, we define the reconstruction error (RE) to be

RE = min
i∈[n]

(‖q̂ − ei‖ , ‖q̂ + ei‖) . (7.0.1)

The trial is determined to be a success once RE ≤ µ, with the idea that this indicates q̂ is already very near the

target and the target can likely be recovered via the LP rounding we described (which we do not implement

here). Figure 7.1 shows the phase transition in the (n, k) plane for the orthogonal case. It is obvious that our

TRM algorithm can work well into the linear region in this setting whenever p ∈ O(n3), perhaps even when

p ∈ O(n2 log n). The caveat is that the TRM algorithm was randomly initialized, whereas our results allow

arbitrary initializations, which might require slightly higher sample complexity.

To see the sample complexity to ensure the finite-sample convergence (Theorem 4.1), which implies arbi-

trary initializations lead to “recovery” (up to µ error), we fix n = 50, 100, 150, and p = 5n log n, 5n2 log n, 5n3,

respectively. For each (n, p) pair, we fixed the sparsity level as n/2 and randomly generated anX0, fixed

the instance and tested for recovery by the above described criterion with R = 20 independent random

initializations. The empirical success ratio is calculated. Intuitively, success ratio being one is a strong indica-

tor that the finite-sample function landscape already has the benign X -ness shape. The result is as follows:

for p = 5n2 log n and p = 5n3, the success ratios are always one, while for p = 5n log n, the ratio is 0.15, 0, 0

respectively for different n’s. So O(n2 log n) samples may already suffice to ensure that the finite-sample

function landscape lie in X family, with the caveat that we only looked at fixed problem instances with a

single sparsity level.
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Chapter 8

Discussion

Prediction is very difficult, especially if it’s about the future.

Niels Bohr

For recovery of complete dictionaries, the LP program approach in [SWW12] that workswith θ ≤ O(1/
√
n)

only demands p ≥ Ω(n2 log2 n), which has recently been reduced toO(n log n) [Ada16, BN16] (see also [LV15]),

matching the lower bound Ω(n log n) (i.e., when θ ∼ 1/n). The sample complexity stated in Theorem 6.3 is

obviouslymuch higher. It is interesting to see whether such growth in complexity is intrinsic to working in the

linear regime. Though our experiments seemed to suggest the necessity of p ∼ O(n3) or possibly O(n2 log n)

for the orthogonal case, there could be other efficient algorithms that demand much less. Tweaking the

following three points will likely improve the complexity: (1) the `1 proxy. The derivatives of the log cosh

function we adopted entail the tanh function, which is not amenable to effective approximation and affects

the obtained sample complexity; (2) geometric characterization and algorithm analysis. It seems working

directly on the sphere (i.e., in the q space) could simplify and possibly improve certain parts of the analysis;

(3) treating the complete case directly, rather than using (pessimistic) bounds to treat it as a perturbation

of the orthogonal case. Particularly, general linear transforms may change the space significantly, such that

preconditioning and comparing to the orthogonal transforms may not be the most efficient way to proceed.

It is possible to extend the current analysis to other dictionary settings. Our geometric structures and

algorithms allow plug-and-play noise analysis. Nevertheless, we believe a more stable way of dealing with

noise is to directly extract the whole dictionary, i.e., to consider geometry and optimization (and perturbation)

over the orthogonal group. This will require additional nontrivial technical work, but likely feasible thanks

to availability of relatively complete knowledge of the orthogonal group [EAS98, AMS09]. A substantial leap
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forward would be to extend the methodology to recovery of structured overcomplete dictionaries, such as

tight frames. Though there is no natural elimination of one variable, one can consider the marginalization

of the objective function w.r.t. the coefficients and work with the resulting implicit function 1, or possibly

work directly in the product space. For the coefficient model, as we alluded to in Section 3.4, our analysis

and results likely can be carried through to coefficients with statistical dependence and physical constraints.

The connection to ICAwe discussed in Section 3.4 suggests our geometric characterization and algorithms

can be modified for the ICA problem. This likely will provide new theoretical insights and computational

schemes to ICA. In the surge of theoretical understanding of nonconvex heuristics [KMO10, JNS13, Har14,

HW14, NNS+14, JN14, NJS13, CLS15b, JO14, AGJ14b, YCS13, LWB13, QSW14, LWB13, AAJ+13, AAN13,

AGM13, AGMM15, ABGM14], the initialization plus local refinement strategy mostly differs from practice,

where special initializations are not needed or unavailable. The analytic techniques developed there are

mostly fragmented and highly specialized. The analytic and algorithmic framework we developed here holds

promise for providing a coherent account of these problems. It is interesting to see to what extent we can

streamline and generalize the framework.

Our motivating experiment on real images in Chapter 1 remains mysterious. If we were to believe that real

image data are “nice” and our objective there does not have spurious local minimizers either, it is surprising

ADMwould escape all other critical points – this is not predicted by classic or even modern theories. One

reasonable place to start is to look at how gradient descent algorithms with generic initializations can escape

local maximizers and saddle points (at least with high probability). The recent work [GHJY15] has showed

that randomly perturbing each iterate can help gradient descent method to escape from saddle points with

high probability. It is interesting to know whether similar results can be obtained for deterministic gradient

descent algorithms with random initialization; see, e.g., [LSJR16] for such an attempt. The continuous

counterpart seems well understood; see, e.g., [HMG94] for discussions of Morse-Bott theorem and gradient

flow convergence.

1The recent work [AGMM15] on overcomplete DR has used a similar idea. The marginalization taken there is near to the global
optimum of one variable, where the function is well-behaved. Studying the global properties of the marginalization may introduce
additional technical challenges.
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Chapter 9

Proof of the Function Landscape

Another roof, another proof.

Paul Erdős

In this chapter, we provide complete proofs for technical results stated in Chapter 4. Before that, let us

introduce some notations and common results that will be used later throughout this chapter. Since we

deal with BG random variables and random vectors, it is often convenient to write such vector explicitly as

x = [Ω1v1, . . . ,Ωnvn] = Ω� v, where Ω1, . . . ,Ωn are i.i.d. Bernoulli random variables and v1, . . . , vn are i.i.d.

standard normal. For a particular realization of such random vector, we will denote the support as I ⊂ [n].

Due to the particular coordinate map in use, we will often refer to subset J .
= I \{n} and the random vectors

x
.
= [Ω1v1, . . . ,Ωn−1vn−1] and v .

= [v1, . . . , vn−1] in Rn−1. By Lemma B.1, it is not hard to see that

∇whµ (q∗ (w)x) = tanh

(
q∗ (w)x

µ

)(
x− xn

qn (w)
w

)
, (9.0.1)

∇2
whµ (q∗ (w)x) =

1

µ

[
1− tanh2

(
q∗ (w)x

µ

)](
x− xn

qn (w)
w

)(
x− xn

qn (w)
w

)∗
− xn tanh

(
q∗ (w)x

µ

)(
1

qn (w)
I +

1

q3
n (w)

ww∗
)
. (9.0.2)

9.1 Proofs for Section 4.2

9.1.1 Proof of Proposition 4.5

The proof involves some delicate analysis, particularly polynomial approximation of the function f (t) =

1
(1+t)2

over t ∈ [0, 1]. This is naturally induced by the 1− tanh2 (·) function. The next lemma characterizes
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one such approximation.

Lemma 9.1 Consider f(t) = 1
(1+t)2 for t ∈ [0, 1]. For every T > 1, there is a sequence b0, b1, . . . , with

‖b‖`1 = T <∞, such that the polynomial p(t) =
∑∞
k=0 bkt

k satisfies

‖f − p‖L1[0,1] ≤
1

2
√
T
, ‖f − p‖L∞[0,1] ≤

1√
T
,

In particular, one can choose bk = (−1)k(k + 1)βk with β = 1− 1/
√
T < 1 such that

p (t) =
1

(1 + βt)
2 =

∞∑
k=0

(−1)k(k + 1)βktk.

Moreover, such sequence satisfies 0 <
∑∞
k=0

bk
(1+k)3 <

∑∞
k=0

|bk|
(1+k)3 < 2.

Lemma 9.2 Let X ∼ N
(
0, σ2

X

)
and Y ∼ N

(
0, σ2

Y

)
. We have

E
[(

1− tanh2

(
X + Y

µ

))
X2

1X+Y >0

]
≤

1√
2π

µσ2
Xσ

2
Y

(σ2
X + σ2

Y )
3/2

+
µ3σ2

Xσ
2
Y

(σ2
X + σ2

Y )
3/2

+
3

4
√

2π

σ2
Xµ

3

(σ2
X + σ2

Y )
5/2

(
3µ2 + 4σ2

X

)
.

Proof For x + y > 0, let z = exp
(
−2x+y

µ

)
∈ [0, 1], then 1 − tanh2

(
x+y
µ

)
= 4z

(1+z)2
. Fix any T > 1 to be

determined later, by Lemma 9.1, we choose the polynomial pβ (z) = 1
(1+βz)2

with β = 1 − 1/
√
T to upper

bound f (z) = 1
(1+z)2

. So we have

E
[(

1− tanh2

(
X + Y

µ

))
X2

1X+Y >0

]
= 4E

[
Zf (Z)X2

1X+Y >0

]
≤ 4E

[
Zpβ (Z)X2

1X+Y >0

]
= 4

∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
,

where bk = (−1)k(k + 1)βk, and the exchange of infinite summation and expectation above is justified in

view that

∞∑
k=0

|bk|E
[
Zk+1X2

1X+Y >0

]
≤
∞∑
k=0

|bk|E
[
X2

1X+Y >0

]
≤ σ2

X

∞∑
k=0

|bk| <∞

and the dominated convergence theorem (see, e.g., theorem 2.24 and 2.25 of [Fol99]). By Lemma B.10, we

have

∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
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=

∞∑
k=0

(−β)
k

(k + 1)

[(
σ2
X +

4 (k + 1)
2

µ2
σ4
X

)
exp

(
2 (k + 1)

2

µ2

(
σ2
X + σ2

Y

))
Φc
(

2 (k + 1)

µ

√
σ2
X + σ2

Y

)

−2 (k + 1)

µ

σ4
X√

2π
√
σ2
X + σ2

Y

]

≤ 1√
2π

∞∑
k=0

(−β)
k

(k + 1)

[
σ2
Xµ

2 (k + 1)
√
σ2
X + σ2

Y

− σ2
Xµ

3

8 (k + 1)
3

(σ2
X + σ2

Y )
3/2
− µσ4

X

2 (k + 1) (σ2
X + σ2

Y )
3/2

]

+
3√
2π

∞∑
k=0

βk (k + 1)

(
σ2
X +

4 (k + 1)
2

µ2
σ4
X

)
µ5

32 (k + 1)
5

(σ2
X + σ2

Y )
5/2

,

where we have applied Type I upper and lower bounds for Φc (·) to even k and odd k respectively and

rearrange the terms to obtain the last line. Using the following estimates (see Lemma 9.1)

∞∑
k=0

(−β)
k

=
1

1 + β
,

∞∑
k=0

bk

(k + 1)
3 ≥ 0,

∞∑
k=0

|bk|
(k + 1)

5 ≤
∞∑
k=0

|bk|
(k + 1)

3 ≤ 2,

we obtain

∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
≤ 1

2
√

2π

µσ2
Xσ

2
Y

(σ2
X + σ2

Y )
3/2

1

1 + β
+

3

16
√

2π

σ2
Xµ

3

(σ2
X + σ2

Y )
5/2

(
3µ2 + 4σ2

X

)
.

Noticing 1
1+β <

1
2 + 1

2
√
T
and choosing T = µ−4, we obtain the desired result.

Lemma 9.3 Let X ∼ N
(
0, σ2

X

)
and Y ∼ N

(
0, σ2

Y

)
. We have

E
[
tanh

(
X + Y

µ

)
X

]
≥

2σ2
X√

2π
√
σ2
X + σ2

Y

− 4µ2σ2
X√

2π
√
σ2
X + σ2

Y

− 2σ2
Xµ

2

√
2π (σ2

X + σ2
Y )

3/2
− 3σ2

Xµ
4

2
√

2π (σ2
X + σ2

Y )
5/2

.

Proof By Lemma B.10, we know

E
[
tanh

(
X + Y

µ

)
X

]
=

σ2
X

µ
E
[
1− tanh2

(
X + Y

µ

)]
Similar to the proof of the above lemma, for x+ y > 0, let z = exp

(
−2x+y

µ

)
and f (z) = 1

(1+z)2
. Fixing any

T > 1, we will use 4zpβ (z) = 4z
(1+βz)2

to approximate the 1 − tanh2
(
x+y
µ

)
= 4zf (z) function from above,

where again β = 1− 1/
√
T . So we obtain

E
[
1− tanh2

(
X + Y

µ

)]
= 8E [f (Z)Z1X+Y >0]

= 8E [pβ (Z)Z1X+Y >0]− 8E [(pβ (Z)− f (Z))Z1X+Y >0] .
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Now for the first term, we have

E [pβ (Z)Z1X+Y >0] =

∞∑
k=0

bkE
[
Zk+1

1X+Y >0

]
,

justified as
∑∞
k=0 |bk|E

[
Zk+1

1X+Y >0

]
≤∑∞k=0 |bk| <∞making the dominated convergence theorem (see,

e.g., theorem 2.24 and 2.25 of [Fol99]) applicable. To proceed, from Lemma B.10, we obtain

∞∑
k=0

bkE
[
Zk+1

1X+Y >0

]
=

∞∑
k=0

(−β)
k

(k + 1) exp

(
2

µ2
(k + 1)

2 (
σ2
X + σ2

Y

))
Φc
(

2

µ
(k + 1)

√
σ2
X + σ2

Y

)

≥ 1√
2π

∞∑
k=0

(−β)
k

(k + 1)

(
µ

2 (k + 1)
√
σ2
X + σ2

Y

− µ3

8 (k + 1)
3

(σ2
X + σ2

Y )
3/2

)

− 3√
2π

∞∑
k=0

βk (k + 1)
µ5

32 (k + 1)
5

(σ2
X + σ2

Y )
5/2

,

where we have applied Type I upper and lower bounds for Φc (·) to odd k and even k respectively and

rearrange the terms to obtain the last line. Using the following estimates (see Lemma 9.1)

∞∑
k=0

(−β)
k

=
1

1 + β
, 0 ≤

∞∑
k=0

bk

(k + 1)
3 ≤

∞∑
k=0

|bk|
(k + 1)

5 ≤
∞∑
k=0

|bk|
(k + 1)

3 ≤ 2,

we obtain

∞∑
k=0

bkE
[
Zk+1

1X+Y >0

]
≥ µ

2
√

2π
√
σ2
X + σ2

Y

1

1 + β
− µ3

4
√

2π (σ2
X + σ2

Y )
3/2
− 3µ5

16
√

2π (σ2
X + σ2

Y )
5/2

.

To proceed, by Lemma B.10 and Lemma 9.1, we have

E [(pβ(Z)− f(Z))Z1X+Y >0] ≤ ‖p− f‖L∞[0,1] E [Z1X+Y >0] ≤ µ

2
√

2πT
√
σ2
X + σ2

Y

,

where we have also used Type I upper bound for Φc (·). Combining the above estimates, we get

E
[
tanh

(
X + Y

µ

)
X

]
≥ 4σ2

X√
2π
√
σ2
X + σ2

Y

(
1

1 + β
− 1√

T

)
− 2σ2

Xµ
2

√
2π (σ2

X + σ2
Y )

3/2
− 3σ2

Xµ
4

2
√

2π (σ2
X + σ2

Y )
5/2

.

Noticing 1
1+β >

1
2 and taking T = µ−4, we obtain the claimed result.

So we are ready to present the proof.

Proof [of Proposition 4.5] For any i ∈ [n− 1], we have∫ 1

0

∫
x

∣∣∣∣ ∂∂wihµ (q∗ (w)x)

∣∣∣∣µ (dx) dwi ≤
∫ 1

0

∫
x

(
|xi|+ |xn|

1

qn (w)

)
µ (dx) dwi <∞.
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Hence by Lemma B.4 we obtain ∂
∂wi

E [hµ (q∗ (w)x)] = E
[
∂
∂wi

hµ (q∗ (w)x)
]
. Moreover for any j ∈ [n− 1],

∫ 1

0

∫
x

∣∣∣∣ ∂2

∂wj∂wi
hµ (q∗ (w)x)

∣∣∣∣µ (dx) dwj ≤∫ 1

0

∫
x

[
1

µ

(
|xi|+

|xn|
qn (w)

)(
|xj |+

|xn|
qn (w)

)
+ |xn|

(
1

qn (w)
+

1

q3
n (w)

)]
µ (dx) dwi <∞.

Invoking Lemma B.4 again we obtain

∂2

∂wj∂wi
E [hµ (q∗ (w)x)] =

∂

∂wj
E
[
∂

∂wi
hµ (q∗ (w)x)

]
= E

[
∂2

∂wj∂wi
hµ (q∗ (w)x)

]
.

The above holds for any pair of i, j ∈ [n− 1], so it follows that

∇2
wE [hµ (q∗ (w)x)] = E

[
∇2
whµ (q∗ (w)x)

]
.

Hence it is easy to see that

w∗∇2
wE [hµ (q∗ (w)x)]w

=
1

µ
E

[(
1− tanh2

(
q∗ (w)x

µ

))(
w∗x− xn

qn (w)
‖w‖2

)2
]
− E

[
tanh

(
q∗ (w)x

µ

)
xn

q3
n (w)

‖w‖2
]
.

Now the first term is

1

µ
E

[(
1− tanh2

(
q∗ (w)x

µ

))(
w∗x− xn

qn (w)
‖w‖2

)2
]

=
2 (1− θ)

µ
E
[(

1− tanh2

(
w∗x
µ

))
(w∗x)

2
1w∗x>0

]
− 4θ

µ

‖w‖2
q2
n (w)

E
[(

1− tanh2

(
w∗x+ qn (w)xn

µ

))
(w∗x) (qn (w)xn)1w∗x+qn(w)xn>0

]
+

2θ

µ
EJEv

[(
1− tanh2

(
w∗J v + qn (w) vn

µ

))(
w∗J v

)2
1w∗J v+qn(w)vn>0

]
+

2θ

µ

‖w‖4
q4
n (w)

EJEv
[(

1− tanh2

(
w∗J v + qn (w) vn

µ

))
(qn (w) vn)

2
1w∗J v+qn(w)vn>0

]
≤ 8 (1− θ)

µ
E
[
exp

(
−2
w∗x
µ

)
(w∗x)

2
1w∗x>0

]
+

8θ

µ

‖w‖2
q2
n (w)

E
[
exp

(
− 2

µ
(w∗x+ qn (w)xn)

)
(w∗x+ qn (w)xn)

2
1w∗x+qn(w)xn>0

]
+

2θ

µ
EJEX,Y

[(
1− tanh2

(
X + Y

µ

))
Y 2

1X+Y >0

]
+

2θ

µ

‖w‖4
q4
n (w)

EJEX,Y
[(

1− tanh2

(
X + Y

µ

))
X2

1X+Y >0

]
,

where conditioned on each support set J , we let X .
= qn (w) vn ∼ N

(
0, q2

n (w)
)
and Y

.
= w∗J v ∼
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N
(

0, ‖wJ ‖2
)
. Noticing the fact t 7→ exp (−2t/µ) t2 for t > 0 is maximized at t = µ with maximum

value exp (−2)µ2, and in view of the estimate in Lemma 9.2, we obtain

1

µ
E

[(
1− tanh2

(
q∗ (w)x

µ

))(
w∗x− xn

qn (w)
‖w‖2

)2
]

≤ 8 exp (−2)

(
1− θ +

‖w‖2
q2
n (w)

θ

)
µ

+
2θ

µ
EJ

[
1√
2π

µ ‖wJ ‖2 q2
n (w)

‖qI‖3
+
µ3 ‖wJ ‖2 q2

n (w)

‖qI‖3
+

3

4
√

2π

‖wJ ‖2 µ3

‖qI‖5
(

3µ2 + 4 ‖wJ ‖2
)]

+
2θ

µ

‖w‖4
q4
n (w)

EJ

[
1√
2π

µ ‖wJ ‖2 q2
n (w)

‖qI‖3
+
µ3 ‖wJ ‖2 q2

n (w)

‖qI‖3
+

3

4
√

2π

q2
n (w)µ3

‖qI‖5
(
3µ2 + 4q2

n (w)
)]

≤ 2θ√
2πq2

n (w)
EJ

[
‖wJ ‖2

‖qI‖3

]
+

11

20
µ

(
2 +

1

q2
n (w)

)
+ 2θµ2

(
1 +

3√
2πqn (w)

+
1

q3
n (w)

+
3√

2πq5
n (w)

)
,

where we have used µ < qn (w) ≤ ‖qI‖ and ‖wJ ‖ ≤ ‖qI‖ and ‖w‖ ≤ 1 and θ ∈ (0, 1/2) to simplify the

intermediate quantities to obtain the last line. Similarly for the second term, we obtain

E
[
tanh

(
q∗ (w)x

µ

)
xn

q3
n (w)

‖w‖2
]

=
‖w‖2 θ
q4
n (w)

EJEv
[
tanh

(
w∗J v + qn (w) vn

µ

)
xnqn (w)

]
≥ ‖w‖

2
θ

q4
n (w)

EJ

[
2q2
n (w)√

2π ‖qI‖
− 4µ2q2

n (w)√
2π ‖qI‖

− 2q2
n (w)µ2

√
2π ‖qI‖3

− 3q2
n (w)µ4

2
√

2π ‖qI‖5

]

≥
√

2

π

θ

q2
n (w)

EJ

[
‖w‖2
‖qI‖

]
− 4θµ2

√
2π

(
1

q3
n (w)

+
1

q5
n (w)

)
.

Collecting the above estimates, we obtain

w∗∇2
wE [hµ (q∗ (w)x)]w

≤
√

2

π

θ

q2
n (w)

EJ

‖wJ ‖2
‖qI‖3

−
‖w‖2

(
‖wJ ‖2 + q2

n (w)
)

‖qI‖3


+

11

20
µ

(
2 +

1

q2
n (w)

)
+ 2θµ2

(
1 +

3√
2πqn (w)

+
2

q3
n (w)

+
5√

2πq5
n (w)

)
≤ −

√
2

π
θE

[
‖wJ c‖2

‖qI‖3

]
+

11

10
µ+

11

20

µ

qn (w)
+ 2θµ2

(
1 +

6

q5
n (w)

)

≤ −
√

2

π
θ (1− θ) ‖w‖2 E

[
1

‖qI‖3

]
+

11

10
µ+

11

20

µ

q2
n (w)

+ 2θµ2

(
1 +

6

q5
n (w)

)
, (9.1.1)

where to obtain the last line we have invoked the association inequality in Lemma B.3, as both ‖wJ c‖2 and
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1/ ‖qI‖3 both coordinatewise nonincreasingw.r.t. the index set. Substituting the upper bound for µ into (9.1.1)

and noting Rh ≤ ‖w‖ and also noting the fact qn (w) ≥ 1
2
√
n
(implied by the assumption ‖w‖ ≤

√
4n−1

4n ), we

obtain the claimed result.

9.1.2 Proof of Proposition 4.6

Proof By similar consideration as the above proof, the following is justified:

∇wE [hµ (q∗ (w)x)] = E [∇whµ (q∗ (w)x)] .

Now consider

w∗∇E [hµ(q∗ (w)x)] = ∇E [w∗hµ(q∗ (w)x)]

= E
[
tanh

(
q∗ (w)x

µ

)
(w∗x̄)

]
− ‖w‖

2

qn
E
[
tanh

(
q∗ (w)x

µ

)
xn

]
. (9.1.2)

For (9.1.2), we next provide a lower bound for the first expectation and an upper bound for the second

expectation. For the first, we have

E
[
tanh

(
q∗ (w)x

µ

)
(w∗x)

]
= θEJ

[
Ev
[
tanh

(
w∗J v + qn (w) vn

µ

)(
w∗J v

)]]
+ (1− θ)EJ

[
Ev
[
tanh

(
w∗J v

µ

)(
w∗J v

)]]
= θEJ

[
EX,Y

[
tanh

(
X + Y

µ

)
Y

]]
+ (1− θ)EJ

[
EY
[
tanh

(
Y

µ

)
Y

]]
,

where X .
= qn (w) vn ∼ N

(
0, q2

n (w)
)
and Y .

= w∗J v ∼ N
(

0, ‖wJ ‖2
)
. Now by Lemma B.3 we obtain

E
[
tanh

(
X + Y

µ

)
Y

]
≥ E

[
tanh

(
X + Y

µ

)]
E [Y ] = 0,

as tanh
(
X+Y
µ

)
and X are both coordinatewise nondecreasing function of X and Y . Using the tanh (z) ≥

(1− exp (−2z)) /2 lower bound for z > 0 and integral results in Lemma B.10, we obtain

E
[
tanh

(
Y

µ

)
Y

]
= 2E

[
tanh

(
Y

µ

)
Y 1Y >0

]
≥ E

[(
1− exp

(
−2Y

µ

))
Y 1Y >0

]
=

2σ2
Y

µ
exp

(
2σ2

Y

µ2

)
Φc
(

2σY
µ

)
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≥ 2σ2
Y

µ
√

2π

√1 +
σ2
Y

µ2
− σY

µ


≥ 2σ2

Y

µ
√

2π

√1 +
‖w‖2
µ2

− ‖w‖
µ

 ,

where at the second last inequality we have used Type III lower bound for Gaussian upper tail Φc (·)

(Lemma B.5), and at the last we have used the fact that t 7→
√

1 + t2 − t is a monotonic decreasing function

over t > 0 and that σY = ‖wJ ‖ ≤ ‖w‖. Collecting the above estimates, we have

E
[
tanh

(
q∗ (w)x

µ

)
(w∗x)

]
≥ (1− θ)EJ

2 ‖wJ ‖2

µ
√

2π

√1 +
‖w‖22
µ2

− ‖w‖
µ


≥ (1− θ)EJ

[
2 ‖wJ ‖2

µ
√

2π

µ

10 ‖w‖

]

≥ θ (1− θ) ‖w‖
5
√

2π
, (9.1.3)

where at the second linewe have used the assumption that ‖w‖ ≥ µ

6
√

2
and also the fact that

√
1 + x2 ≥ x+ 1

10x

for x ≥ 1
6
√

2
.

For the second expectation of (9.1.2), we have

E
[
tanh

(
q∗ (w)x

µ

)
xn

]
≤ θE

[∣∣∣∣tanh

(
q∗ (w)x

µ

)∣∣∣∣ |vn|] ≤ θ
√

2

π
, (9.1.4)

as tanh (·) is bounded by one in magnitude. Plugging the results of (9.1.3) and (9.1.4) into (9.1.2) and noticing

that qn (w)
2

+ ‖w‖2 = 1 we obtain

w∗∇E [hµ(q∗ (w)x)] ≥ θ ‖w‖√
2π

1− θ
5
− 2 ‖w‖√

1− ‖w‖2

 ≥ θ (1− θ) ‖w‖
10
√

2π
,

where we have invoked the assumption that ‖w‖ ≤ 1
10
√

5
(1− θ) to provide the upper bound 2‖w‖√

1−‖w‖2
≤

1
10 (1− θ). We then choose the particular ranges as stated for µ and θ to ensure rg < Rg, completing the

proof.
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9.1.3 Proof of Proposition 4.7

Proof By consideration similar to the above proof, we can exchange the Hessian operator and expectation,

i.e.,

∇2
wE [hµ (q∗ (w)x)] = E

[
∇2
whµ (q∗ (w)x)

]
.

We are interested in the expected Hessian matrix

∇2
wE [hµ (q∗ (w)x)] =

1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))(
x− xn

qn (w)
w

)(
x− xn

qn (w)
w

)∗]
− E

[
tanh

(
q∗ (w)x

µ

)(
xn

qn (w)
I +

xn
q3
n (w)

ww∗
)]

in the region that 0 ≤ ‖w‖ ≤ µ

4
√

2
.

When w = 0, by Lemma B.10, we have

E
[
∇2
whµ (q∗ (w)x)

]∣∣
w=0

=
1

µ
E
[(

1− tanh2

(
xn
µ

))
x x∗

]
− E

[
tanh

(
xn
µ

)
xn

]
I

=
θ(1− θ)

µ
I +

θ2

µ
Evn

[
1− tanh2

(
vn
µ

)]
I − θ

µ
Evn

[
1− tanh2

(
vn
µ

)]
I

=
θ(1− θ)

µ
Evn

[
tanh2

(
qn (w) vn

µ

)]
I.

Simple calculation based on Lemma B.10 shows

Evn
[
tanh2

(
vn
µ

)]
≥ 2

(
1− 4 exp

(
2

µ2

)
Φc
(

2

µ

))
≥ 2

(
1− 2√

2π
µ

)
.

Invoking the assumptions µ ≤ 1
20
√
n
≤ 1/20 and θ < 1/2, we obtain

E
[
∇2
whµ (q∗ (w)x)

]∣∣
w=0

� θ (1− θ)
µ

(
2− 4√

2π
µ

)
I � θ

µ

(
1− 1

10
√

2π

)
I.

When 0 < ‖w‖ ≤ µ

4
√

2
, we aim to derive a semidefinite lower bound for

E
[
∇2
whµ (q∗ (w)x)

]
=

1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))
x x∗

]
− 1

q2
n (w)

E
[
tanh

(
q∗ (w)x

µ

)
qn (w)xn

]
I

− 1

µq2
n (w)

E
[(

1− tanh2

(
q∗ (w)x

µ

))
qn (w)xn (wx∗ + xw∗)

]
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+
1

q4
n (w)

{
1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))
(qn (w)xn)2

]
− E

[
tanh

(
q∗ (w)x

µ

)
qn (w)xn

]}
ww∗.

(9.1.5)

We will first provide bounds for the last two lines and then tackle the first which is slightly more tricky. For

the second line, we have

1

µq2
n (w)

∥∥∥∥E [(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xn (wx∗ + xw∗)

]∥∥∥∥
≤ 2

µq2
n (w)

∥∥∥∥E [(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xnx̄

]
w∗
∥∥∥∥

≤ 2

µq2
n (w)

∥∥∥∥E [(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xnx

]∥∥∥∥ ‖w‖
≤ 2

µqn (w)
θ2E [|vn|]E [‖v‖] ‖w‖

≤ 4θ2

πµqn (w)

√
n ‖w‖ ≤ θ

µ

4θ
√
n ‖w‖

π
√

1− ‖w‖2
≤ θ

µ

1

40π
,

where from the third to the fourth line we have used
∥∥∥1− tanh2

(
q∗(w)x

µ

)∥∥∥ ≤ 1, Jensen’s inequality for the

‖·‖ function, and independence of xn and x, and to obtain the last bound we have invoked the ‖w‖ ≤ µ

4
√

2
,

µ ≤ 1
20
√
n
, and θ < 1

2 assumptions. For the third line in (9.1.5), by Lemma B.1 and Lemma B.10,∣∣∣∣ 1µE
[(

1− tanh2

(
q∗ (w)x

µ

))
(qn (w)xn)2

]
− E

[
tanh

(
q∗ (w)x

µ

)
qnxn

]∣∣∣∣
=

∣∣∣∣ θµEJEv
[(

1− tanh2

(
w∗J v + qn (w) vn

µ

)
(qn (w) vn)

2

)]
−θEJEv

[
tanh

(
w∗J v + qn (w) vn

µ

)
qn (w) vn

]∣∣∣∣
=
θ

µ
EJEv

[(
1− tanh2

(
w∗J v + qn (ws) vn

µ

))(
(qn (w) vn)2 + q2

n (w)
)]

≤ 8θ

µ
EJEv

[
exp

(
− 2

µ

(
w∗J v + qn (w) vn

)) (
(qn (w) vn)2 + q2

n (w)
)
1w∗J v+qn(w)vn>0

]

≤ 8θ√
2π

EJ

 q2
n (w)√

q2
n (w) + ‖wJ ‖2

 ≤ 8θqn (w)√
2π

.

Thus, we have

1

q4
n (w)

{
1

µ
E
[(

1− tanh2

(
q∗x
µ

))
(qnxn)2

]
− E

[
tanh

(
q∗x
µ

)
qnxn

]}
ww∗

� − 8θ

q3
n (w)

√
2π
‖w‖2 I � − θ

µ

(
64n3/2µ ‖w‖2

q3
n (w)

√
2π

)
I � − θ

µ

1

4000
√

2π
I,

where we have again used ‖w‖ ≤ µ

4
√

2
, µ ≤ 1

20
√
n
, and qn (w) ≥ 1

2
√
n
assumptions to simplify the final bound.
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To derive a lower bound for the first line of (9.1.5), we lower bound the first term and upper bound the

second. The latter is easy: using Lemma B.1 and Lemma B.10,

1

q2
n (w)

E
[
tanh

(
q∗ (w)x

µ

)
qn (w)xn

]
=
θ

µ
EJEv

[
1− tanh2

[
w∗J v + qn (w) vn

µ

]]
≤ 8θ

µ
EJEv

[
exp

(
−2
w∗J v + qn (w) vn

µ

)
1w∗J v+qn(w)vn>0

]
≤ 4θ√

2πqn (w)
≤ θ

µ

8
√
nµ√
2π
≤ θ

µ

2

5
√

2π
,

where we have again used assumptions that qn (w) ≥ 1
2
√
n
and µ ≤ 1

20
√
n
to simplify the last bound. To lower

bound the first term, first note that

1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))
x x∗

]
� 1− θ

µ
Ex
[(

1− tanh2

(
w∗x
µ

))
x x∗

]
.

We set out to lower bound the expectation as

Ex
[(

1− tanh2

(
w∗x
µ

))
x x∗

]
� θβI

for some scalar β > 0. Suppose w has k ∈ [n− 1] nonzeros, w.l.o.g., further assume the first k elements of w

are these nonzeros. It is easy to see the expectation above has a block diagonal structure diag (Σ;αθIn−1−k),

where

α
.
= Ex

[(
1− tanh2

(
w∗x
µ

))]
.

So in order to derive the θβI lower bound as desired, it is sufficient to show Σ � θβI for some 0 < β < 1,

i.e., letting w̃ ∈ Rk be the subvector of nonzero elements,

Ex̃∼i.i.d.BG(θ)

[(
1− tanh2

(
w̃∗x̃
µ

))
x̃ x̃∗

]
� θβI,

which is equivalent to that for all z ∈ Rk such that ‖z‖ = 1,

Ex̃∼i.i.d.BG(θ)

[(
1− tanh2

(
w̃∗x̃
µ

))
(x̃∗z)

2

]
≥ θβ.

It is then sufficient to show that for any nontrivial support set S ⊂ [k] and any vector z ∈ Rk such that

supp (z) = S with ‖z‖ = 1,

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗z)

2

]
≥ β.
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To see the implication, suppose the latter claimed holds, then for any z with unit norm,

Ex̃∼i.i.d.BG(θ)

[(
1− tanh2

(
w̃∗x̃
µ

))
(x̃∗z)

2

]
=

k∑
s=1

θs (1− θ)k−s
∑
S∈([k]

s )

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗zS)

2

]

≥
k∑
s=1

θs (1− θ)k−s
∑
S∈([k]

s )

β ‖zS‖2 = βES
[
‖zS‖2

]
= θβ.

Now for any fixed support set S ⊂ [k], z = Pw̃Sz + (I − Pw̃S ) z. So we have

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗z)

2

]
= Eṽ

[(
1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗Pw̃Sz)

2

]
+ Eṽ

[(
1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗ (I − Pw̃S ) z)

2

]
=

(w̃∗Sz)
2

‖wS‖4
Eṽ
[(

1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗w̃S)

2

]
+ Eṽ

[(
1− tanh2

(
w̃∗S ṽ
µ

))]
Eṽ
[
(ṽ∗ (I − Pw̃S ) z)

2
]

≥ 2
(w̃∗Sz)

2

‖wS‖4
Eṽ
[
exp

(
−2w̃∗S ṽ

µ

)
(ṽ∗w̃S)

2
1ṽ∗w̃S>0

]
+ 2Eṽ

[
exp

(
−2w̃∗S ṽ

µ

)
1w̃∗S ṽ>0

]
‖(I − Pw̃S ) z‖2 .

Using expectation result from Lemma B.10, and applying Type III lower bound for Gaussian tails, we obtain

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ
µ

))
(ṽ∗z)

2

]

≥ 1√
2π

√4 +
4 ‖w̃S‖2
µ2

− 2 ‖w̃S‖
µ

− 4 (w̃∗Sz)
2

µ
√

2π ‖w̃S‖

≥ 1√
2π

(
2− 3

4

√
2

)
,

where we have used Cauchy-Schwartz to obtain (ṽ∗z)
2 ≤ ‖ṽ∗‖2 and invoked the assumption ‖w‖ ≤ µ

4
√

2
to

simplify the last bound. On the other hand, we similarly obtain

α = EJEZ∼N (0,‖wJ ‖2)[1− tanh2(Z/µ)] ≥ 2√
2π

√
4‖w‖2/µ2 + 4− 2‖w‖/µ

2
≥ 1√

2π

(
2− 1

2

√
2

)
.

So we can take β = 1√
2π

(
2− 3

4

√
2
)
< 1.

Putting together the above estimates for the case w 6= 0, we obtain

E
[
∇2
whµ (q∗ (w)x)

]
� θ

µ
√

2π

(
1− 3

8

√
2−
√

2π

40π
− 1

4000
− 2

5

)
I � 1

25
√

2π

θ

µ
I.

Hence for all w, we can take the 1
25
√

2π
θ
µ as the lower bound, completing the proof.
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9.1.4 Proof of pointwise concentration results

To avoid clutter of notations, in this subsection we write X to mean X0; similarly xk for (x0)k, the k-th

column ofX0. The function g (w) means g (w;X0). We first establish a useful comparison lemma between

random i.i.d. Bernoulli random vectors random i.i.d. normal random vectors.

Lemma 9.4 Suppose z, z′ ∈ Rn are independent and obey z ∼i.i.d. BG (θ) and z′ ∼i.i.d. N (0, 1). Then, for

any fixed vector v ∈ Rn, it holds that

E [|v∗z|m] ≤ E
[
|v∗z′|m

]
= EZ∼N(0,‖v‖2) [|Z|m] ,

E [‖z‖m] ≤ E
[
‖z′‖m

]
,

for all integersm ≥ 1.

Proof See Section B.2.3 on Page 228.

Now, we are ready to prove Proposition 4.8 through Proposition 4.10 as follows.

Proof [of Proposition 4.8] Let

Yk =
1

‖w‖2
w∗∇2hµ (q(w)∗xk)w,

then w∗∇2g(w)w

‖w‖2 = 1
p

∑p
k=1 Yk. For each Yk (k ∈ [p]), from (9.0.2), we know that

Yk =
1

µ

(
1− tanh2

(
q(w)∗xk

µ

))(
w∗xk
‖w‖ −

xk (n) ‖w‖
qn(w)

)2

− tanh

(
q(w)∗xk

µ

)
xk (n)

q3
n(w)

.

Writing Yk = Wk + Vk, where

Wk =
1

µ

(
1− tanh2

(
q(w)∗xk

µ

))(
w∗xk
‖w‖ −

xk (n) ‖w‖
qn(w)

)2

,

Vk = − tanh

(
q(w)∗xk

µ

)
xk (n)

q3
n(w)

.

Then by similar argument as in proof to Proposition 4.9, we have for all integersm ≥ 2 that

E [|Wk|m] ≤ 1

µm
E

[∣∣∣∣w∗xk‖w‖ −
xk (n) ‖w‖
qn(w)

∣∣∣∣2m
]
≤ 1

µm
EZ∼N (0,1/q2n(w))

[
|Z|2m

]
≤ 1

µm
(2m− 1)!!(4n)m ≤ m!

2

(
4n

µ

)m
,

E [|Vk|m] ≤ 1

q3m
n (w)

E [|vk (n)|m] ≤
(
2
√
n
)3m

(m− 1)!! ≤ m!

2

(
8n
√
n
)m

,

where we have again used the assumption that qn (w) ≥ 1
2
√
n
to simplify the result. Taking σ2

W = 16n2/µ2 ≥
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E
[
W 2
k

]
, RW = 4n/µ and σ2

V = 64n3 ≥ E
[
V 2
k

]
, RV = 8n

√
n, and considering SW = 1

p

∑p
k=1Wk and

SV = 1
p

∑p
k=1 Vk, then by Lemma A.1, we obtain

P
[
|SW − E [SW ]| ≥ t

2

]
≤ 2 exp

(
− pµ2t2

128n2 + 16nµt

)
,

P
[
|SV − E [SV ]| ≥ t

2

]
≤ 2 exp

(
− pt2

512n3 + 32n
√
nt

)
.

Combining the above results, we obtain

P

[∣∣∣∣∣1p
p∑
k=1

Xk − E [Xk]

∣∣∣∣∣ ≥ t
]

= P [|SW − E [SW ] + SV − E [SV ]| ≥ t]

≤ P
[
|SW − E [SW ]| ≥ t

2

]
+ P

[
|SV − E [SV ]| ≥ t

2

]
≤ 2 exp

(
− pµ2t2

128n2 + 16nµt

)
+ 2 exp

(
− pt2

512n3 + 32n
√
nt

)
≤ 4 exp

(
− pµ2t2

512n2 + 32nµt

)
,

provided that µ ≤ 1√
n
, as desired.

Proof [of Proposition 4.9 ] Let

Xk =
w∗

‖w‖2
∇hµ (q(w)∗xk) ,

then w∗∇g(w)
‖w‖2

= 1
p

∑p
k=1Xk. For each Xk, k ∈ [p], from (9.0.1), we know that

|Xk| =
∣∣∣∣tanh

(
q(w)∗xk

µ

)(
w∗xk
‖w‖ −

‖w‖2 xk (n)

qn (w)

)∣∣∣∣ ≤ ∣∣∣∣w∗xk‖w‖ −
‖w‖2 xk (n)

qn (w)

∣∣∣∣ ,
as the magnitude of tanh (·) is bounded by one. Because w

∗xk
‖w‖2

− ‖w‖xk(n)

qn(w) =
(
w
‖w‖ ,−

‖w‖
qn(w)

)∗
xk and xk ∼i.i.d.

BG (θ), invoking Lemma 9.4, we obtain for every integerm ≥ 2 that

E [|Xk|m] ≤ EZ∼N (0,1/q2n(w)) [|Z|m] ≤ 1

qn (w)
m (m− 1)!! ≤ m!

2
(4n)

(
2
√
n
)m−2

,

where the Gaussian moment can be looked up in Lemma B.6 and we used the fact that (m− 1)!! ≤ m!/2 and

the assumption that qn (w) ≥ 1
2
√
n
to get the result. Thus, by taking σ2 = 4n ≥ E

[
X2
k

]
and R = 2

√
n, and we

obtain the claimed result by invoking Lemma A.1.

Proof [of Proposition 4.10] Let Zk = ∇2
whµ (q(w)∗xk), then ∇2

wg (w) = 1
p

∑p
k=1Zk. From (9.0.2), we know

that

Zk = Wk + Vk



CHAPTER 9. PROOF OF THE FUNCTION LANDSCAPE 94

where

Wk =
1

µ

(
1− tanh2

(
q(w)∗xk

µ

))(
xk −

xk (n)w

qn(w)

)(
xk −

xk (n)w

qn(w)

)∗
Vk = − tanh

(
q(w)∗xk

µ

)(
xk (n)

qn(w)
I +

xk (n)ww∗

q3
n(w)

)
.

ForWk, we have

0 � E [Wm
k ] � 1

µm
E

[∥∥∥∥xk − xk (n)w

qn(w)

∥∥∥∥2m−2(
xk −

xk (n)w

qn(w)

)(
xk −

xk (n)w

qn(w)

)∗]

� 1

µm
E

[∥∥∥∥xk − xk (n)w

qn(w)

∥∥∥∥2m
]
I

� 2m

µm
E

[(
‖xk‖2 +

x2
k (n) ‖w‖2
q2
n(w)

)m]
I

� 2m

µm
E
[
‖xk‖2m

]
I � 2m

µm
EZ∼χ2(n) [Zm] I,

where we have used the fact that ‖w‖2 /q2
n(w) = ‖w‖2 /(1 − ‖w‖2) ≤ 1 for ‖w‖2 ≤ 1

4 and Lemma 9.4 to

obtain the last line. By Lemma B.7, we obtain

0 � E [Wm
k ] �

(
2

µ

)m
m!

2
(2n)

m
I =

m!

2

(
4n

µ

)m
I.

Taking RW = 4n
µ and σ2

W = 16n2

µ2 ≥ E
[
W 2

k

]
, and letting SW

.
= 1

p

∑p
k=1Wk, by Lemma A.2, we obtain

P
[
‖SW − E [SW ]‖ ≥ t

2

]
≤ 2n exp

(
− pµ2t2

128n2 + 16µnt

)
.

Similarly, for Vk, we have

E [V m
k ] �

(
1

qn(w)
+
‖w‖2
q3
n(w)

)m
E [|xk (n)|m] I

�
(
8n
√
n
)m

(m− 1)!!I

� m!

2

(
8n
√
n
)m
I,

where we have used the fact qn (w) ≥ 1
2
√
n
to simplify the result. Similar argument also shows −E [V m

k ] �

m! (8n
√
n)
m
I/2. Taking RV = 8n

√
n and σ2

V = 64n3, and letting SV
.
= 1

p

∑p
k=1 Vk, again by Lemma A.2,

we obtain

P
[
‖SV − E [SV ]‖ ≥ t

2

]
≤ 2n exp

(
− pt2

512n3 + 32n
√
nt

)
.
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Combining the above results, we obtain

P

[∥∥∥∥∥1

p

p∑
k=1

Zk − E [Zk]

∥∥∥∥∥ ≥ t
]

= P [‖SW − E [SW ] + SV − E [SV ]‖ ≥ t]

≤ P
[
‖SW − E [SW ]‖ ≥ t

2

]
+ P

[
‖SV − E [SV ]‖ ≥ t

2

]
≤ 2n exp

(
− pµ2t2

128n2 + 16µnt

)
+ 2n exp

(
− pt2

512n3 + 32n
√
nt

)
≤ 4n exp

(
− pµ2t2

512n2 + 32µnt

)
,

where we have simplified the final result based on the fact that µ ≤ 1√
n
.

9.1.5 Proof of Lipschitz results

To avoid clutter of notations, in this subsection we write X to mean X0; similarly xk for (x0)k, the k-th

column ofX0. The function g (w) means g (w;X0). We need the following lemmas to prove the Lipschitz

results.

Lemma 9.5 Suppose that ϕ1 : U → V is an L-Lipschitz map from a normed space U to a normed space V , and

that ϕ2 : V →W is an L′-Lipschitz map from V to a normed spaceW . Then the composition ϕ2 ◦ ϕ1 : U →W

is LL′-Lipschitz.

Lemma 9.6 Fix anyD ⊆ Rn−1. Let g1, g2 : D → R, and assume that g1 is L1-Lipschitz, and g2 is L2-Lipschitz,

and that g1 and g2 are bounded over D, i.e., |g1(x)| ≤M1 and |g2(x)| ≤M2 for all x ∈ D with some constants

M1 > 0 andM2 > 0. Then the function h(x) = g1(x)g2(x) is L-Lipschitz, with

L = M1L2 +M2L1.

Lemma 9.7 For every w,w′ ∈ Γ, and every fixed x, we have∣∣∣ḣµ (q(w)∗x)− ḣµ (q(w′)∗x)
∣∣∣ ≤ 2

√
n

µ
‖x‖ ‖w −w′‖ ,∣∣∣ḧµ (q(w)∗x)− ḧµ (q(w′)∗x)

∣∣∣ ≤ 4
√
n

µ2
‖x‖ ‖w −w′‖ .

Proof We have

|qn (w)− qn (w′)| =
∣∣∣∣√1− ‖w‖2 −

√
1− ‖w′‖2

∣∣∣∣ =
‖w +w′‖ ‖w −w′‖√

1− ‖w‖2 +
√

1− ‖w′‖2
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≤ max (‖w‖ , ‖w′‖)
min (qn (w) , qn (w′))

‖w −w′‖ .

Hence it holds that

‖q (w)− q (w′)‖2 = ‖w −w′‖2 + |qn (w)− qn (w′)|2 ≤

1 +
max

(
‖w‖2 , ‖w′‖2

)
min (q2

n (w) , q2
n (w′))

 ‖w −w′‖2
=

1

min (q2
n (w) , q2

n (w′))
‖w −w′‖2 ≤ 4n ‖w −w′‖2 ,

where we have used the fact qn (w) ≥ 1
2
√
n
to get the final result. Hence the mapping w 7→ q(w) is 2

√
n-

Lipschitz over Γ. Moreover it is easy to see q 7→ q∗x is ‖x‖2-Lipschitz. By Lemma B.1 and the composition

rule in Lemma 9.5, we obtain the desired claims.

Lemma 9.8 For any fixed x, consider the function

tx(w)
.
=
w∗x
‖w‖ −

xn
qn(w)

‖w‖

defined over w ∈ Γ. Then, for all w,w′ in Γ such that ‖w‖ ≥ r and ‖w′‖ ≥ r for some constant r ∈ (0, 1), it

holds that

|tx(w)− tx(w′)| ≤ 2

(‖x‖
r

+ 4n3/2 ‖x‖∞
)
‖w −w′‖ ,

|tx(w)| ≤ 2
√
n ‖x‖ ,∣∣t2x(w)− t2x(w′)

∣∣ ≤ 8
√
n ‖x‖

(‖x‖
r

+ 4n3/2 ‖x‖∞
)
‖w −w′‖ ,

∣∣t2x(w)
∣∣ ≤ 4n ‖x‖2 .

Proof First of all, we have

|tx(w)| =

[
w∗

‖w‖ ,−
‖w‖
qn(w)

]
x ≤ ‖x‖

(
1 +

‖w‖2
q2
n(w)

)1/2

=
‖x‖
|qn(w)| ≤ 2

√
n ‖x‖ ,

where we have used the assumption that qn (w) ≥ 1
2
√
n
to simplify the final result. The claim about

∣∣t2x (w)
∣∣

follows immediately. Now

|tx(w)− tx(w′)| ≤
∣∣∣∣( w

‖w‖ −
w′

‖w′‖

)∗
x

∣∣∣∣+ |xn|
∣∣∣∣ ‖w‖qn(w)

− ‖w
′‖

qn(w′)

∣∣∣∣ .
Moreover we have∣∣∣∣( w

‖w‖ −
w′

‖w′‖

)∗
x

∣∣∣∣ ≤ ‖x‖ ∥∥∥∥ w

‖w‖ −
w′

‖w′‖

∥∥∥∥ ≤ ‖x‖ ‖w −w′‖ ‖w′‖ + ‖w′‖ |‖w‖ − ‖w′‖|
‖w‖ ‖w′‖
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≤ 2 ‖x‖
r
‖w −w′‖ ,

where we have used the assumption that ‖w‖ ≥ r to simplify the result. Noticing that t 7→ t/
√

1− t2 is

continuous over [a, b] and differentiable over (a, b) for any 0 < a < b < 1, by mean value theorem,∣∣∣∣ ‖w‖qn(w)
− ‖w

′‖
qn(w′)

∣∣∣∣ ≤ sup
w ∈ Γ

1(
1− ‖w‖2

)3/2
‖w −w′‖ ≤ 8n3/2 ‖w −w′‖ ,

where we have again used the assumption that qn (w) ≥ 1
2
√
n
to simplify the last result. Collecting the above

estimates, we obtain

|tx(w)− tx(w′)| ≤
(

2
‖x‖
r

+ 8n3/2 ‖x‖∞
)
‖w −w′‖ ,

as desired. For the last one, we have

∣∣t2x(w)− t2x(w′)
∣∣ = |tx(w)− tx(w′)| |tx(w) + tx(w′)|

≤ 2 sup
s ∈ Γ

|tx(s)| |tx(w)− tx(w′)| ,

leading to the claimed result once we substitute estimates of the involved quantities.

Lemma 9.9 For any fixed x, consider the function

Φx(w) =
xn

qn(w)
I +

xn
q3
n(w)

ww∗

defined over w ∈ Γ. Then, for all w,w′ ∈ Γ such that ‖w‖ < r and ‖w′‖ < r with some constant r ∈
(
0, 1

2

)
, it

holds that

‖Φx(w)‖ ≤ 2 ‖x‖∞ ,

‖Φx(w)−Φx(w′)‖ ≤ 4 ‖x‖∞ ‖w −w′‖ .

Proof Simple calculation shows

‖Φx(w)‖ ≤ ‖x‖∞

(
1

qn(w)
+
‖w‖2
q3
n(w)

)
=
‖x‖∞
q3
n(w)

≤ ‖x‖∞
(1− r2)3/2

≤ 2 ‖x‖∞ .

For the second one, we have

‖Φx(w)−Φx(w′)‖ ≤ ‖x‖∞
∥∥∥∥ 1

qn(w)
I +

1

q3
n(w)

ww∗ − 1

qn(w′)
I − 1

q3
n(w′)

w′(w′)∗
∥∥∥∥
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≤ ‖x‖∞

(∣∣∣∣ 1

qn (w)
− 1

qn (w′)

∣∣∣∣+

∣∣∣∣∣ ‖w‖2q3
n (w)

− ‖w
′‖2

q3
n (w′)

∣∣∣∣∣
)
.

Now ∣∣∣∣ 1

qn (w)
− 1

qn (w′)

∣∣∣∣ =
|qn (w)− qn (w′)|
qn (w) qn (w′)

≤ max (‖w‖ , ‖w′‖)
min (q3

n (w) , q3
n (w′))

‖w −w′‖ ≤ 4

3
√

3
‖w −w′‖ ,

where we have applied the estimate for |qn (w)− qn (w′)| as established in Lemma 9.7 and also used ‖w‖ ≤

1/2 and ‖w′‖ ≤ 1/2 to simplify the above result. Further noticing t 7→ t2/
(
1− t2

)3/2 is differentiable over

t ∈ (0, 1), we apply the mean value theorem and obtain∣∣∣∣∣ ‖w‖2q3
n (w)

− ‖w
′‖2

q3
n (w′)

∣∣∣∣∣ ≤ sup
s∈Γ,‖s‖≤r< 1

2

‖s‖3 + 2 ‖s‖(
1− ‖s‖2

)5/2
‖w −w′‖ ≤ 4√

3
‖w −w′‖ .

Combining the above estimates gives the claimed result.

Lemma 9.10 For any fixed x, consider the function

ζx(w) = x− xn
qn(w)

w

defined overw ∈ Γ. Then, for allw,w′ ∈ Γ such that ‖w‖ ≤ r and ‖w′‖ ≤ r for some constant r ∈
(
0, 1

2

)
, it

holds that

‖ζx(w)ζx(w)∗‖ ≤ 2n ‖x‖2∞ ,

‖ζx(w)ζx(w)∗ − ζx(w′)ζx(w′)∗‖ ≤ 8
√

2
√
n ‖x‖2∞ ‖w −w′‖ .

Proof We have ‖w‖2 /q2
n (w) ≤ 1/3 when ‖w‖ ≤ r < 1/2, hence it holds that

‖ζx(w)ζx(w)∗‖ ≤ ‖ζx(w)‖2 ≤ 2 ‖x‖2 + 2x2
n

‖w‖
q2
n (w)

≤ 2n ‖x‖2∞ .

For the second, we first estimate

‖ζ(w)− ζ(w′)‖ =

∥∥∥∥xn( w

qn (w)
− w′

qn (w′)

)∥∥∥∥ ≤ ‖x‖∞ ∥∥∥∥ w

qn (w)
− w′

qn (w′)

∥∥∥∥
≤ ‖x‖∞

(
1

qn(w)
‖w −w′‖ + ‖w′‖

∣∣∣∣ 1

qn(w)
− 1

qn(w′)

∣∣∣∣)
≤ ‖x‖∞

(
1

qn(w)
+

‖w′‖
min {q3

n(w), q3
n(w′)}

)
‖w −w′‖

≤ ‖x‖∞
(

2√
3

+
4

3
√

3

)
‖w −w′‖ ≤ 4 ‖x‖∞ ‖w −w′‖ .
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Thus, we have

‖ζx(w)ζx(w)∗ − ζx(w′)ζx(w′)∗‖ ≤ ‖ζ(w)‖ ‖ζ(w)− ζ(w′)‖ + ‖ζ(w)− ζ(w′)‖ ‖ζ(w′)‖

≤ 8
√

2
√
n ‖x‖2∞ ‖w −w′‖ ,

as desired.

Now, we are ready to prove all the Lipschitz propositions.

Proof [of Proposition 4.11] Let

Fk(w) = ḧµ (q(w)∗xk) t2xk(w) + ḣµ (q(w)∗xk)
xk (n)

q3
n(w)

.

Then, 1
‖w‖2w

∗∇2g(w)w = 1
p

∑p
k=1 Fk(w). Noticing that ḧµ (q(w)∗xk) is bounded by 1/µ and ḣµ (q(w)∗xk)

is bounded by 1, both in magnitude. Applying Lemma 9.6, Lemma 9.7 and Lemma 9.8, we can see Fk(w) is

LkS-Lipschitz with

LkS = 4n ‖xk‖2
4
√
n

µ2
‖xk‖ +

1

µ
8
√
n ‖xk‖

(‖xk‖
rS

+ 4n3/2 ‖xk‖∞
)

+ (2
√
n)3 ‖xk‖∞

2
√
n

µ
‖xk‖ + sup

rS<a<
√

2n−1
2n

3

(1− a2)
5/2
‖xk‖∞

=
16n3/2

µ2
‖xk‖3 +

8
√
n

µrS
‖xk‖2 +

48n2

µ
‖xk‖ ‖xk‖∞ + 96n5/2 ‖xk‖∞ .

Thus, 1
‖w‖2

w∗∇2g(w)w is LS-Lipschitz with

LS ≤
1

p

p∑
k=1

LkS ≤
16n3

µ2
‖X‖3∞ +

8n3/2

µrS
‖X‖2∞ +

48n5/2

µ
‖X‖2∞ + 96n5/2 ‖X‖∞ ,

as desired.

Proof [of Proposition 4.12 ] We have∥∥∥∥ w∗‖w‖∇g(w)− w′∗

‖w′‖∇g(w′)

∥∥∥∥ ≤ 1

p

p∑
k=1

∥∥∥ḣµ (q(w)∗xk) txk (w)− ḣµ (q(w′)∗xk) txk (w′)
∥∥∥

where ḣµ(t) = tanh(t/µ) is bounded by one in magnitude, and txk(w) and tx′k(w) is defined as in Lemma 9.8.

By Lemma 9.6, Lemma 9.7 and Lemma 9.8, we know that ḣµ (q(w)∗xk) txk (w) is Lk-Lipschitz with constant

Lk =
2 ‖xk‖
rg

+ 8n3/2 ‖xk‖∞ +
4n

µ
‖xk‖2 .
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Therefore, we have∥∥∥∥ w∗‖w‖∇g(w)− w∗

‖w‖∇g(w′)

∥∥∥∥ ≤ 1

p

p∑
k=1

(
2 ‖xk‖
rg

+ 8n3/2 ‖xk‖∞ +
4n

µ
‖xk‖2

)
‖w −w′‖

≤
(

2
√
n

rg
‖X‖∞ + 8n3/2 ‖X‖∞ +

4n2

µ
‖X‖2∞

)
‖w −w′‖ ,

as desired.

Proof [of Proposition 4.13] Let

Fk(w) = ḧµ(q(w)∗xk)ζk(w)ζk(w)∗ − ḣµ (q(w)∗xk) Φk(w)

with ζk(w) = xk − xk(n)
qn(w)w and Φk(w) = xk(n)

qn(w)I +
xn,k
qn(w)ww

∗. Then, ∇2g(w) = 1
p

∑p
k=1 Fk(w). Using

Lemma 9.6, Lemma 9.7, Lemma 9.9 and Lemma 9.10, and the facts that ḧµ(t) is bounded by 1/µ and that

ḧµ(t) is bounded by 1 in magnitude, we can see Fk(w) is LkN-Lipschitz continuous with

LkN =
1

µ
× 8
√

2
√
n ‖xk‖2∞ +

2
√
n

µ2
‖xk‖ × 2n ‖xk‖2∞ + 4 ‖xk‖∞ +

2
√
n

µ
‖xk‖ × 2 ‖xk‖∞

≤ 4n3/2

µ2
‖xk‖ ‖xk‖2∞ +

4
√
n

µ
‖xk‖ ‖xk‖∞ +

8
√

2
√
n

µ
‖xk‖2∞ + 4 ‖xk‖∞ .

Thus, we have

LN ≤
1

p

p∑
k=1

LkN ≤
4n2

µ2
‖X‖3∞ +

4n

µ
‖X‖2∞ +

8
√

2
√
n

µ
‖X‖2∞ + 8 ‖X‖∞ ,

as desired.

9.2 Proofs of Theorem 4.1

To avoid clutter of notations, in this subsection we write X to mean X0; similarly xk for (x0)k, the k-th

column of X0. The function g (w) means g (w;X0). Before proving Theorem 4.1, we record one useful

lemma.

Lemma 9.11 For any θ ∈ (0, 1), consider the random matrixX ∈ Rn1×n2 withX ∼i.i.d. BG (θ). Define the

event E∞ .
=
{

1 ≤ ‖X‖∞ ≤ 4
√

log (np)
}
. It holds that

P [Ec∞] ≤ θ (np)
−7

+ exp (−0.3θnp) .

Proof See Section B.2.4 on Page 229.
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For convenience, we define three regions covering the whole range of w:

R1
.
=

{
w : ‖w‖ ≤ µ

4
√

2

}
, R2

.
=

{
w :

µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5

}
,

R3
.
=

{
w :

1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n

}
.

Proof [of Theorem 4.1] We will first use covering argument and continuity to show that the random quantities

of interest in R1, R2, and R3 concentrate uniformly around their expectations. Then, we will show that the

only local minimizer is next to 0 and is contained in R1.

Strong convexity in region R1. Proposition 4.7 shows that for any w ∈ R1, E
[
∇2g(w)

]
� c1θ

µ I . For any

ε ∈ (0, µ/
(
4
√

2
)
), R1 has an ε-net N1 of size at most (3µ/

(
4
√

2ε
)
)n. On E∞,∇2g is

L1
.
=
C2n

2

µ2
log3/2(np)

Lipschitz by Proposition 4.13. Set ε = c1θ
3µL1

, so

#N1 ≤ exp

(
2n log

(
C3n log(np)

θ

))
.

Let E1 denote the event

E1 =

{
max
w∈N1

∥∥∇2g(w)− E
[
∇2g(w)

]∥∥ ≤ c1θ

3µ

}
.

On E1 ∩ E∞,

sup
‖w‖≤µ/(4

√
2)

∥∥∇2g(w)− E
[
∇2g(w)

]∥∥ ≤ 2c1θ

3µ
,

and so on E1 ∩ E∞, (4.1.2) holds for any constant c? ≤ c1/3. Setting t = c1θ/3µ in Proposition 4.10, we obtain

that for any fixed w,

P
[∥∥∇2g(w)− E

[
∇2g(w)

]∥∥ ≥ c1θ

3µ

]
≤ 4n exp

(
−c4pθ

2

n2

)
.

Taking a union bound, we obtain that

P [Ec1 ] ≤ 4n exp

(
−c4pθ

2

n2
+ C5n log(n) + C5n log log(p)

)
.

Large gradient in region R2. Similarly, for the gradient quantity, for w ∈ R2, Proposition 4.6 shows that

E
[
w∗∇g(w)

‖w‖

]
≥ c6θ.
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Moreover, on E∞, w
∗∇g(w)
‖w‖ is

L2
.
=
C7n

2

µ
log(np)

Lipschitz by Proposition 4.12. For any ε < 1
20
√

5
, the set R2 has an ε-net N2 of size at most

(
3

20ε
√

5

)n
. Set

ε = c6θ
3L2

, so

#N2 ≤ exp

(
n log

(
C8n

2 log(np)

θµ

))
.

Let E2 denote the event

E2 =

{
max
w∈N2

∣∣∣∣w∗∇g(w)

‖w‖ − E
[
w∗∇g(w)

‖w‖

]∣∣∣∣ ≤ c6θ

3

}
.

On E2 ∩ E∞,

sup
w∈R2

∣∣∣∣w∗∇g(w)

‖w‖ − E
[
w∗∇g(w)

‖w‖

]∣∣∣∣ ≤ 2c6θ

3
, (9.2.1)

and so on E2 ∩ E∞, (4.1.3) holds for any constant c? ≤ c6/3. Setting t = c6θ/3 in Proposition 4.9, we obtain

that for any fixed w ∈ R2,

P
[∣∣∣∣w∗∇g(w)

‖w‖ − E
[
w∗∇g(w)

‖w‖

∣∣∣∣]] ≤ 2 exp

(
−c9pθ

2

n

)
,

and so

P [Ec2 ] ≤ 2 exp

(
−c9pθ

2

n
+ n log

(
C8n

2 log(np)

θµ

))
. (9.2.2)

Existence of negative curvature direction in R3. Finally, for any w ∈ R3, Proposition 4.5 shows that

E

[
w∗∇2g(w)w

‖w‖2

]
≤ −c9θ.

On E∞, w
∗∇2g(w)w

‖w‖2 is

L3 =
C10n

3

µ2
log3/2(np)

Lipschitz by Proposition 4.11. As above, for any ε ≤
√

4n−1
4n , R3 has an ε-net N3 of size at most (3/ε)n. Set

ε = c9θ/3L3. Then

#N3 ≤ exp

(
n log

(
C11n

3 log3/2(np)

θµ2

))
.

Let E3 denote the event

E3 =

{
max
w∈N3

∣∣∣∣∣w∗∇2g(w)w

‖w‖2
− E

[
w∗∇2g(w)w

‖w‖2

]∣∣∣∣∣ ≤ c9θ

3

}
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On E3 ∩ E∞,

sup
w∈R3

∣∣∣∣∣w∗∇2g(w)w

‖w‖2
− E

[
w∗∇2g(w)w

‖w‖2

]∣∣∣∣∣ ≤ 2c9θ

3
,

and (4.1.4) holds with any constant c? < c9/3. Setting t = c9θ/3 in Proposition 4.8 and taking a union bound,

we obtain

P [Ec3 ] ≤ 4 exp

(
−c12pµ

2θ2

n2
+ n log

(
C11n

3 log3/2(np)

θµ2

))
.

The unique local minimizer located near 0. Let Eg be the event that the bounds (4.1.2)-(4.1.4) hold. On

Eg, the function g is c?θ
µ -strongly convex over R1 =

{
w
∣∣ ‖w‖ ≤ µ/ (4√2

)}
. This implies that f has at most

one local minimum on R1. It also implies that for any w ∈ R1,

g(w) ≥ g(0) + 〈∇g(0),w〉+
cθ

2µ
‖w‖2 ≥ g(0)− ‖w‖ ‖∇g(0)‖ +

c?θ

2µ
‖w‖2 .

So, if g(w) ≤ g(0), we necessarily have

‖w‖ ≤ 2µ

c?θ
‖∇g(0)‖ .

Suppose that

‖∇g(0)‖ ≤ c?θ

32
. (9.2.3)

Then g(w) ≤ g(0) implies that ‖w‖ ≤ µ/16. By Wierstrass’s theorem, g(w) has at least one minimizer w?

over the compact set S = {w | ‖w‖ ≤ µ/10}. By the above reasoning, ‖w?‖ ≤ µ/16, and hence w? does not

lie on the boundary of S. This implies that w? is a local minimizer of g. Moreover, as above,

‖w?‖ ≤
2µ

c?θ
‖∇g(0)‖ .

We now use the vector Bernstein inequality to show that with our choice of p, (9.2.3) is satisfied with high

probability. Notice that

∇g(0) =
1

p

p∑
i=1

ḣµ(xi(n))xi,

and ḣµ is bounded by one in magnitude, so for any integerm ≥ 2,

E
[∥∥∥ḣµ(xi(n))xi

∥∥∥m] ≤ E [‖xi‖m] ≤ EZ∼χ(n) [Zm] ≤ m!nm/2,

where we have applied the moment estimate for the χ (n) distribution shown in Lemma B.8. Applying the
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vector Bernstein inequality in Corollary A.3 with R =
√
n and σ2 = 2n, we obtain

P [‖∇g(0)‖ ≥ t] ≤ 2(n+ 1) exp

(
− pt2

4n+ 2
√
nt

)
for all t > 0. Using this inequality, it is not difficult to show that there exist constants C13, C14 > 0 such that

when p ≥ C13n log n, with probability at least 1− 4np−10,

‖∇g(0)‖ ≤ C3

√
n log p

p
. (9.2.4)

When p
log p ≥ C14n

θ2 , for appropriately large C14, (9.2.4) implies (9.2.3). Summing up failure probabilities

completes the proof.

9.3 Proofs for Section 4.3 and Theorem 4.3

Proof [of Lemma 4.14] By the generative model,

Y =

(
1

pθ
Y Y ∗

)−1/2

Y =

(
1

pθ
A0X0X

∗
0A
∗
0

)−1/2

A0X0.

Since E [X0X
∗
0/ (pθ)] = I , we will compare

(
1
pθA0X0X

∗
0A
∗
0

)−1/2

A0 with (A0A
∗
0)
−1/2

A0 = UV ∗. By

Lemma B.11, we have ∥∥∥∥∥
(

1

pθ
A0X0X

∗
0A
∗
0

)−1/2

A0 − (A0A
∗
0)
−1/2

A0

∥∥∥∥∥
≤ ‖A0‖

∥∥∥∥∥
(

1

pθ
A0X0X

∗
0A
∗
0

)−1/2

− (A0A
∗
0)
−1/2

∥∥∥∥∥
≤ ‖A0‖

2 ‖A0‖3
σ4

min (A0)

∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥ = 2κ4 (A0)

∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥
provided

‖A0‖2
∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥ ≤ σ2
min (A0)

2
⇐⇒

∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥ ≤ 1

2κ2 (A0)
.

On the other hand, by Lemma B.12, when p ≥ C1n
2 log n for some large constant C1,

∥∥∥ 1
pθX0X

∗
0 − I

∥∥∥ ≤
10
√

θn log p
p with probability at least 1− p−8. Thus, when p ≥ C2κ

4 (A0) θn2 log(nθκ (A0)),∥∥∥∥∥
(

1

pθ
A0X0X

∗
0A
∗
0

)−1/2

A0 − (A0A
∗
0)
−1/2

A0

∥∥∥∥∥ ≤ 20κ4 (A0)

√
θn log p

p
,
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as desired.

Proof [of Lemma 4.15] To avoid clutter in notation, we write X to mean X0, and xk to mean (x0)k in

this proof. We also let Ỹ .
= X0 + Ξ̃X0. Note the Jacobian matrix for the mapping q (w) is ∇wq (w) =[

I,−w/
√

1− ‖w‖2
]
. Hence for any vector z ∈ Rn and all w ∈ Γ,

‖∇wq (w) z‖ ≤
√
n− 1 ‖z‖∞ +

‖w‖√
1− ‖w‖2

‖z‖∞ ≤ 3
√
n ‖z‖∞ .

Now we have∥∥∥∇wg (w; Ỹ
)
−∇wg (w;X)

∥∥∥
=

∥∥∥∥∥1

p

p∑
k=1

ḣµ

(
q∗ (w)xk + q∗ (w) Ξ̃xk

)
∇wq (w)

(
xk + Ξ̃xk

)
− 1

p

p∑
k=1

ḣµ (q∗ (w)xk)∇wq (w)xk

∥∥∥∥∥
≤
∥∥∥∥∥1

p

p∑
k=1

ḣµ

(
q∗ (w)xk + q∗ (w) Ξ̃xk

)
∇wq (w)

(
xk + Ξ̃xk − xk

)∥∥∥∥∥
+

∥∥∥∥∥1

p

p∑
k=1

[
ḣµ

(
q∗ (w)xk + q∗ (w) Ξ̃xk

)
− ḣµ (q∗ (w)xk)

]
∇wq (w)xk

∥∥∥∥∥
≤
∥∥∥Ξ̃∥∥∥ (max

t
ḣµ (t) 3n ‖X‖∞ + Lḣµ3n ‖X‖2∞

)
,

where Lḣµ denotes the Lipschitz constant for ḣµ (·). Similarly, suppose
∥∥∥Ξ̃∥∥∥ ≤ 1

2n , and also notice that

∥∥∥∥ I

qn (w)
+
ww∗

q3
n (w)

∥∥∥∥ ≤ 1

qn (w)
+
‖w‖2
q3
n (w)

=
1

q3
n (w)

≤ 2
√

2n3/2,

we obtain that∥∥∥∇2
wg
(
w; Ỹ

)
−∇2

wg (w;X)
∥∥∥

≤
∥∥∥∥∥1

p

p∑
k=1

[
ḧ (q∗ (w) ỹk)∇wq (w) ỹkỹ

∗
k (∇wq (w))

∗ − ḧ (q∗ (w)xk)∇wq (w)xkx
∗
k (∇wq (w))

∗
]∥∥∥∥∥

+

∥∥∥∥∥1

p

p∑
k=1

[
ḣ (q∗ (w) ỹk)

(
I

qn (w)
+
ww∗

q3
n

)
ỹk (n)− ḣ (q∗ (w)xk)

(
I

qn (w)
+
ww∗

q3
n

)
xk (n)

]∥∥∥∥∥
≤ 45

2 Lḧµn
3/2 ‖X‖3∞

∥∥∥Ξ̃∥∥∥ + max
t
ḧµ (t)

(
18n3/2 ‖X‖2∞

∥∥∥Ξ̃∥∥∥ + 10n2 ‖X‖2∞
∥∥∥Ξ̃∥∥∥2

)
+ 3
√

2Lḣµn
2
∥∥∥Ξ̃∥∥∥ ‖X‖2∞ + max

t
ḣ (t) 2

√
2n2

∥∥∥Ξ̃∥∥∥ ‖X‖∞ ,
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where Lḧµ denotes the Lipschitz constant for ḧµ (·). Since

max
t
ḣµ (t) ≤ 1, max

t
ḧµ (t) ≤ 1

µ
, Lhµ ≤ 1, Lḣµ ≤

1

µ
, Lḧµ ≤

2

µ2
,

and by Lemma 9.11, ‖X‖∞ ≤ 4
√

log (np) with probability at least 1− θ (np)
−7 − exp (−0.3θnp), we obtain∥∥∥∇wg (w; Ỹ

)
−∇wg (w;X)

∥∥∥ ≤ C1
n

µ
log (np)

∥∥∥Ξ̃∥∥∥ ,∥∥∥∇2
wg
(
w; Ỹ

)
−∇2

wg (w;X)
∥∥∥ ≤ C2 max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

∥∥∥Ξ̃∥∥∥
for constants C1, C2 > 0.

Proof [of Theorem 4.3] Assume the constant c? as defined in Theorem 4.1. By Lemma 4.14, when

p ≥ C1

c2?θ
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

the magnitude of the perturbation is bounded as

∥∥∥Ξ̃∥∥∥ ≤ C2c?θ

(
max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

,

where C2 can be made arbitrarily small by making C1 large. Combining this result with Lemma 4.15, we

obtain that for all w ∈ Γ, ∥∥∥∇wg (w;X0 + Ξ̃X0

)
−∇wg (w;X)

∥∥∥ ≤ c?θ

2∥∥∥∇2
wg
(
w;X0 + Ξ̃X0

)
−∇2

wg (w;X)
∥∥∥ ≤ c?θ

2
,

with probability at least 1− p−8 − θ (np)
−7 − exp (−0.3θnp). In view of (4.1.10) in Theorem 4.1, we have

w∗g
(
w;X0 + Ξ̃X0

)
w

‖w‖2
=
w∗g (w;X0)w

‖w‖2
+
w∗g

(
w;X0 + Ξ̃X0

)
w

‖w‖2
− w

∗g (w;X0)w

‖w‖2

≤ −c?θ +
∥∥∥∇2

wg
(
w;X0 + Ξ̃X0

)
−∇2

wg (w;X)
∥∥∥ ≤ −1

2
c?θ.

By similar arguments, we obtain (4.1.8) through (4.1.10) in Theorem 4.3.

To show the unique localminimizer overΓ is near 0, we note that (recall the last part of proof of Theorem 4.1

in Section 9.2) g
(
w;X0 + Ξ̃X0

)
being c?θ

2µ strongly convex near 0 implies that

‖w?‖ ≤
4µ

c?θ

∥∥∥∇g (0;X0 + Ξ̃X0

)∥∥∥ .
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The above perturbation analysis implies there exists C3 > 0 such that when

p ≥ C3

c2?θ
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

it holds that ∥∥∥∇wg (0;X0 + Ξ̃X0

)
−∇wg (0;X)

∥∥∥ ≤ c?θ

400
,

which in turn implies

‖w?‖ ≤
4µ

c?θ
‖∇g (0;X0)‖ +

4µ

c?θ

c?θ

400
≤ µ

8
+

µ

100
<
µ

7
,

where we have recall the result that 2µ
c?θ
‖∇g (0;X0)‖ ≤ µ/16 from proof of Theorem 4.1. A simple union

bound with careful bookkeeping gives the success probability.
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Chapter 10

Proof of Convergence of the

Trust-Region Algorithm

I have had my results for a long time, but I do not yet know how to

arrive at them.

Karl Friedrich Gauss

10.1 Proof of Lemma 5.3

Proof Using the fact tanh (·) and 1− tanh2 (·) are bounded by one in magnitude, by (5.3.1) and (5.3.2) we

have

‖∇f (q)‖ ≤ 1

p

p∑
k=1

‖xk‖ ≤
√
n ‖X‖∞ ,

∥∥∇2f (q)
∥∥ ≤ 1

p

p∑
k=1

1

µ
‖xk‖2 ≤

n

µ
‖X‖2∞ ,

for any q ∈ Sn−1. Moreover,

sup
q,q′∈Sn−1,q 6=q′

‖∇f (q)−∇f (q′)‖
‖q − q′‖ ≤ 1

p

p∑
k=1

‖xk‖ sup
q,q′∈Sn−1,q 6=q′

∣∣∣tanh
(
q∗xk
µ

)
− tanh

(
q′∗xk
µ

)∣∣∣
‖q − q′‖

≤ 1

p

p∑
k=1

‖xk‖
‖xk‖
µ
≤ n

µ
‖X‖2∞ ,
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where at the last line we have used the fact the mapping q 7→ q∗xk/µ is ‖xk‖ /µ Lipschitz, and x 7→ tanh (x)

is 1-Lipschitz, and the composition rule in Lemma 9.5. Similar argument yields the final bound.

10.2 Proof of Lemma 5.4

Proof Suppose we can establish ∣∣∣f (expq(δ)
)
− f̂ (q, δ)

∣∣∣ ≤ 1

6
ηf ‖δ‖3 .

Applying this twice we obtain

f(expq(δ?)) ≤ f̂(q, δ?) +
1

6
ηf∆3 ≤ f̂(q, δ) +

1

6
ηf∆3 ≤ f(expq(δ)) +

1

3
ηf∆3 ≤ f(q)− s+

1

3
ηf∆3,

as claimed. Next we establish the first result. Let δ0 = δ
‖δ‖ , and t = ‖δ‖. Consider the composite function

ζ(t)
.
= f(expq(tδ0)) = f(q cos(t) + δ0 sin(t)),

and also

ζ̇(t) = 〈∇f (q cos(t) + δ0 sin(t)) ,−q sin(t) + δ0 cos(t)〉

ζ̈(t) =
〈
∇2f (q cos(t) + δ0 sin(t)) (−q sin(t) + δ0 cos(t)),−q sin(t) + δ0 cos(t)

〉
+ 〈∇f (q cos(t) + δ0 sin(t)) ,−q cos(t)− δ0 sin(t)〉 .

In particular, this gives that

ζ(0) = f(q)

ζ̇(0) = 〈δ0,∇f(q)〉

ζ̈(0) = δ∗0
(
∇2f(q)− 〈∇f(q), q〉 I

)
δ0.

We next develop a bound on
∣∣∣ζ̈(t)− ζ̈(0)

∣∣∣. Using the triangle inequality, we can casually bound this

difference as∣∣∣ζ̈(t)− ζ̈(0)
∣∣∣

≤
∣∣〈∇2f (q cos(t) + δ0 sin(t)) (−q sin(t) + δ0 cos(t)),−q sin(t) + δ0 cos(t)

〉
− δ∗0∇2f(q)δ0

∣∣
+ |〈∇f (q cos(t) + δ0 sin(t)) ,−q cos(t)− δ0 sin(t)〉+ 〈∇f(q), q〉|
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≤
∣∣〈[∇2f(q cos(t) + δ0 sin(t))−∇2f(q)

]
(−q sin(t) + δ0 cos(t)) ,−q sin(t) + δ0 cos(t)

〉∣∣
+

∣∣〈∇2f(q) (−q sin(t) + δ0 cos(t)− δ0) ,−q sin(t) + δ0 cos(t)
〉∣∣

+
∣∣〈∇2f(q)δ0,−q sin(t) + δ0 cos(t)− δ0

〉∣∣
+ |〈∇f(q cos(t) + δ0 sin(t)),−q cos(t)− δ0 sin(t)〉+ 〈∇f(q cos(t) + δ0 sin(t)), q〉|

+ |〈∇f(q cos(t) + δ0 sin(t)), q〉 − 〈∇f(q), q〉|

≤ L∇2 ‖q cos(t) + δ0 sin(t)− q‖

+M∇2 ‖−q sin(t) + δ0 cos(t)− δ0‖

+M∇2 ‖−q sin(t) + δ0 cos(t)− δ0‖

+M∇ ‖−q cos(t)− δ0 sin(t) + q‖

+ L∇ ‖q cos(t) + δ0 sin(t)− q‖

= (L∇2 + 2M∇2 +M∇ + L∇)

√
(1− cos(t))2 + sin2(t)

= ηf
√

2− 2 cos t ≤ ηf
√

4 sin2 (t/2) ≤ ηf t,

where in the final line we have used the fact 1 − cosx = 2 sin2 (x/2) and that sinx ≤ x for x ∈ [0, 1], and

M∇,M∇2 , L∇ and L∇2 are the quantities defined in Lemma 5.3. By the integral form of Taylor’s theorem in

Lemma B.9 and the result above, we have∣∣∣f (expq(δ)
)
− f̂ (q, δ)

∣∣∣ =
∣∣∣ζ(t)−

(
ζ(0) + tζ̇(0) + t2

2 ζ̈(0)
)∣∣∣

=

∣∣∣∣t2 ∫ 1

0

(1− s) ζ̈ (st) ds− t2

2 ζ̈(0)

∣∣∣∣
= t2

∣∣∣∣∫ 1

0

(1− s)
[
ζ̈ (st)− ζ̈ (0)

]
ds

∣∣∣∣
≤ t2

∫ 1

0

(1− s) stηf ds =
ηf t

3

6
,

with t = ‖δ‖ we obtain the desired result.

10.3 Proof of Lemma 5.5

Proof By the integral form of Taylor’s theorem in Lemma B.9, for any t ∈
[
0, 3∆

2π
√
n

]
, we have

g

(
w − t w‖w‖

)
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= g(w)− t
∫ 1

0

〈
∇g
(
w − st w‖w‖

)
,
w

‖w‖

〉
ds

= g (w)− tw
∗∇g (w)

‖w‖ + t

∫ 1

0

〈
∇g (w)−∇g

(
w − st w‖w‖

)
,
w

‖w‖

〉
ds

= g (w)− tw
∗∇g (w)

‖w‖ + t

∫ 1

0

(〈
∇g (w) ,

w

‖w‖

〉
−
〈
∇g
(
w − st w‖w‖

)
,
w − stw/ ‖w‖
‖w − stw/ ‖w‖‖

〉)
ds

≤ g (w)− tw
∗∇g (w)

‖w‖ +
Lg
2
t2 ≤ g (w)− tβg +

Lg
2
t2.

Minimizing this function over t ∈
[
0, 3∆

2π
√
n

]
, we obtain that there exists a w′ ∈ B

(
w, 3∆

2π
√
n

)
such that

g(w′) ≤ g(w)−min

{
β2
g

2Lg
,

3βg∆

4π
√
n

}
.

Given such a w′ ∈ B
(
w, 3∆

2π
√
n

)
, there must exist some δ ∈ TqSn−1 such that q(w′) = expq(δ). It remains to

show that ‖δ‖ ≤ ∆. By Lemma 9.7, we know that ‖q(w′)− q (w)‖ ≤ 2
√
n ‖w′ −w‖ ≤ 3∆/π. Hence,

∥∥expq (δ)− q
∥∥2

=

∥∥∥∥q (1− cos ‖δ‖) +
δ

‖δ‖ sin ‖δ‖
∥∥∥∥2

= 2− 2 cos ‖δ‖ = 4 sin2 ‖δ‖
2
≤ 9∆2

π2
,

which means that sin (‖δ‖ /2) ≤ 3∆/ (2π). Because sinx ≥ 3
πx over x ∈ [0, π/6], it implies that ‖δ‖ ≤ ∆.

Since g(w) = f(q(w)), by summarizing all the results, we conclude that there exists a δ with ‖δ‖ ≤ ∆, such

that

f(expq(δ)) ≤ f(q)−min

{
β2
g

2Lg
,

3βg∆

4π
√
n

}
,

as claimed.

10.4 Proof of Lemma 5.6

Proof Let σ = sign (w∗∇g(w)). For any t ∈
[
0, ∆

2
√
n

]
, by integral form of Taylor’s theorem in Lemma B.9, we

have

g

(
w − tσ w

‖w‖

)

= g(w)− tσw
∗∇g(w)

‖w‖ + t2
∫ 1

0

(1− s)
w∗∇2g

(
w − stσ w

‖w‖

)
w

‖w‖2
ds

≤ g(w) +
t2

2

w∗∇2g(w)w

‖w‖2
+ t2

∫ 1

0

(1− s)
w∗∇2g

(
w − stσ w

‖w‖

)
w

‖w‖2
− (1− s) w

∗∇2g(w)w

‖w‖2

 ds
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= g(w) +
t2

2

w∗∇2g(w)w

‖w‖2

+ t2
∫ 1

0

(1− s)


(
w − stσ w

‖w‖

)∗
∇2g

(
w − stσ w

‖w‖

)(
w − stσ w

‖w‖

)
∥∥∥w − stσ w

‖w‖

∥∥∥2 − w
∗∇2g(w)w

‖w‖2

 ds

≤ g(w)− t2

2
βS + t2

∫ 1

0

(1− s) sLSt ds ≤ g(w)− t2

2
βS +

t3

6
LS.

Minimizing this function over t ∈
[
0, 3∆

2π
√
n

]
, we obtain

t? = min

{
2βS
LS

,
3∆

2π
√
n

}
,

and there exists a w′ = w − t?σ w
‖w‖ such that

g

(
w − t?σ

w

‖w‖

)
≤ g(w)−min

{
2β3

S

3L2
S
,

3∆2βS
8π2n

}
.

By arguments identical to those used in Lemma 5.5, there exists a tangent vector δ ∈ TqSn−1 such that

q(w′) = expq(δ) and ‖δ‖ ≤ ∆. This completes the proof.

10.5 Proof of Lemma 5.8

Proof For any t ∈
[
0, ∆

‖grad f(q(k))‖

]
, it holds that

∥∥t grad f
(
q(k)

)∥∥ ≤ ∆, and the quadratic approximation

f̂
(
q(k),−t grad f

(
q(k)

))
≤ f

(
q(k)

)
− t
∥∥∥grad f

(
q(k)

)∥∥∥2

+
MH

2
t2
∥∥∥grad f

(
q(k)

)∥∥∥2

= f
(
q(k)

)
− t
(

1− 1

2
MHt

)∥∥∥grad f
(
q(k)

)∥∥∥2

.

Taking t0 = min

{
∆

‖grad f(q(k))‖ ,
1
MH

}
, we obtain

f̂
(
q(k),−t0 grad f

(
q(k)

))
≤ f

(
q(k)

)
− 1

2
min

{
∆∥∥grad f
(
q(k)

)∥∥ , 1

MH

}∥∥∥grad f
(
q(k)

)∥∥∥2

. (10.5.1)

Now let U be an arbitrary orthonormal basis for Tq(k)Sn−1. Since the norm constraint is active, by the

optimality condition in (5.3.5), we have

∆ ≤
∥∥∥∥[U∗Hess f

(
q(k)

)
U
]−1

U∗ grad f
(
q(k)

)∥∥∥∥
≤
∥∥∥∥[U∗Hess f

(
q(k)

)
U
]−1
∥∥∥∥ ∥∥∥U∗ grad f

(
q(k)

)∥∥∥ ≤ ∥∥grad f
(
q(k)

)∥∥
mH

,
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which means that
∥∥grad f

(
q(k)

)∥∥ ≥ mH∆. Substituting this into (10.5.1), we obtain

f̂
(
q(k),−t0 grad f

(
q(k)

))
≤ f

(
q(k)

)
− 1

2
min

{
mH∆2,

m2
H

MH
∆2

}
≤ f

(
q(k)

)
− m2

H∆2

2MH
.

By the key comparison result established in proof of Lemma 5.4, we have

f
(

expq(k)
(
−t0 grad f

(
q(k)

)))
≤ f̂

(
q(k),−t0 grad f

(
q(k)

))
+

1

6
ηf∆3

≤ f
(
q(k)

)
− m2

H∆2

MH
+

1

6
ηf∆3.

This completes the proof.

10.6 Proof of Lemma 5.9

It takes certain delicate work to prove Lemma 5.9. Basically to use discretization argument, the degree of

continuity of the Hessian is needed. The tricky part is that for continuity, we need to compare the Hessian

operators at different points, while these Hessian operators are only defined on the respective tangent planes.

This is the place where parallel translation comes into play. The next two lemmas compute spectral bounds

for the forward and inverse parallel translation operators.

Lemma 10.1 For τ ∈ [0, 1] and ‖δ‖ ≤ 1/2, we have

∥∥Pτ←0
γ − I

∥∥ ≤ 5

4
τ ‖δ‖ , (10.6.1)∥∥P0←τ

γ − I
∥∥ ≤ 3

2
τ ‖δ‖ . (10.6.2)

Proof By (5.3.6), we have

∥∥Pτ←0
γ − I

∥∥ =

∥∥∥∥∥(cos(τ ‖δ‖)− 1)
δδ∗

‖δ‖2
− sin (τ ‖δ‖) qδ

∗

‖δ‖

∥∥∥∥∥
≤ 1− cos (τ ‖δ‖) + sin (τ ‖δ‖)

≤ 2 sin2

(
τ ‖δ‖

2

)
+ sin (τ ‖δ‖) ≤ 1

4
τ ‖δ‖ + τ ‖δ‖ ≤ 5

4
τ ‖δ‖ ,

where we have used the fact sin (t) ≤ t and 1 − cosx = 2 sin2 (x/2). Moreover, P0←τ
γ is in the form of

(I + uv∗)−1 for some vectors u and v. By the Sherman-Morrison matrix inverse formula, i.e., (I + uv∗)−1
=

I − uv∗/ (1 + v∗u) (justified as
∥∥∥(cos(τ ‖δ‖)− 1) δδ∗

‖δ‖2 − q sin (τ ‖δ‖) δ∗

‖δ‖

∥∥∥ ≤ 5τ ‖δ‖ /4 ≤ 5/8 < 1 as shown
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above), we have

∥∥P0←τ
γ − I

∥∥
=

∥∥∥∥∥(cos(τ ‖δ‖)− 1)
δδ∗

‖δ‖2
− q sin (τ ‖δ‖) δ

∗

‖δ‖

∥∥∥∥∥ 1

1 + (cos (τ ‖δ‖)− 1)
(as q∗δ = 0)

≤ 5

4
τ ‖δ‖ 1

cos (τ ‖δ‖) ≤
5

4
τ ‖δ‖ 1

cos (1/2)
≤ 3

2
τ ‖δ‖ ,

completing the proof.

The next lemma establish the “local-Lipschitz" property of the Riemannian Hessian.

Lemma 10.2 Let γ(t) = expq (tδ) denotes a geodesic curve on Sn−1. Whenever ‖δ‖ ≤ 1/2 and τ ∈ [0, 1],

∥∥P0←τ
γ Hess f(γ(τ))Pτ←0

γ −Hess f(q)
∥∥ ≤ LH · τ ‖δ‖ , (10.6.3)

where LH = 5
2µ2n

3/2 ‖X‖3∞ + 9
µn ‖X‖

2
∞ + 9

√
n ‖X‖∞.

Proof First of all, by (5.3.4) and using the fact that the operator norm of a projection operator is unitary

bounded, we have

‖Hess f(γ(τ))−Hess f(q)‖

≤
∥∥∥PTγ(τ)Sn−1

[
∇2f (γ (τ))−∇2f (q)− (〈∇f (γ (τ)) , γ (τ)〉 − 〈∇f (q) , q〉) I

]
PTγ(τ)Sn−1

∥∥∥
+
∥∥∥PTγ(τ)Sn−1

(
∇2f (q)− 〈∇f (q) , q〉 I

)
PTγ(τ)Sn−1

−PTqSn−1

(
∇2f (q)− 〈∇f (q) , q〉 I

)
PTqSn−1

∥∥
≤
∥∥∇2f (γ (τ))−∇2f (q)

∥∥ + |〈∇f (γ (τ))−∇f (q) , γ (τ)〉|+ |〈∇f (q) , γ (τ)− q〉|

+
∥∥∥PTγ(τ)Sn−1 − PTqSn−1

∥∥∥ ∥∥∥PTγ(τ)Sn−1 + PTqSn−1

∥∥∥ ∥∥∇2f (q)− 〈∇f (q) , q〉 I
∥∥ .

By the estimates in Lemma 5.3, we obtain

‖Hess f(γ(τ))−Hess f(q)‖

≤ 2

µ2
n3/2 ‖X‖3∞ ‖γ (τ)− q‖ +

n

µ
‖X‖2∞ ‖γ (τ)− q‖ +

√
n ‖X‖∞ ‖γ (τ)− q‖

+ 2 ‖γ (τ) γ∗ (τ)− qq∗‖
(
n

µ
‖X‖2∞ +

√
n ‖X‖∞

)
≤
(

5

2µ2
n3/2 ‖X‖3∞ +

25n

4µ
‖X‖2∞ +

25

4

√
n ‖X‖∞

)
τ ‖δ‖ , (10.6.4)
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where at the last line we have used the following estimates:

‖γ (τ)− q‖ =

∥∥∥∥q (cos (τ ‖δ‖)− 1) +
δ

‖δ‖ sin (τ ‖δ‖)
∥∥∥∥ ≤ 5

4
τ ‖δ‖ , (Proof of Lemma 10.1)

‖γ (τ) γ∗ (τ)− qq∗‖ ≤
∥∥∥∥∥
(
δδ∗

‖δ‖2
− qq∗

)
sin2 (τ ‖δ‖)

∥∥∥∥∥ + 2 sin (τ ‖δ‖) cos (τ ‖δ‖)

≤ sin2 (τ ‖δ‖) + sin (2τ ‖δ‖) ≤ 5

2
τ ‖δ‖ .

Therefore, by Lemma 10.1, we obtain

∥∥P0←τ
γ Hess f(γ(τ))Pτ←0

γ −Hess f(q)
∥∥

≤
∥∥P0←τ

γ Hess f(γ(τ))Pτ←0
γ −Hess f(γ(τ))Pτ←0

γ

∥∥ +
∥∥Hess f(γ(τ))Pτ←0

γ −Hess f(γ(τ))
∥∥

+ ‖Hess f(γ(τ))−Hess f(q)‖

≤
∥∥P0←τ

γ − I
∥∥ ‖Hess f(γ(τ))‖ +

∥∥Pτ←0
γ − I

∥∥ ‖Hess f(γ(t))‖ + ‖Hess f(γ(t))−Hess f(q)‖

≤ 11

4
τ ‖δ‖

∥∥∇2f (γ (τ))− 〈∇f (γ (τ)) , γ (t)〉 I
∥∥ + ‖Hess f(γ(τ))−Hess f(q)‖ .

By Lemma 5.3 and substituting the estimate in (10.6.4), we obtain the claimed result.

Proof [of Lemma 5.9] For any given q with ‖w(q)‖ ≤ µ/(4
√

2), assume U is an orthonormal basis for its

tangent space TqSn−1. We could compare U∗Hess f(q)U with ∇2
wg(w), and build on the known results

for the latter. Instead, we present a direct proof here that yields tighter results as stated in the lemma.

Again we first work with the “canonical” section in the vicinity of en with the “canonical" reparametrization

q(w) = [w;
√

1− ‖w‖2].

By definition of the Riemannian Hessian in (5.3.4), expressions of∇2f and∇f in (5.3.1) and (5.3.2), and

exchange of differential and expectation operators (justified similarly as in Section 9.1.3), we obtain

U∗HessE [f(q)]U = E [U∗Hess f(q)U ]

= E
[
U∗∇2f(q)U − 〈q,∇f(q)〉 In−1

]
= U∗E

[
1

µ

{
1− tanh2

(
q∗x
µ

)}
xx∗

]
U − E

[
tanh

(
q∗x
µ

)
q∗x

]
In−1.

We have

U∗E
[

1

µ

{
1− tanh2

(
q∗x
µ

)}
xx∗

]
U � 1− θ

µ
U∗E

{1− tanh2

(
w∗x
µ

)}x x∗ 0

0∗ 0


U .
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Now consider any vector z ∈ TqSn−1 such that z = Uv for some v ∈ Rn−1 and ‖z‖ = 1. Then

z∗E

{1− tanh2

(
w∗x
µ

)}x x∗ 0

0∗ 0


 z ≥ θ√

2π
(2− 3

√
2/4)‖z‖2

by proof of Proposition 4.7, where z ∈ Rn−1 as above is the first n− 1 coordinates of z. Now we know that

〈q, z〉 = 0, or

w∗z + qnzn = 0 =⇒ ‖z‖|zn|
=

qn
‖w‖ =

√
1− ‖w‖2
‖w‖ ≥ 50,

where we have used ‖w‖ ≤ µ/(4
√

2) and µ ≤ 1/10 to obtain the last lower bound. Combining the above

with the fact that ‖z‖ = 1, we obtain

U∗E
[

1

µ

{
1− tanh2

(
q∗x
µ

)}
xx∗

]
U � 99

100

1− θ
µ

θ√
2π

(2− 3
√

2/4)In−1 (10.6.5)

� 99

200
√

2π
(2− 3

√
2/4)

θ

µ
In−1, (10.6.6)

where we have simplified the expression using θ ≤ 1/2. To bound the second term,

E
[
tanh

(
q∗xk
µ

)
q∗xk

]
= EI

[
EZ∼N(0,‖qI‖2) [tanh(Z/µ)Z]

]
=

1

µ
EI
[
‖qI‖2EZ∼N(0,‖qI‖2)

[
1− tanh2(Z/µ)

]]
(by Lemma B.10)

≤ 1

µ
EI
[
EZ∼N(0,‖qI‖2)

[
1− tanh2(Z/µ)

]]
.

Now we have the following estimate:

EZ∼N(0,‖wJ ‖2+q2n)
[
1− tanh2(Z/µ)

]
= 2EZ∼N(0,‖wJ ‖2+q2n)

[(
1− tanh2(Z/µ)

)
1Z>0

]
≤ 8EZ∼N(0,‖wJ ‖2+q2n) [exp(−2Z/µ)1Z>0]

= 8 exp

(
2 ‖wJ ‖2 + 2q2

n

µ2

)
Φc

2
√
‖wJ ‖2 + q2

n

µ

 (by Lemma B.10)

≤ 4√
2π

µ√
‖wJ ‖2 + q2

n

,

where at the last inequality we have applied Gaussian tail upper bound of Type II in Lemma B.5. Since
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‖wJ ‖2 + q2
n ≥ q2

n = 1− ‖w‖2 ≥ 1− µ2/32 ≥ 31/32 for ‖w‖ ≤ µ/(4
√

2) and µ ≤ 1, we obtain

EZ∼N(0,‖wJ ‖2+q2n)
[
1− tanh2(Z/µ)

]
≤ 4√

2π

µ√
31/32

≤ 4√
2π
µ. (10.6.7)

Collecting the above estimates, we obtain

U∗HessE [f(q)]U � 99

200
√

2π
(2− 3

√
2/4)

θ

µ
In−1 −

1

µ

4√
2π
µIn−1 �

1

4
√

2π

θ

µ
In−1, (10.6.8)

where we have used the fact µ ≤ θ/10 to obtain the final lower bound.

Next we perform concentration analysis. For any q, we can write

U∗∇2f(q)U =
1

p

p∑
k=1

Wk, withWk
.
=

1

µ

[
1− tanh2

(
q∗xk
µ

)]
U∗xkx

∗
kU .

For any integerm ≥ 2, we have

0 � E [Wm
k ] � 1

µm
E [(U∗xkx

∗
kU)

m
] � 1

µm
E [‖xkx∗k‖m] I =

1

µm
E
[
‖xk‖2m

]
I � 1

µm
EZ∼ξ2(n) [Zm] I,

where we have used Lemma 9.4 to obtain the last inequality. By Lemma B.7, we obtain

0 � E [Wm
k ] � 1

µm
m!

2
(2n)

m
I � m!

2

(
2n

µ

)m
I.

Taking RW = 2n/µ, and σ2
W = 4n2/µ2 ≥ E

[
W 2

k

]
, by Lemma A.2, we obtain

P

[∥∥∥∥∥1

p

p∑
k=1

Wk −
1

p

p∑
k=1

E [Wk]

∥∥∥∥∥ > t/2

]
≤ 2n exp

(
− pµ2t2

32n2 + 8nt

)
(10.6.9)

for any t > 0. Similarly, we write

〈∇f(q), q〉 =
1

p

p∑
k=1

Zk, with Zk
.
= tanh

(
q∗xk
µ

)
q∗xk.

For any integerm ≥ 2, we have

E [|Zk|m] ≤ E [|q∗xk|m] ≤ EZ∼N (0,1) [|Z|m] ≤ m!

2
,

where at the first inequality we used the fact |tanh(·)| ≤ 1, at the second we invoked Lemma 9.4, and at the

third we invoked Lemma B.6. Taking RZ = σ2
Z = 1, by Lemma A.1, we obtain

P

[∣∣∣∣∣1p
p∑
k=1

Zk −
1

p

p∑
k=1

E [Zk]

∣∣∣∣∣ > t/2

]
≤ 2 exp

(
−pt2/16

)
(10.6.10)
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for any t > 0. Gathering (10.6.9) and (10.6.10), we obtain that for any t > 0,

P [‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ > t]

≤ P
[∥∥U∗∇2f(q)U −∇2E [f(q)]

∥∥ > t/2
]

+ P [|〈∇f(q), q〉 − 〈∇E [f(q)] , q〉| > t/2]

≤ 2n exp

(
− pµ2t2

32n2 + 8nt

)
+ 2 exp

(
−pt

2

16

)
≤ 4n exp

(
− pµ2t2

32n2 + 8nt

)
. (10.6.11)

Now we are ready to pull above results together for a discretization argument. For any ε ∈ (0, µ/(4
√

2)),

there is an ε-net Nε of size at most (3µ/(4
√

2ε))n that covers the region
{
q : ‖w(q)‖ ≤ µ/(4

√
2)
}
. By

Lemma 10.2, the function Hess f(q) is locally Lipschitz within each normal ball of radius

∥∥q − expq(1/2)
∥∥ =

√
2− 2 cos(1/2) ≥ 1/

√
5

with Lipschitz constant LH (as defined in Lemma 10.2). Note that ε < µ/(4
√

2) < 1/(4
√

2) < 1/
√

5 for µ < 1,

so any choice of ε ∈ (0, µ/(4
√

2)) makes the Lipschitz constant LH valid within each ε-ball centered around

one element of the ε-net. Let

E∞ .
=
{

1 ≤ ‖X0‖∞ ≤ 4
√

log(np)
}
.

From Lemma 9.11, P [Ec∞] ≤ θ (np)
−7

+ exp (−0.3θnp). By Lemma 10.2, with at least the same probability,

LH ≤ C1
n3/2

µ2
log3/2(np).

Set ε = θ
12
√

2πµLH
< µ/(4

√
2), so

#Nε ≤ exp

(
n log

C2n
3/2 log3/2(np)

θ

)
.

Let EH denote the event that

EH .
=

{
max
q∈Nε

‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ ≤ θ

12
√

2πµ

}
.

On E∞ ∩ EH ,

sup
q:‖w(q)‖≤µ/(4

√
2)

‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ ≤ θ

6
√

2πµ
.

So on E∞ ∩ EH , we have

U∗Hess f(q)U � c]
θ

µ
(10.6.12)
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for any c] ≤ 1/(12
√

2π). Setting t = θ
12
√

2πµ
in (10.6.11), we obtain that for any fixed q in this region,

P [‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ > t] ≤ 4n exp

(
− pθ2

c3n2 + c4nθ/µ

)
.

Taking a union bound, we obtain that

P [EcH ] ≤ 4n exp

(
− pθ2

c3n2 + c4nθ/µ
+ C5n log n+ C6n log log p

)
.

It is enough to make p ≥ C7n
3 log(n/(µθ))/(µθ2) to make the failure probability small, completing the proof.

10.7 Proof of Lemma 5.11

Proof For a given q, consider the vector r .
= q − en/qn. It is easy to verify that 〈q, r〉 = 0, and hence

r ∈ TqSn−1. Now, by (5.3.1) and (5.3.3), we have

〈grad f (q) , r〉 = 〈(I − qq∗)∇f (q) , q − en/qn〉

= 〈(I − qq∗)∇f (q) ,−en/qn〉

=
1

p

p∑
k=1

〈
(I − qq∗) tanh

(
q∗xk
µ

)
xk,−en/qn

〉

=
1

p

p∑
k=1

tanh

(
q∗xk
µ

)(
−xk (n)

qn
+ q∗xk

)

=
1

p

p∑
k=1

tanh

(
q∗xk
µ

)(
w∗ (q)xk −

xk (n)

qn
‖w (q)‖2

)
= w∗ (q)∇g (w) ,

where to get the last line we have used (9.0.1). Thus,

w∗∇g (w)

‖w‖ =
〈grad f (q) , r〉

‖w‖ ≤ ‖grad f (q)‖ ‖r‖‖w‖ ,

where

‖r‖2

‖w‖2
=
‖w‖2 +

(
qn − 1

qn

)2

‖w‖2
=
‖w‖2 + ‖w‖4 /q2

n

‖w‖2
=

1

q2
n

=
1

1− ‖w‖2
≤ 1

1− 1
2000

=
2000

1999
,
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where we have invoked our assumption that ‖w‖ ≤ 1
20
√

5
. Therefore we obtain

‖grad f (q)‖ ≥ ‖w‖‖r‖
w∗∇g (w)

‖w‖ ≥
√

1999

2000

w∗∇g (w)

‖w‖ ≥ 9

10

w∗∇g (w)

‖w‖ ,

completing the proof.

10.8 Proof of Lemma 5.12

Proof of Lemma 5.12 combines the local Lipschitz property of Hess f(q) in Lemma 10.2, and the Taylor’s

theorem (manifold version, Lemma 7.4.7 of [AMS09]).

Proof Let γ (t) be the unique geodesic that satisfies γ (0) = q(k), γ (1) = q(k+1), and its directional deriva-

tive γ̇ (0) = δ?. Since the parallel translation defined by the Riemannian connection is an isometry, then∥∥grad f(q(k+1))
∥∥ =

∥∥P0←1
γ grad f(q(k+1))

∥∥. Moreover, since ‖δ?‖ ≤ ∆, the unconstrained optimality condi-

tion in (5.3.5) implies that grad f(q(k)) + Hess f(q(k))δ? = 0q(k) . Thus, by using Taylor’s theorem in [AMS09],

we have∥∥∥grad f(q(k+1))
∥∥∥ =

∥∥∥P0←1
γ grad f

(
q(k+1)

)
− grad f

(
q(k)

)
−Hess f

(
q(k)

)
δ?

∥∥∥
=

∥∥∥∥∫ 1

0

[
P0←t
γ Hess f (γ (t)) [γ̇ (t)]−Hess f

(
q(k)

)
δ?

]
dt

∥∥∥∥ (Taylor’s theorem)

=

∥∥∥∥∫ 1

0

(
P0←t
γ Hess f (γ (t))Pt←0

γ δ? −Hess f
(
q(k)

)
δ?

)
dt

∥∥∥∥
≤ ‖δ?‖

∫ 1

0

∥∥∥P0←t
γ Hess f (γ (t))Pt←0

γ −Hess f
(
q(k)

)∥∥∥ dt.

From the Lipschitz bound in Lemma 10.2 and the optimality condition in (5.3.5), we obtain∥∥∥grad f
(
q(k+1)

)∥∥∥ ≤ 1

2
‖δ?‖2 LH =

LH
2m2

H

∥∥∥grad f
(
q(k)

)∥∥∥2

.

This completes the proof.

10.9 Proof of Lemma 5.14

Proof By invoking Taylor’s theorem in [AMS09], we have

P0←τ
γ grad f (γ (τ)) =

∫ τ

0

P0←t
γ Hess f (γ (t)) [γ̇ (t)] dt.
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Hence, we have

〈
P0←τ
γ grad f (γ (τ)) , δ

〉
=

∫ τ

0

〈
P0←t
γ Hess f (γ (t)) [γ̇ (t)], δ

〉
dt

=

∫ τ

0

〈
P0←t
γ Hess f (γ (t)) [γ̇ (t)],P0←t

γ γ̇ (t)
〉
dt

=

∫ τ

0

〈Hess f (γ (t)) [γ̇ (t)], γ̇ (t)〉 dt

≥ mH

∫ τ

0

‖γ̇ (t)‖2 dt ≥ mHτ ‖δ‖2 ,

where we have used the fact that the parallel transport P0←t
γ defined by the Riemannian connection is an

isometry. On the other hand, we have

〈
P0←τ
γ grad f (γ (τ)) , δ

〉
≤
∥∥P0←τ

γ grad f (γ (τ))
∥∥ ‖δ‖ = ‖grad f (γ (τ))‖ ‖δ‖ ,

where again used the isometry property of the operator P0←τ
γ . Combining the two bounds above, we obtain

‖grad f (γ (τ))‖ ‖δ‖ ≥ mHτ ‖δ‖2 ,

which implies the claimed result.
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Chapter 11

Proofs of Technical Results for the Whole

Recovery Pipeline

Mathematics is not a deductive science – that’s a cliche. When you try to

prove a theorem, you don’t just list the hypotheses, and then start to

reason. What you do is trial and error, experimentation, guesswork.

Paul Halmos

We need one technical lemma to prove Lemma 6.2 and the relevant lemma for complete dictionaries.

Lemma 11.1 There exists a positive constant C, such that for all integer n1 ∈ N, θ ∈ (0, 1/3), and n2 ∈ N with

n2 ≥ Cn1 log (n1/θ) /θ
2, any random matrixM ∈ Rn1×n2 ∼i.i.d. BG(θ) obeys the following. For any fixed

index set I ⊂ [n2] with |I| ≤ 9
8θn2, it holds that

‖v∗MIc‖1 − ‖v∗MI‖1 ≥
n2

6

√
2

π
θ ‖v‖ for all v ∈ Rn1 ,

with probability at least 1− n−10
2 − θ (n1n2)

−7 − exp (−0.3θn1n2) .

Proof By homogeneity, it is sufficient to consider all v ∈ Sn1−1. For any i ∈ [n2], letmi ∈ Rn1 be a column of

M . For a fixed v such that ‖v‖ = 1, we have

T (v)
.
= ‖v∗MIc‖1 − ‖v∗MI‖1 =

∑
i∈Ic
|v∗mi| −

∑
i∈I
|v∗mi| ,
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namely as a sum of independent random variables. Since |I| ≤ 9n2θ/8, we have

E [T (v)] ≥
(
n2 −

9

8
θn2 −

9

8
θn2

)
E [|v∗m1|] =

(
1− 9

4
θ

)
n2E [|v∗m1|] ≥

1

4
n2E [|v∗m1|] ,

where the expectation E [|v∗m1|] can be lower bounded as

E [|v∗m1|] =

n1∑
k=0

θk (1− θ)n1−k ∑
J∈([n1]

k )

Eg∼N (0,I)

[∣∣v∗J g∣∣]

=

n1∑
k=0

θk (1− θ)n1−k ∑
J∈([n1]

k )

√
2

π
‖vJ ‖ ≥

√
2

π
‖EJ [vJ ]‖ =

√
2

π
θ.

Moreover, by Lemma 9.4 and Lemma B.6, for any i ∈ [n2] and any integerm ≥ 2,

E [|v∗mi|m] ≤ EZ∼N (0,1) [|Z|m] ≤ (m− 1)!! ≤ m!

2
.

So invoking the moment-control Bernstein’s inequality in Lemma A.1, we obtain

P

[
T (v) <

n2

4

√
2

π
θ − t

]
≤ P [T (v) < E [T (v)]− t] ≤ exp

(
− t2

2n2 + 2t

)
.

Taking t = n2

20

√
2
π θ and simplifying, we obtain that

P

[
T (v) <

n2

5

√
2

π
θ

]
≤ exp

(
−c1θ2n2

)
(11.0.1)

for some positive constant c1. Fix ε =
√

2
π

θ
120 [n1 log (n1n2)]

−1/2
< 1. The unit sphere Sn1−1 has an ε-net Nε

of cardinality at most (3/ε)
n1 . Consider the event

Ebg .
=

{
T (v) ≥ n2

5

√
2

π
θ ∀ v ∈ Nε

}
.

A simple union bound implies

P
[
Ecbg
]
≤ exp

(
−c1θ2n2 + n1 log

(
3

ε

))
≤ exp

(
−c1θ2n2 + c2n1 log

n1 log n2

θ

)
, (11.0.2)

where c2 > 0 is numerical. Conditioned on Ebg, we have that any z ∈ Sn1−1 can be written as z = v + e for

some v ∈ Nε and ‖e‖ ≤ ε. Moreover,

T (z) =
∥∥(v + e)

∗
MIc

∥∥
1
−
∥∥(v + e)

∗
MI

∥∥
1
≥ T (v)− ‖e∗MIc‖1 − ‖e∗MI‖1

=
n2

5

√
2

π
θ − ‖e∗M‖1 =

n2

5

√
2

π
θ −

n2∑
k=1

|e∗mk|
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≥ n2

5

√
2

π
θ − ε

n2∑
k=1

‖mk‖ .

By Lemma 9.11, with probability at least 1− θ (n1n2)
−7 − exp (−0.3θn1n2), ‖M‖∞ ≤ 4

√
log (n1n2). Thus,

T (z) ≥ n2

5

√
2

π
θ −

√
2

π

θ

120

n2
√
n14
√

log (n1n2)
√
n1

√
log (n1n2)

=
n2

6

√
2

π
θ. (11.0.3)

Thus, by (11.0.2), it is enough to take n2 > Cn1 log (n1/θ) /θ
2 for sufficiently large C > 0 to make the overall

failure probability small enough so that the lower bound (11.0.3) holds.

11.1 Proof of Lemma 6.2

Proof The proof is similar to that of [QSW14]. First, let us assume the dictionaryA0 = I . W.l.o.g., suppose

that the Riemannian TRM algorithm returns a solution q̂, to which en is the nearest signed basis vector. Thus,

the rounding LP (6.0.1) takes the form:

minimizeq ‖q∗X0‖1 , subject to 〈r, q〉 = 1. (11.1.1)

where the vector r = q̂. Next, We will show whenever q̂ is close enough to en, w.h.p., the above linear

program returns en. LetX0 =
[
X;x∗n

]
, whereX ∈ R(n−1)×p and x∗n is the last row ofX0. Set q = [q, qn],

where q denotes the first n− 1 coordinates of q and qn is the last coordinate; similarly for r. Let us consider a

relaxation of the problem (11.1.1),

minimizeq ‖q∗X0‖1 , subject to qnrn + 〈q, r〉 ≥ 1, (11.1.2)

It is obvious that the feasible set of (11.1.2) contains that of (11.1.1). So if en is the unique optimal solution

(UOS) of (11.1.2), it is the UOS of (11.1.1). Suppose I = supp(xn) and define an event E0 =
{
|I| ≤ 9

8θp
}
. By

Hoeffding’s inequality, we know that P [Ec0 ] ≤ exp
(
−θ2p/2

)
.Now conditioned on E0 and consider a fixed

support I. (11.1.2) can be further relaxed as

minimizeq ‖xn‖1 |qn| −
∥∥q∗XI∥∥1

+
∥∥q∗XIc∥∥1

, subject to qnrn + ‖q‖ ‖r‖ ≥ 1. (11.1.3)

The objective value of (11.1.3) lower bounds that of (11.1.2), and are equal when q = en. So if q = en is UOS

of (11.1.3), it is UOS of (11.1.1). By Lemma 11.1, we know that

∥∥q∗XIc∥∥1
−
∥∥q∗XI∥∥1

≥ p

6

√
2

π
θ ‖q‖
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holds w.h.p. when p ≥ C1(n− 1) log ((n− 1)/θ) /θ2. Let ζ = p
6

√
2
π θ, thus we can further lower bound the

objective value in (11.1.3) by

minimizeq ‖xn‖1 |qn|+ ζ ‖q‖ , subject to qnrn + ‖q‖ ‖r‖ ≥ 1. (11.1.4)

By similar arguments, if en is the UOS of (11.1.4), it is also the UOS of (11.1.1). For the optimal solution

of (11.1.4), notice that it is necessary to have sign (qn) = sign (rn) and qnrn + ‖q‖ ‖r‖ = 1. Therefore, the

problem (11.1.4) is equivalent to

minimizeqn ‖xn‖1 |qn|+ ζ
1− |rn| |qn|
‖r‖ , subject to |qn| ≤

1

|rn|
. (11.1.5)

Notice that the problem (11.1.5) is a linear program in |qn|with a compact feasible set, which indicates that

the optimal solution only occurs at the boundary points |qn| = 0 and |qn| = 1/ |rn|. Therefore, q = en is the

UOS of (11.1.5) if and only if

1

|rn|
‖xn‖1 <

ζ

‖r‖ . (11.1.6)

Conditioned on E0, by using the Gaussian concentration bound, we have

P

[
‖xn‖1 ≥

9

8

√
2

π
θp+ t

]
≤ P [‖xn‖1 ≥ E [‖xn‖1] + t] ≤ exp

(
− t

2

2p

)
,

which means that

P

[
‖xn‖1 ≥

5

4

√
2

π
θp

]
≤ exp

(
− θ

2p

64π

)
. (11.1.7)

Therefore, by (11.1.6) and (11.1.7), for q = en to be the UOS of (11.1.1) w.h.p., it is sufficient to have

5

4 |rn|

√
2

π
θp <

θp

6

√
1− |rn|2

√
2

π
, (11.1.8)

which is implied by

|rn| >
249

250
.

The failure probability can be estimated via a simple union bound. Since the above argument holds uniformly

for any fixed support set I, we obtain the desired result.

When our dictionaryA0 is an arbitrary orthogonal matrix, it only rotates the row subspace ofX0. Thus,

w.l.o.g., suppose the TRM algorithm returns a solution q̂, to which A0q? is the nearest “target” with q? a
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signed basis vector. By a change of variable q̃ = A∗0q, the problem (11.1.1) is of the form

minimizeq̃ ‖q̃∗X0‖1 , subject to 〈A∗0r, q̃〉 = 1,

obviously our target solution for q̃ is again the standard basis q?. By a similar argument above, we only need

〈A∗0r, en〉 > 249/250 to exactly recover the target, which is equivalent to 〈r, q̂?〉 > 249/250. This implies that

our rounding (6.0.1) is invariant to change of basis, completing the proof.

11.2 Proof of Lemma 6.4

Proof Define q̃ .
= (UV ∗ + Ξ)∗q. By Lemma 4.14, and in particular (4.3.2), when

p ≥ C

c2?θ
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

‖Ξ‖ ≤ 1/2 so that UV ∗ + Ξ is invertible. Then the LP rounding can be written as

minimizeq̃ ‖q̃∗X0‖1 , subject to
〈
(UV ∗ + Ξ)−1r, q̃

〉
= 1.

By Lemma 6.2, to obtain q̃ = en from this LP, it is enough to have

〈
(UV ∗ + Ξ)−1r, en

〉
≥ 249/250,

and p ≥ Cn2 log(n/θ)/θ for some large enough C. This implies that to obtain q? for the original LP, such that

(UV ∗ + Ξ)∗q? = en, it is enough that

〈
(UV ∗ + Ξ)−1r, (UV ∗ + Ξ)∗q?

〉
= 〈r, q?〉 ≥ 249/250,

completing the proof.

11.3 Proof of Lemma 6.5

Proof Note that [q1
?, . . . , q

`
?] = (Q∗ + Ξ∗)−1[e1, . . . , e`], we have

U∗(Q+ Ξ)X0 = U∗(Q∗ + Ξ∗)−1(Q+ Ξ)∗(Q+ Ξ)X0

= U∗
[
q1
?, . . . , q

`
? | V̂

]
(I + ∆1)X0,
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where V̂ .
= (Q∗+Ξ∗)−1[e`+1, . . . , en], and the matrix ∆1 = Q∗Ξ+Ξ∗Q+Ξ∗Ξ so that ‖∆1‖ ≤ 3 ‖Ξ‖. Since

U∗
[
q1
?, . . . , q

`
? | V̂

]
=
[
0 | U∗V̂

]
, we have

U∗(Q+ Ξ)X0 =
[
0 | U∗V̂

]
X0 +

[
0 | U∗V̂

]
∆1X0 = U∗V̂ X [n−`]

0 + ∆2X0, (11.3.1)

where ∆2 =
[
0 | U∗V̂

]
∆1. Let δ = ‖Ξ‖, so that

‖∆2‖ ≤
‖∆1‖

σmin (Q+ Ξ)
≤ 3 ‖Ξ‖
σmin (Q+ Ξ)

≤ 3δ

1− δ . (11.3.2)

Since the matrix V̂ is near orthogonal, it can be decomposed as V̂ = V + ∆3, where V is orthogonal, and ∆3

is a small perturbation. Obviously, V = UR for some orthogonal matrixR, so that spans the same subspace

as that of U . Next, we control the spectral norm of ∆3 so that it is sufficiently small,

‖∆3‖ = min
R∈O`

∥∥∥UR− V̂ ∥∥∥ ≤ min
R∈O`

∥∥UR−Q[n−`]
∥∥ +

∥∥∥Q[n−`] − V̂
∥∥∥ , (11.3.3)

whereQ[n−`] collects the last n− ` columns ofQ, i.e.,Q = [Q[`],Q[n−`]]. To bound the second term on the

right, we have ∥∥∥Q[n−`] − V̂
∥∥∥ ≤ ∥∥Q−1 − (Q+ Ξ)−1

∥∥ ≤ ∥∥Q−1
∥∥ ∥∥Q−1Ξ

∥∥
1− ‖Q−1Ξ‖ ≤ δ

1− δ ,

where we have used perturbation bound for matrix inverse (see, e.g., Theorem 2.5 of Chapter III in [SS90]).

To bound the first term, from Lemma B.13, it is enough to upper bound the largest principal angle θ1 between

the subspaces span([q1
?, . . . , q

`
?]), and that spanned by Q[e1, . . . , e`]. Write I[`]

.
= [e1, . . . , e`] for short, we

bound sin θ1 as

sin θ1 ≤
∥∥∥∥QI[`]I

∗
[`]Q

∗ − (Q∗ + Ξ∗)−1I[`]

(
I∗[`](Q+ Ξ)−1(Q∗ + Ξ∗)−1I[`]

)−1

I∗[`](Q+ Ξ)−1

∥∥∥∥
=

∥∥∥∥QI[`]I
∗
[`]Q

∗ − (Q∗ + Ξ∗)−1I[`]

(
I∗[`](I + ∆1)−1I[`]

)−1

I∗[`](Q+ Ξ)−1

∥∥∥∥
≤
∥∥∥QI[`]I

∗
[`]Q

∗ − (Q∗ + Ξ∗)−1I[`]I
∗
[`](Q+ Ξ)−1

∥∥∥
+

∥∥∥∥(Q∗ + Ξ∗)−1I[`]

[
I −

(
I∗[`](I + ∆1)−1I[`]

)−1
]
I∗[`](Q+ Ξ)−1

∥∥∥∥
≤
(

1 +
1

σmin(Q+ Ξ)

)∥∥Q−1 − (Q+ Ξ)−1
∥∥ +

1

σ2
min(Q+ Ξ)

∥∥∥∥I − (I∗[`](I + ∆1)−1I[`]

)−1
∥∥∥∥

≤
(

1 +
1

1− δ

)
δ

1− δ +
1

(1− δ)2

∥∥∥I∗[`](I + ∆1)−1I[`] − I
∥∥∥

1−
∥∥∥I∗[`](I + ∆1)−1I[`] − I

∥∥∥
≤
(

1 +
1

1− δ

)
δ

1− δ +
1

(1− δ)2

‖∆1‖
1− 2 ‖∆1‖

,



CHAPTER 11. PROOFS OF TECHNICAL RESULTS FOR THE WHOLE RECOVERY PIPELINE 128

where in the first line we have used the fact that for any full column rank matrixM ,M(M∗M)−1M∗ is the

orthogonal projection onto the its column span, and to obtain the fifth and six lines we have invoked the

matrix inverse perturbation bound again. Use the facts that δ < 1/20 and ‖∆1‖ ≤ 3δ < 1/2, we have

sin θ1 ≤
(2− δ)δ
(1− δ)2

+
3δ

(1− δ)2(1− 6δ)
=

5δ − 13δ2 + 6δ3

(1− δ)2(1− 6δ)
≤ 8δ.

For δ < 1/20, the upper bound is nontrivial. By Lemma B.13,

min
R∈O`

∥∥UR−Q[n−`]
∥∥ ≤√2− 2 cos θ1 ≤

√
2− 2 cos2 θ1 =

√
2 sin θ1 ≤ 8

√
2δ.

Put the estimates above, there exists an orthogonal matrixR ∈ O` such that V = UR and V̂ = V + ∆3 with

‖∆3‖ ≤ δ/(1− δ) + 8
√

2δ ≤ 12.5δ. (11.3.4)

Therefore, by (11.3.1), we obtain

U∗(Q+ Ξ)X0 = U∗V X [n−`]
0 + ∆, with ∆

.
= U∗∆3X

[n−`]
0 + ∆2X0. (11.3.5)

By using the results in (11.3.2) and (11.3.4), we get the desired result.
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Part III

Generalized Phase Retrieval
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Can we recover a complex signal from its Fourier magnitudes? More generally, given a set ofm nonlinear

measurements yk = |a∗kx| for k = 1, . . . ,m, is it possible to recover x ∈ Cn (i.e., length-n complex vector)?

This generalized phase retrieval (GPR) problem is a fundamental task in various disciplines, and has been

the subject of much recent investigation. Natural nonconvex methods often work remarkably well for GPR

in practice, but lack clear theoretical explanations. In this part, we take a step towards bridging this gap.

We prove that when the measurement vectors ak’s are generic (i.i.d. complex Gaussian) and the number of

measurements is large enough (m ≥ Cn log3 n), with high probability, a natural least-squares formulation

for GPR has the following benign geometric structure: (1) there are no spurious local minimizers, and all

global minimizers are equal to the target signal x, up to a global phase; and (2) the objective function has a

negative curvature around each saddle point. In other words, the least-squares formulation under study lies

in the X family. This structure allows a number of iterative optimization methods to efficiently find a global

minimizer, without special initialization. To corroborate the claim, we describe and analyze a second-order

trust-region algorithm.

This part is organized as follows. We provide background on the GPR problem and an overview of the

geometric structure of the least-squares formulation in Chapter 12. In Chapter 13, we provide a quantitative

characterization of the global geometry for GPR and highlight main technical challenges in establishing

the results. Based on this characterization, in Chapter 14 we present a modified trust-region method

for minimizing the least-squares formulation from an arbitrary initialization, which leads to our main

computational guarantee. In Chapter 15 we study the empirical performance of our method for GPR.

Chapter 16 concludes the main body with a discussion of open problems. Chapter 17 and Chapter 18 collect

detailed proofs to technical results for the geometric analysis and algorithmic analysis, respectively.

This part is based on our technical report:

A Geometric Analysis of Phase Retrieval. http://arxiv.org/abs/1602.06664

The codes to reproduce all the figures and the experimental results can be found online:

https://github.com/sunju/pr_plain

http://arxiv.org/abs/1602.06664
https://github.com/sunju/pr_plain
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Chapter 12

Introduction

Practical application is found by not looking for it, and one can say that

the whole progress of civilization rests on that principle.

Jacques Hadamard

12.1 Generalized phase retrieval and a nonconvex formulation

This part concerns the problem of recovering an n-dimensional complex vector x from the magnitude

yk = |a∗kx| of its projections onto a collection of known complex vectors a1, . . . ,am ∈ Cn. Obviously, one

can only hope to recover x up to a global phase, as xeiφ for all φ ∈ [0, 2π) gives exactly the same set of

measurements. The generalized phase retrieval problem asks whether it is possible to recover x, up to this

fundamental ambiguity:

Generalized Phase Retrieval Problem: Is it possible to efficiently recover an unknown x from

yk = |a∗kx| (k = 1, . . . ,m), up to a global phase factor eiφ?

This problem has attracted substantial recent interest, due to its connections to fields such as crystallography,

optical imaging and astronomy. In these areas, one often has access only to the Fourier magnitudes of a

complex signal x, i.e., |F(x)| [Mil90, Rob93, Wal63, DF87]. The phase information is hard or infeasible to

record due to physical constraints. The problem of recovering the signal x from its Fourier magnitudes

|F(x)| is naturally termed (Fourier) phase retrieval (PR). It is easy to see PR as a special version of GPR, with

the ak’s the Fourier basis vectors. GPR also sees applications in electron microscopy [MIJ+02], diffraction

and array imaging [BDP+07, CMP11], acoustics [BCE06, Bal10], quantum mechanics [Cor06, Rei65] and
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quantum information [HMW13]. We refer the reader to survey papers [SEC+15, JEH15] for accounts of

recent developments in the theory, algorithms, and applications of GPR.

For GPR, simple or even heuristic methods based on nonconvex optimization often work surprisingly

well in practice (e.g., [Fie82, GS72], and many more cited in [SEC+15, JEH15]). However, investigation

into provable recovery methods, particularly based on nonconvex optimization, has started only relatively

recently [NJS13, CESV13, CSV13, CL14, CLS15a, WdM15, VX14, ABFM14, CLS15b, CC15, WWS15]. The

surprising effectiveness of simple methods on GPR remains largely mysterious. In this part, we take a step

towards bridging this gap.

We focus on a natural least-squares formulation1 – discussed systematically in [SEC+15, JEH15] and

studied theoretically in [CLS15b, WWS15],

minimizez∈Cn f(z)
.
=

1

2m

m∑
k=1

(
y2
k − |a∗kz|2

)2

. (12.1.1)

We assume the ak’s are independent identically distributed (i.i.d.) complex Gaussian:

ak =
1√
2

(Xk + iYk) , with Xk, Yk ∼ N (0, In) independent. (12.1.2)

f(z) is a fourth-order polynomial in z, and is nonconvex. A-priori, there is little reason to believe that

simple iterative methods can solve this problem without special initialization. Typical local convergence

(i.e., convergence to a local minimizer) guarantees in optimization require an initialization near the target

minimizer [Ber99]. Moreover, existing results on provable recovery using (12.1.1) and related formulations

rely on careful initialization in the vicinity of the ground truth [NJS13, CLS15b, CC15, WWS15].

12.2 A curious experiment

We apply gradient descent to f(z), starting from a random initialization z(0):

z(r+1) = z(r) − µ∇zf(z(r)),

1Another least-squares formulation, minimizez
1

2m

∑m
k=1(yk −

∣∣a∗kz∣∣)2, was studied in the seminal works [Fie82, GS72]. An
obvious advantage of the f(z) studied here is that it is differentiable – not in the usual complex calculus sense, but in the Wirtinger
calculus sense; see Section 12.5 for a brief review of Wirtinger calculus.
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Figure 12.1: Gradient descent with random initialization seems to always return a global solution for (12.1.1)! Here
n = 100, m = 5n logn, step size µ = 0.05, and stopping criterion is ‖∇zf(z)‖ ≤ 10−5. We fix the set of random
measurements and the ground-truth signal x. The experiments are repeated for 100 times with independent random
initializations. z? denotes the final iterate at convergence. (Left) Final distance to the target; (Right) Final function value
(0 if globally optimized). Both vertical axes are on − log10(·) scale.

where the step size µ is fixed for simplicity2. The result is quite striking (Figure 12.1): for a fixed problem

instance (fixed set of random measurements and fixed target x), gradient descent seems to always return a

global minimizer (i.e., the target x up to a global phase shift), across many independent random initializations!

This contrasts with the typical “mental picture” of nonconvex objectives as possessing many spurious local

minimizers.

12.3 A geometric analysis

The numerical surprise described above is not completely isolated. Simple methods have been observed to

work surprisingly well for practical PR [Fie82, GS72, SEC+15, JEH15]. In this work, we take a step towards

explaining this phenomenon. We show that although the function (12.1.1) is nonconvex, whenm is reasonably

large, it actually has benign global geometry (i.e., X -ness) which allows it to be globally optimized by efficient iterative

methods, regardless of the initialization.

This geometric structure is evident for GPR in R2. Figure 12.2 plots the function landscape of f(z) for

this case with largem (i.e., think of Ea[f(z)]). Notice that (i) the only local minimizers are exactly ±x – they

are also global minimizers;3 (ii) there are saddle points (and a local maximizer), but around them there is

2Here the gradient is defined based on the Wirtinger derivatives [KD09]; see also [CLS15b]. This notion of gradient is a natural
choice when optimizing real-valued functions of complex variables. For better speed, our implementation of the gradient descent
method is actually a line-search variant.

3Note that the global sign cannot be recovered.
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Figure 12.2: Function landscape of (12.1.1) for x = [1; 0] andm→∞. The only local and also global minimizers are ±x.
There are two saddle points near ±[0; 1/

√
2], around each there is a negative curvature direction along ±x. (Left) The

function graph; (Right) The same function visualized as a color image. The measurement vectors ak’s are taken as i.i.d.
standard real Gaussian in this version.

negative curvature in the ±x direction. Intuitively, any algorithm that can successfully escape from this kind

of saddle point (and local maximizer) can in fact find a global minimizer, i.e., recover the target signal x.

We prove that an analogous geometric structure exists, with high probability (w.h.p.)4, for GPR in Cn,

when m is reasonably large (Theorem 13.2). In particular, we show that when m ≥ Cn log3 n, w.h.p., (i)

the only local and also global minimizers to (12.1.1) are the target xeiφ for φ ∈ [0, 2π); (ii) at any point in

Cn, either the gradient is large, or the curvature is negative in a certain direction, or it is near a minimizer.

Moreover, in the vicinity of the minimizers, on the orthogonal complement of a single flat direction (which

occurs because f(zeiφ) = f(z) for every z, φ), the objective function is strongly convex. In other words, under

conditions onm, f(z) is an X function modulo the flat direction at each point.

Because of this global geometry, a wide range of efficient iterative methods can obtain a global min-

imizer to f(z), regardless of initialization. Examples include the noisy gradient and stochastic gradient

methods [GHJY15] (see also [LSJR16]), curvilinear search [Gol80] and trust-region methods [CGT00, NP06,

SQW15b]. The key property that the methods must possess is the ability to escape from saddle points (and

local maximizers) at which the Hessian has a strictly negative eigenvalue.

We corroborate this claim by developing a second-order trust-region method for this problem, and

prove that (Theorem 14.10) (i) from any initialization, it efficiently obtains a close approximation (i.e., up to

numerical precision) of the target x (up to a global phase) and (ii) it exhibits quadratic convergence in the

vicinity of the global minimizers.

4The probability is with respect to drawing of ak’s.
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In sum, our geometric analysis produces the following result.

Theorem 12.1 (Informal Statement of Our Main Results; See Theorems 13.2 and 14.10.) When m ≥

Cn log3 n, with probability at least 1 − cm−1, the function f(z) has no spurious local minimizers. The only

global minimizers are the target x and its equivalent copies, and at all saddle points the function has directional

negative curvature. Moreover, with at least the same probability, the trust-region method with properly set step size

parameter find a global minimizer of f(z) in polynomial time, from an arbitrary initialization in the zero-centered

complex ball with radius R0
.
= 3( 1

m

∑m
k=1 y

2
k)1/2. Here C and c are positive absolute constants.

The choice of R0 above allows us to state a result with a concise bound on the number of iterations

required to converge. However, under our probability model, w.h.p., the trust-region method succeeds from

any initialization. There are two caveats to this claim. First, one must choose the parameters of the method

appropriately. Second, the number of iterations depends on how far away from the truth the method starts.

Our results asserts that when the ak’s are numerous and generic enough, GPR can be solved efficiently.

Similar conclusions have been obtained in [NJS13, CLS15b, CC15, WWS15]. One salient feature of our result

is that the optimization method is “initialization free” - any initialization in the prescribed ball works, while

all prior methods [NJS13, CLS15b, CC15, WWS15] require careful initializations that are already near the

unknown target xeiφ. This distinctive property follows directly from the benign global geometry of f(z). We

believe that this sheds light on mechanism of the above numerical surprise.

12.4 Prior arts and connections

The survey papers [SEC+15, JEH15] provide accounts of recent progress on GPR. In this section, we focus on

provable efficient (nonconvex) methods for GPR, and draw connections to other work on provable nonconvex

heuristics for practical problems.

Provablemethods forGPR. Although simplemethods for GPR have been used effectively in practice [GS72,

Fie82, SEC+15, JEH15], only recently have researchers begun to develop methods with provable performance

guarantees. The first results of this nature were obtained using semidefinite programming (SDP) relax-

ations [CESV13, CSV13, CL14, CLS15a, WdM15, VX14]. While this represented a substantial advance in

theory, the computational complexity of semidefinite programming limits the practicality of this approach.5

5Another line of research [BCE06, BBCE09, ABFM14] seeks to co-design the measurements and recovery algorithms based on frame-
or graph-theoretic tools.
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Recently, several provable nonconvex methods have been proposed for GPR. [NJS13] augmented the

seminal error-reduction method [GS72] with spectral initialization and resampling to obtain the first provable

nonconvexmethod for GPR. [CLS15b] studied the nonconvex formulation (12.1.1) under the same hypotheses

as this paper, and showed that a combination of spectral initialization and local gradient descent recovers the

true signal with near-optimal sample complexity. [CC15] worked with a different nonconvex formulation,

and refined the spectral initialization and the local gradient descent with a step-adaptive truncation. With

the modifications, they reduced the sample requirement to the optimal order.6 Compared to the SDP-based

methods, these methods are more scalable and closer to methods used in practice. All three analyses are

local in nature, and depend on the spectral initializer being sufficiently close to the target signal.

In contrast, we explicitly characterize the global function landscape of (12.1.1). Its benign geometric

structure allows several algorithmic choices that need no special initialization. In fact, the spectral initialization

used in [CLS15b] lands the iterate sequence in the region in which the objective is (restrictedly) strongly

convex (R3 in Theorem 13.2). The analysis of [CLS15b] is based on a property that ensures the gradient

descent method is locally contractive near the target set, which is closely linked to (restricted) local convexity.

[Sol14] and [WWS15] explicitly established local strong convexity near the target set for GPR in Rn.

Geometric analysis of other nonconvex problems. The approach taken here is similar in spirit to our geo-

metric analysis of the nonconvex formulation for complete dictionary learning in Part II (see also [SQW15a]).

Particularly, we show that the nonconvex formulations studied are X functions in appropriate sense. Despite

these similarities, GPR raises several novel technical challenges: the objective is heavy-tailed, and minimizing

the number of measurements is important.

Our work sits amid the recent surge of work on provable nonconvex methods for practical problems.

Besides GPR studied here, this line of work includes low-rankmatrix recovery [KMO10, JNS13, Har14, HW14,

NNS+14, JN14, SL14, WCCL15, SRO15, ZL15, TBSR15, CW15], tensor recovery [JO14, AGJ14a, AGJ14b,

AJSN15, GHJY15], structured element pursuit [QSW14, HSSS15], dictionary learning [AAJ+13, AGM13,

AAN13, ABGM14, AGMM15, SQW15a], mixed regression [YCS13, SA14c], blind deconvolution [LWB13,

LJ15, LLJB15], super resolution [EW15], phase synchronization [Bou16], numerical linear algebra [JJKN15],

and so forth. Most of the methods adopt the strategy of initialization plus local refinement we alluded to

above. In contrast, our geometric analysis allows flexible algorithm design (i.e., separation of geometry and

6In addition, [CC15] shows that the measurements can be non-adaptive, in the sense that a single, randomly chosen collection of
vectors ai can simultaneously recover every x ∈ Cn. Results in [NJS13, CLS15b] and this paper pertain only to adaptive measurements
that recover any fixed signal xwith high probability.
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algorithms) and gives some clues to the underlying mechanism of the behaviors of nonconvex methods used

in practice, which often succeed without clever initializations.

Recovering low-rank positive semidefinite matrices. The phase retrieval problem has a natural gener-

alization to recovering low-rank positive semidefinite matrices. Consider the problem of recovering an

unknown rank-r matrixM � 0 in Rn×n from linear measurement of the form zk = tr(AkM) with sym-

metricAk for k = 1, . . . ,m. One can solve the problem by considering the “factorized” version: recovering

X ∈ Rn×r (up to right invertible transform) from measurements zk = tr(X∗AkX). This is a natural general-

ization of GPR, as one can write the GPR measurements as y2
k = |a∗kx|

2
= x∗(aka∗k)x. This generalization

and related problems have recently been studied in [SRO15, ZL15, TBSR15, CW15].

12.5 Notations and Wirtinger calculus

Basic notations and facts. Throughout the part, we define complex inner product as: 〈a, b〉 .= a∗b for any

a, b ∈ Cn. We use CSn−1 for the complex unit sphere in Cn. CSn−1(λ) with λ > 0 denotes the centered

complex sphere with radius λ in Cn. Similarly, we use CBn(λ) to denote the centered complex ball of radius

λ. We use CN (k) for a standard complex Gaussian vector of length k defined in (12.1.2).

Let < (z) ∈ Rn and =(z) ∈ Rn denote the real and imaginary part of a complex vector z ∈ Cn. It is easy to

see that two complex vectors a and b are orthogonal in the geometric (real) sense if and only if <(w∗z) = 0.

For any z, obviously f(z) = f(zeiφ) for all φ, and the set
{
zeiφ : φ ∈ [0, 2π)

}
forms a one-dimensional (in

the real sense) circle in Cn. Throughout the paper, we reserve x for the unknown target signal, and define

the target set as X .
=
{
xeiφ : φ ∈ [0, 2π)

}
. Moreover, we define

φ(z)
.
= arg min

φ∈[0,2π)

∥∥z − xeiφ
∥∥ , h(z)

.
= z − xeiφ(z), dist (z, X)

.
= ‖h(z)‖ . (12.5.1)

for any z ∈ Cn. It is not difficult to see that =
(
z∗xeiφ(z)

)
= 0 and also <

(
z∗xeiφ(z)

)
= |x∗z|. Moreover,

zT
.
= iz/ ‖z‖ and −zT are the unit vectors tangent to the circle

{
zeiφ : φ ∈ [0, 2π)

}
at point z.

Wirtinger calculus. Consider a real-valued function g(z) : Cn 7→ R. Unless g is constant, it is not complex

differentiable. However, if one identifies Cn with R2n and treats g as a function in the real domain, g may

still be differentiable in the real sense. Doing calculus for g directly in the real domain tends to produce

cumbersome expressions. A more elegant way is adopting the Wirtinger calculus, which can be thought
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of a neat way of organizing the real partial derivatives. Here we only provide a minimal exposition of

Wirtinger calculus; similar exposition is also given in [CLS15b]. A systematic development with emphasis on

applications in optimization is provided in the article [KD09].

Let z = x+ iy where x = <(z) and y = =(z). For a complex-valued function g(z) = u(x,y) + iv(x,y),

the Wirtinger derivative is well defined so long as the real-valued functions u and v are differentiable with

respect to (w.r.t.) x and y. Under these conditions, the Wirtinger derivatives can be defined formally as

∂g

∂z

.
=
∂g(z, z)

∂z

∣∣∣∣
z constant

=

[
∂g(z, z)

∂z1
, . . . ,

∂g(z, z)

∂zn

]∣∣∣∣
z constant

∂g

∂z

.
=
∂g(z, z)

∂z

∣∣∣∣
z constant

=

[
∂g(z, z)

∂z1
, . . . ,

∂g(z, z)

∂zn

]∣∣∣∣
z constant

.

The notation above should only be taken at a formal level. Basically it says when evaluating ∂g/∂z, one just

treats z as if it was a constant, and vise versa. To evaluate the individual partial derivatives, such as ∂g(z,z)
∂zi

,

all the usual rules of calculus apply. 7

Note that above the partial derivatives ∂g
∂z and ∂g

∂z are row vectors. The Wirtinger gradient and Hessian

are defined as

∇g(z) =

[
∂g

∂z
,
∂g

∂z

]∗
∇2g(z) =

 ∂
∂z

(
∂g
∂z

)∗
∂
∂z

(
∂g
∂z

)∗
∂
∂z

(
∂g
∂z

)∗
∂
∂z

(
∂g
∂z

)∗
 , (12.5.2)

where we sometimes write ∇zg .
=
(
∂g
∂z

)∗
and naturally ∇zg .

=
(
∂g
∂z

)∗
. With gradient and Hessian, the

second-order Taylor expansion of g(z) at a point z0 is defined as

ĝ(δ; z0) = g(z0) + (∇g(z0))
∗

δ
δ

+
1

2

δ
δ


∗

∇2g(z0)

δ
δ

 .
For numerical optimization, we are most interested in real-valued g. A real-valued g is stationary at a point z

if and only if

∇zg(z) = 0.

This is equivalent to the condition ∇zg = 0, as ∇zg = ∇zg when g is real-valued. The curvature of g at

a stationary point z is dictated by the Wirtinger Hessian ∇2g(z). An important technical point is that the

Hessian quadratic form involves left and right multiplication with a 2n-dimensional vector consisting of a

conjugate pair (δ, δ̄).

7The precise definition is as follows: write z = u+ iv. Then ∂g
∂z

.
= 1

2

(
∂g
∂u
− i ∂g

∂v

)
. Similarly, ∂g

∂z̄

.
= 1

2

(
∂g
∂u

+ i ∂g
∂v

)
.
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For our particular function f(z) : Cn 7→ R defined in (12.1.1), direct calculation gives

∇f(z) =
1

m

m∑
k=1


(
|a∗kz|

2 − y2
k

)
(aka

∗
k) z(

|a∗kz|
2 − y2

k

)
(aka

∗
k)
>
z

 , (12.5.3)

∇2f(z) =
1

m

m∑
k=1


(

2 |a∗kz|
2 − y2

k

)
aka

∗
k (a∗kz)

2
aka

>
k

(z∗ak)
2
aka

∗
k

(
2 |a∗kz|

2 − y2
k

)
aka

>
k

 . (12.5.4)

Following the above notation, we write ∇zf(z) and ∇zf(z) for denoting the first and second half of ∇f(z),

respectively.
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Chapter 13

The Geometry of the Objective Function

The mathematician’s patterns, like the painter’s or the poet’s, must be

beautiful; the ideas, like the colors or the words, must fit together in a

harmonious way. Beauty is the first test: there is no permanent place in

the world for ugly mathematics.

G.F. Hardy

The low-dimensional example described in the introduction (Figure 12.2) provides some clues about the

high-dimensional geometry of the objective function f(z). Its properties can be seen most clearly through

the population objective function Ea[f(z)], which can be thought of as a “large sample” version in which

m→∞. We characterize this large-sample geometry in Section 13.1. In Section 13.2, we show that the most

important characteristics of this large-sample geometry are present even when the number of observations

m is close to the number of degrees of freedom n in the target x. Section 13.3 describes several technical

problems that arise in the finite sample analysis, and states a number of key intermediate results, which are

proved in Chapter 17.

13.1 A Glimpse of the asymptotic function landscape

To characterize the geometry of Ea[f(z)] (written as E [f ] henceforth), we simply calculate the expectation of

the first and second derivatives of f at each point z ∈ Cn. We characterize the location of the critical points

of the expectation, and use second derivative information to characterize their signatures. An important

conclusion is that every local minimum of E [f ] is of the form xeiφ, and that all other critical points have a
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direction of strict negative curvature:

Theorem 13.1 Whenx 6= 0, the only critical points ofE [f ] are 0,X andS .
=
{
z : x∗z = 0, ‖z‖ = ‖x‖ /

√
2
}
,

which are the local maximizer, the set of local/global minimizers, and the set of saddle points, respectively. Moreover,

the saddle points and local maximizer have negative curvature in the xeiφ(z) direction.

Proof We show the statement by partitioning the space Cn into several regions and analyzing each region

individually using the expected gradient and Hessian. These are calculated in Lemma 17.1, and reproduced

below:

E [f ] = ‖x‖4 + ‖z‖4 − ‖x‖2 ‖z‖2 − |x∗z|2 , (13.1.1)

∇E [f ] =

∇zE [f ]

∇zE [f ]

 =


(

2 ‖z‖2 I − ‖x‖2 I − xx∗
)
z(

2 ‖z‖2 I − ‖x‖2 I − xx∗
)
z

 , (13.1.2)

∇2E [f ] =

2zz∗ − xx∗ +
(

2 ‖z‖2 − ‖x‖2
)
I 2zz>

2zz∗ 2zz> − xx> +
(

2 ‖z‖2 − ‖x‖2
)
I

 . (13.1.3)

Based on this, we observe:

• z = 0 is a critical point, and the Hessian

∇2E [f(0)] = diag
(
−xx∗ − ‖x‖2 I,−xx> − ‖x‖2 I

)
≺ 0.

Hence, z = 0 is a local maximizer.

• In the region
{
z : 0 < ‖z‖2 < 1

2 ‖x‖
2
}
, we have

z
z


∗

∇E [f ] = 2
(

2 ‖z‖2 − ‖x‖2
)
‖z‖2 − 2 |x∗z|2 < 0.

So there is no critical point in this region.

• When ‖z‖2 = 1
2 ‖x‖

2, the gradient is∇zE [f ] = −xx∗z. The gradient vanisheswhenever z ∈ null (xx∗),

which is true if and only if x∗z = 0. Thus, we can see that any z ∈ S is a critical point. Moreover, for

any z ∈ S, xeiφ(z)

xeiφ(z)


∗

∇2E [f ]

xeiφ(z)

xeiφ(z)

 = −2 ‖x‖4 .
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Similarly, one can show that in z direction there is positive curvature. Hence, every z ∈ S is a saddle

point.

• In the region
{
z : 1

2 ‖x‖
2
< ‖z‖2 < ‖x‖2

}
, any potential critical point must satisfy

(
2 ‖z‖2 − ‖x‖2

)
z = xx∗z.

In other words, 2 ‖z‖2 − ‖x‖2 is the positive eigenvalue of the rank-one PSD Hermitian matrix xx∗.

Hence 2 ‖z‖2 − ‖x‖2 = ‖x‖2. This would imply that ‖z‖ = ‖x‖, which does not occur in this region.

• When ‖z‖2 = ‖x‖2, critical points must satisfy

(
‖x‖2 I − xx∗

)
z = 0,

and so z 6∈ null (xx∗). Given that ‖z‖ = ‖x‖, we must have z = xeiθ for some θ ∈ [0, 2π). Since f is a

nonnegative function, and f(z) = 0 for any z ∈ X , X is indeed also the global optimal set.

• For ‖z‖ > ‖x‖, since the gradient

z
z


∗

∇E [f(z)] > 0, there is no critical point present.

Summarizing the above observations completes the proof.

This result suggests that the same qualitative properties that we observed for f(z) with z ∈ R2 also hold

for higher-dimensional, complex z. The high-dimensional analysis is facilitated by the unitary invariance

of the complex normal distribution – the properties of E [f ] at a given point z depend only the norm of z

and its inner product with the target vector x, i.e., x∗z. In the next section, we will show that the important

qualitative aspects of this structure are preserved even whenm is as small as Cn log3 n.

13.2 The finite-sample landscape

The following theorem characterizes the geometry of the objective function f(z), when the number of samples

m is roughly on the order of the number of degrees of freedom (i.e., n) in the vector x. The main conclusion is

that the space Cn can be divided into three regions, in which the objective either exhibits negative curvature,

strong gradient, or restricted strong convexity.

The result is not surprising in view of the above characterization of the “large-sample” landscape. The

intuition is as follows: since the objective function is a sum of independent random variables, when m is

sufficiently large, the function values, gradients and Hessians should be uniformly close to their expectations.
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Some care is required in making this intuition precise, however. Because the objective function contains

fourth powers of Gaussian random variables, it is heavy tailed. Ensuring that f and its derivatives are

uniformly close to their expectations requiresm ≥ Cn2. This would be quite wasteful, since x has only n

degrees of freedom.

Fortunately, whenm ≥ Cn polylog(n), w.h.p. f still has benign global geometry, even though its gradient

is not uniformly close to its expectation. Perhaps surprisingly, the heavy tailed behavior of f only helps to

prevent spurious local minimizers – away from the global minimizers and saddle points, the gradient can be

sporadically large, but it cannot be sporadically small. This behavior will follow by expressing the decrease

of the function along a certain carefully chosen descent direction as a sum of random variables which are

heavy tailed, but are also nonnegative. Because they are nonnegative, their deviation below their expectation

is bounded, and their lower-tail is well-behaved.

Our geometric characterization of the finite-sample objective function reflects these complexities. We

prove that there is a partition of Cn into regions of negative curvature, large gradient, and restricted strong

convexity (near the optimizer x). The gradient region is further partitioned into two sub-regions, over which

different canonical descent directions are studied. Our main geometric result is as follows:

Theorem 13.2 (Main Geometric Results) There exist positive absolute constants ca, cb, cc and C, such that

when m ≥ Cn log3 n, it holds with probability at least 1 − ca exp (−cbm/ logm) − ccm−1 that f(z) has no

spurious local minimizers and the only local/global minimizers are exactly the target set X . More precisely, with

the same probability,

1

‖x‖2

 xeiφ(z)

xe−iφ(z)


∗

∇2f(z)

 xeiφ(z)

xe−iφ(z)

 ≤ − 1

100
‖x‖2 , ∀ z ∈ R1, (Negative Curvature)

z∗∇zf(z)

‖z‖ ≥ 1

1000
‖x‖2 ‖z‖ , ∀ z ∈ Rz2 , (Large Gradient)

< (h(z)∗∇zf(z))

‖h(z)‖ ≥ 1

1000
‖x‖2 ‖z‖ , ∀ z ∈ Rh2 , (Large Gradient)g(z)

g(z)


∗

∇2f(z)

g(z)

g(z)

 ≥ 1

4
‖x‖2 , ∀ z ∈ R3, (Restricted Strong Convexity)
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where h(z) is defined in (12.5.1), and

g(z)
.
=


h(z)/ ‖h(z)‖ if dist(z, X) 6= 0,

h ∈ S .
= {h : =(h∗z) = 0, ‖h‖ = 1} if z ∈ X.

Here the regionsR1, Rz2 , Rh2 andR3 cover Cn, and are defined as

R1
.
=

{
z : 8 |x∗z|2 +

401

100
‖x‖2 ‖z‖2 ≤ 398

100
‖x‖4

}
, (13.2.1)

Rz2
.
=

{
z : < (〈z,∇zE [f ]〉) ≥ 1

100
‖z‖4 +

1

500
‖x‖2 ‖z‖2

}
, (13.2.2)

Rh2
.
=

{
z : < (〈h(z),∇zE [f ]〉) ≥ 1

250
‖x‖2 ‖z‖ ‖h(z)‖ ,

11

20
‖x‖ ≤ ‖z‖ ≤ ‖x‖ ,dist(z, X) ≥ ‖x‖

3

}
, (13.2.3)

R3
.
=

{
z : dist(z, X) ≤ 1√

7
‖x‖

}
. (13.2.4)

Proof The quantitative statements are proved sequentially in Proposition 13.3, Proposition 13.4, Proposition

13.5, Proposition 13.6 and Proposition 13.7 in the next section. We next show X are the only local/global

minimizers. Obviously local minimizers will not occur in R1 ∪ Rz2 ∪ Rh2 , as at each such point either the

gradient is nonzero, or there is a negative curvature direction. So local/global minimizers can occur only in

R3. From (12.5.3), it is easy to check that ∇zf(xeiφ) = 0 and f(xeiφ) = 0 for any φ ∈ [0, 2π). Since f(z) ≥ 0

for all z ∈ Cn, all elements of X are local/global minimizers. To see there is no other critical point in R3,

note that any point z ∈ R3 \X can be written as

z = xeiφ(z) + tg, g
.
= h(z)/ ‖h(z)‖ , t .= dist(z, X).

By the restricted strong convexitywe have established, and the integral form of Taylor’s theorem in LemmaC.2,

f(z) = f(xeiφ(z)) + t

g
g


∗

∇f(xeiφ(z)) + t2
∫ 1

0

(1− s)

g
g


∗

∇2f(xeiφ(z) + stg)

g
g

 ds ≥ 1

8
‖x‖2 t2.

similarly, we obtain

f(xeiφ(z)) = 0 ≥ f(z)− t

g
g


∗

∇f(z) + t2
∫ 1

0

(1− s)

g
g


∗

∇2f(z − stg)

g
g

 ds

≥ f(z)−

g
g


∗

∇f(z) +
1

8
‖x‖2 t2.
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Summing up the above two inequalities, we obtain

t

g
g


∗

∇f(z) ≥ 1

4
‖x‖2 t2 =⇒ ‖∇f(z)‖ ≥ 1

4
√

2
‖x‖2 t,

as desired.

Figure 13.1: Schematic illustration of partitioning regions for Theorem 13.2. This plot corresponds to Figure 12.2, i.e., the
target signal is x = [1; 0] and measurements are real Gaussians, such that the function is defined in R2.

Figure 13.1 visualizes the different regions described in Theorem 13.2, and gives an idea of how they

cover the space. For f(z), a point z ∈ Cn is either near a critical point such that the gradient ∇zf(z) is small

(in magnitude), or far from a critical point such that the gradient is large. Any point inRz2 ∪Rh2 is far from a

critical point, as the following is true:

‖∇zf(z)‖ ≥ z
∗∇zf(z)

‖z‖ ≥ 1

1000
‖x‖2 ‖z‖ , or ‖∇zf(z)‖ ≥ < (h(z)∗∇zf(z))

‖h(z)‖ ≥ 1

1000
‖x‖2 ‖z‖ .

The rest of the space consists of points near critical points. SinceR1 ∪Rz2 ∪Rh2 ∪R3 cover the space, the rest

points are included inR1 ∪R3. For any z inR1, the quantity

1

‖x‖2

 xeiφ(z)

xe−iφ(z)


∗

∇2f(z)

 xeiφ(z)

xe−iφ(z)


measures the local curvature of f(z) in the xeiφ(z) direction. Strict negativity of this quantity implies that the

neighboring critical point is either a local maximizer, or a saddle point. Moreover, xeiφ(z) is a local descent

direction, even if ∇zf(z) = 0. For any z ∈ R3, g(z) is the unit vector that points to xeiφ(z), and is also

geometrically orthogonal to the ixeiφ(z) which is tangent the circle X at xeiφ(z). The strict positivity of the
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quantity g(z)

g(z)


∗

∇2f(z)

g(z)

g(z)


implies that locally f(z) is strongly convex in g(z) direction, although it is flat on the complex circle{
zeiφ : φ ∈ [0, 2π)

}
. In particular, the result applied to z ∈ X implies that on X , f(z) is strongly con-

vex in any direction orthogonal to X . This observation, together with the fact that the Hessian is Lipschitz,

implies that there is a neighborhood of X on which v∗∇2f(x)v > 0 for every direction that is orthogonal to

the trivial direction iz, not just the particular direction g(z). This stronger property can be used to study the

asymptotic convergence rate of algorithms; in particular, we will use it to obtain quadratic convergence for a

certain variant of the trust-region method.

In the asymptotic version, we characterized only the critical points. In this finite-sample version, we

characterize the whole space and particularly provide quantitative control for regions near critical points

(i.e.,R1 ∪R3). These concrete quantities are important for algorithm design and analysis (see Chapter 14).

In sum, our objective f(z) has the benign geometry that all local minimizers are global, and each z ∈ Cn

has either large gradient or directional negative curvature, or lies in the vicinity of a local minimizer around

which the function is locally restrictedly strongly convex. Functions with this property lie in the X family we

defined in Chapter 2. As discussed therein, functions in this class admit simple iterative methods (including

the noisy gradient method, curvilinear search, and trust-region methods), which avoid being trapped near

saddle points, and efficiently obtain a global minimizer.

13.3 Key steps in the geometric analysis

Our proof strategy is fairly simple: we work out uniform bounds on the quantities for each of the four regions,

and finally show the regions together cover the space. Since (12.1.1) and associated derivatives take the form

of summation ofm independent random variables, the proof involves concentration and covering arguments

[Ver12]. The main challenge in our argument will be the heavy tailed nature of f and its gradient.

Proposition 13.3 Whenm ≥ Cn log n, it holds with probability at least 1− ca exp (−cbm/ logm)− ccm−1
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that

1

‖x‖2

 xeiφ(z)

xe−iφ(z)


∗

∇2f(z)

 xeiφ(z)

xe−iφ(z)

 ≤ − 1

100
‖x‖2

for all z ∈ R1 defined in (13.2.1). Here C, and ca to cc are positive absolute constants.

Proof See Section 17.2 on Page 169.

The expected gradient ∇zE [f(z)] is a linear combination of z and x. We will divideR2 into two over-

lapped regions,Rz2 andRh2 , roughly matching the case

< (z∗∇zE [f(z)]) > 0

and the case

<
((
z − xeiφ(z)

)∗
∇zE [f(z)]

)
> 0,

respectively.

Proposition 13.4 Whenm ≥ Cn log n, it holds with probability at least 1 − ca exp(−cbm/ logm) − ccm−1

that

z∗∇zf(z)

‖z‖ ≥ 1

1000
‖x‖2 ‖z‖

for all z ∈ Rz2 defined in (13.2.2). Here C and ca to cc are positive absolute constants.

Proof See Section 17.3 on Page 170.

Proposition 13.5 Whenm ≥ Cn log3 n, it holds with probability at least 1− ca exp(−cbm/ log2m)− ccm−1

that

< (h(z)∗∇zf(z)) ≥ 1

1000
‖x‖2 ‖z‖ ‖h(z)‖

for all z ∈ Rh2 defined in (13.2.3). Here ca to cc and C are positive absolute constants.

Proof See Section 17.4 on Page 171.

Next, we show that for any z ∈ Cn near X , the objective f is strongly convex in the direction z − xeiφ(z).

This allows us to achieve a quadratic asymptotic rate of convergence with the modified trust-region algorithm

we propose later.
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Proposition 13.6 When m ≥ Cn log n for a sufficiently large constant C, it holds with probability at least

1− cam−1 − cb exp(−ccm/ logm) thatg(z)

g(z)


∗

∇2f(z)

g(z)

g(z)

 ≥ 1

4
‖x‖2

for all z ∈ R3 defined in (13.2.4) and for all

g(z)
.
=


(
z − xeiφ(z)

)
/
∥∥z − xeiφ(z)

∥∥ if dist(z, X) 6= 0,

h ∈ S .
= {h : =(h∗z) = 0, ‖h‖ = 1} if z ∈ X.

Here C, ca to cc are positive absolute constants.

Proof See Section 17.5 on Page 174.

Finally, we show that the regions we defined above cover the whole space. Formally,

Proposition 13.7 We haveR1 ∪Rz2 ∪Rh2 ∪R3 = Cn.

Proof See Section 17.6 on Page 175.

The main challenge is that the function (12.1.1) is fourth-order polynomial, and most quantities arising in

the above propositions involve heavy-tailed random variables. For example, we need to control

1

m

m∑
k=1

|a∗kz|4 for all z ∈ Rz2 (13.3.1)

in proving Proposition 13.4,

1

m

m∑
k=1

|a∗kz|2<
(
(z − xeiφ)∗aka

∗
kz
)

for all z ∈ Rh2 (13.3.2)

in proving Proposition 13.5, and a quantity of the form

1

m

m∑
k=1

|a∗kw|2 |a∗kz|2 for all w, z (13.3.3)

in proving Proposition 13.6. With only Cn log3 n samples, these quantities do not concentrate uniformly

about their expectations. Fortunately, this heavy-tailed behavior does not prevent the objective function from

being globally well-structured for optimization. Our bounds on the gradient and Hessian depend only on the

lower tails of the above quantities. For (13.3.1) and (13.3.3) that are sum of independent nonnegative random

variables, the lower tails concentrate uniformly as these lower-bounded variables are sub-Gaussian viewed
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from lower tails (see Lemma A.6 and Lemma 17.4). For (13.3.2), we carefully construct a proxy quantity that

is summation of bounded random variables which uniformly bounds (13.3.2) from below.
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Chapter 14

Optimization by Trust-Region Method

(TRM)

The purpose of computing is insight, not numbers.

Richard Hamming

Based on the geometric characterization in the preceding chapter, we describe a second-order trust-region

algorithm that produces a close approximation (i.e., up to numerical precision) to the global minimizer

of (12.1.1) in polynomial number of steps. One interesting aspect of f in the complex space is that each

point has a “circle” of equivalent points that have the same function value. Thus, we constrain each step to

move “orthogonal” to the trivial direction. This simple modification helps the algorithm to converge faster in

practice, and proves important to the quadratic asymptotic convergence rate in theory.

14.1 A modified trust-region algorithm

The basic idea of the trust-region method is simple: we generate a sequence of iterates z(0), z(1), . . . , by

repeatedly constructing quadratic approximations f̂(δ; z(r)) ≈ f(z(r) + δ), minimizing f̂ to obtain a step

δ, and setting z(r+1) = z(r) + δ. More precisely, we approximate f(z) around z(r) using the second-order

Taylor expansion,

f̂(δ; z(r)) = f(z(r)) +

δ
δ


∗

∇f(z(r)) +
1

2

δ
δ


∗

∇2f(z(r))

δ
δ

 ,
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and solve

minimizeδ∈Cn f̂(δ; z(r)), subject to =
(
δ∗z(r)

)
= 0, ‖δ‖ ≤ ∆, (14.1.1)

to obtain the step δ. In (14.1.1), ∆ controls the trust-region size. The first linear constraint further forces

the movement δ to be geometrically orthogonal to the iz direction, along which the possibility for reducing

the function value is limited. Enforcing this linear constraint is a strategic modification to the classical

trust-region subproblem.

Reduction to the standard trust-region subproblem. The modified trust-region subproblem is easily seen

to be equivalent to a classical trust-region subproblem (with no constraint) over 2n − 1 real variables.

Notice that
{
w ∈ Cn : =(w∗z(r)) = 0

}
forms a subspace of dimension 2n − 1 over R2n. Take any matrix

U(z(r)) ∈ Cn×(2n−1) whose columns form an orthonormal basis for the subspace, i.e., <(U∗i Uj) = δij for

any columns Ui and Uj . The subproblem can then be reformulated as (U short for U(z(r)))

minimizeξ∈R2n−1 f̂(Uξ; z(r)), subject to ‖ξ‖ ≤ ∆. (14.1.2)

Let us define

g(z(r))
.
=

U
U


∗

∇f(z(r)), H(z(r))
.
=

U
U


∗

∇2f(z(r))

U
U

 . (14.1.3)

Then, the quadratic approximation of f(z) around z(r) can be rewritten as

f̂(ξ; z(r)) = f(z(r)) + ξ>g(z(r)) +
1

2
ξ>H(z(r))ξ. (14.1.4)

By structure of theWirtinger gradient∇f(z(r)) andWirtinger Hessian∇2f(z(r)), g(z(r)) andH(z(r)) contain

only real entries.

So, any method which can solve the classical trust-region subproblem can be directly applied to the

modified problem (14.1.1). Although the resulting problem can be nonconvex, it can be solved in polynomial

time, by root-finding or SDP relaxations. Our convergence guarantees assume an exact solution of this

problem; we outline how to obtain such a solution via SDP relaxation. In practice, though, even very inexact

solutions of the trust-region subproblem suffice.1 Inexact iterative solvers for the trust-region subproblem

can be engineered to avoid the need to densely represent the Hessian; these methods have the attractive

1This can also be proved, in a relatively straightforward way, using the geometry of the objective f . In the interest of brevity, we do
not pursue this here.
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property that they attempt to optimize the amount of Hessian information that is used at each iteration, in

order to balance rate of convergence and computation.

In the interest of theory, we describe briefly how to apply SDP relaxation to solve problem (14.1.2). This

SDP relaxation has the important property that it is always exact, even if the Hessian is indefinite. By

introducing

ξ̂ =

ξ
1

 , Ξ = ξ̂ ξ̂>, M =

H(z(r)) g(z(r))

g(z(r))> 0

 ,
we can lift problem (14.1.2) as a semidefinite program (SDP):

min
Ξ
〈Ξ,M〉 , s.t. tr (Ξ) ≤ ∆2 + 1, 〈E2n,Ξ〉 = 1, Ξ � 0, (14.1.5)

where E2n = e2ne
>
2n, and 〈·, ·〉 reduces to the usual real inner product of real-valued matrices.

Once the subproblem (14.1.5) is solved to optimal Ξ?, we can perform eigen-decomposition on Ξ? as

Ξ? = V ΣV >. Let v be the principle eigenvector of V , and let ξ? be the first 2n− 1 coordinate of v, then the

optimum of the original TRM subproblem (14.1.1) is recovered as δ? = Uξ?.

14.2 Convergence analysis

Our convergence proof proceeds as follows. Let δ? denote the optimizer of the trust-region subproblem at a

point z. If ‖∇f(z)‖ is bounded away from zero, or λmin(∇2f(z)) is bounded below zero, we can guarantee

that that f̂(δ?, z) − f(z) < −ε, for some ε which depends on our bounds on these quantities. Because

f(z + δ?) ≈ f̂(δ?, z) < f(z)− ε, we can guarantee (roughly) an ε decrease in the objective function at each

iteration. Because this ε is uniformly bounded away from zero over the gradient and negative curvature

regions, the algorithm can take at most finitelymany steps in these regions. Once it enters the strong convexity

region around the global minimizers, the algorithm behaves much like a typical Newton-style algorithm;

in particular, it exhibits asymptotic quadratic convergence. Below, we prove quantitative versions of these

statements. We begin by stating several basic facts that are useful for the convergence proof.

14.2.1 Preliminaries

Norm of the target vector and initialization. In our problem formulation, ‖x‖ is not known ahead of

time. However, it can be well estimated. When a ∼ CN (n), E |a∗x|2 = ‖x‖2. By Bernstein’s inequality,
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1
m

∑m
k=1 |a∗kx|

2 ≥ 1
9 ‖x‖

2 with probability at least 1 − exp(−cm). Thus, with the same probability, the

quantity R0
.
= 3( 1

m

∑m
k=1 |a∗kx|

2
)1/2 is an upper bound for ‖x‖. For the sake of analysis, we will assume

the initialization z(0) is an arbitrary point over CBn(R0). Now consider a fixed R1 > R0. By Lemma 17.3,

Lemma 17.4, and the fact that maxk∈[m] ‖ak‖4 ≤ 10n2 log2m with probability at least 1 − cam−n, we have

that the following estimate

inf
z,z′: ‖z‖≤R0, ‖z′‖≥R1

f(z′)− f(z)

= inf
z,z′: ‖z‖≤R0, ‖z′‖≥R1

1

m

m∑
k=1

[
|a∗kz′|

4 − |a∗kz|4 − 2 |a∗kz′|
2 |a∗kx| 2 + 2 |a∗kz|2 |a∗kx| 2

]
≥ inf

z,z′: ‖z‖≤R0, ‖z′‖≥R1

199

200
‖z′‖4 − 10n2 log2m ‖z‖4 − 201

200

(
‖z′‖2 ‖x‖2 + |x∗z′|2

)
≥ inf

z′:‖z′‖≥R1

199

200
‖z′‖4 − 10n2 log2mR4

0 −
201

100
‖z′‖2R2

0

holds with probability at least 1 − cbm−1 − cc exp(−cdm/ logm), provided m ≥ Cn log n for a sufficiently

large C. It can be checked that when

R1 = 3
√
n logmR0, (14.2.1)

we have

inf
z′:‖z′‖≥R1

199

200
‖z′‖4 − 10n2 log2mR4

0 −
201

100
‖z′‖2R2

0 ≥ 40n2 log2mR4
0.

Thus, we conclude that whenm ≥ Cn log n, w.h.p., the sublevel set
{
z : f(z) ≤ f(z(0))

}
is contained in the

set

Γ
.
= CBn(R1). (14.2.2)

Lipschitz Properties We write A .
= [a1, · · · ,am] so that ‖A‖`1→`2 = maxk∈[m] ‖ak‖. We next provide

estimates of Lipschitz constants of f and its derivatives, restricted to a slightly larger region than Γ:

Lemma 14.1 (Local Lipschitz Properties) The Lipschitz constants for f(z),∇f(z), and∇2f(z) over the set

Γ′
.
= CBn(2R1) can be bounded above by Lf , Lg , and Lh respectively, where

Lf
.
= 7× 106 · (n logm)

3
2 ‖A‖2`1→`2 ‖x‖

3
, Lg

.
= 19000

√
2n logm ‖A‖2`1→`2 ‖x‖

2
,

Lh
.
= 480 · (n logm)

1
2 ‖A‖2`1→`2 ‖x‖
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with probability at least 1− ca exp(−cbm), providedm ≥ Cn for a sufficiently large absolute constant C. Here

ca through ce are positive absolute constants.

Proof See Section 18.2 on Page 179.

Property of Hessians near the Target Set X . Define a region

R′3
.
=

{
z : ‖h(z)‖ ≤ 1

10Lh
‖x‖2

}
. (14.2.3)

We will provide spectral upper and lower bounds for the (restricted) Hessian matricesH(z), whereH(z) is

as defined in (14.1.3). These bounds follow by boundingH(z) on X , and then using the Lipschitz property

of the Hessian to extend the bounds to a slightly larger region around X .

Lemma 14.2 (Lower and Upper Bounds of Restricted Hessian inR′3) Whenm ≥ Cn log n, it holds with

probability at least 1− cam−1 − cb exp (−ccm/ logm) that

mHI �H(z) �MHI

for all z ∈ R′3 withmH = 22/25 ‖x‖2 andMH = 9/2 ‖x‖2. Here C, ca to cc are positive absolute constants.

Proof See Section 18.3 on Page 180.

14.2.2 Convergence of TRM

We are now ready to prove the convergence of the TRM. Throughout, we will assumem ≥ Cn log3 n for a

sufficiently large constant C, so that all the events of interest hold w.h.p..

Our initialization is an arbitrary point z(0) ∈ CBn(R0) ⊆ Γ. We will analyze effect of a trust-region step

from any iterate z(r) ∈ Γ. Based on these arguments, we will show that whenever z(r) ∈ Γ, z(r+1) ∈ Γ, and so

the entire iterate sequence remains in Γ. The analysis will use the fact that f and its derivatives are Lipschitz

over the trust-region z + CBn(∆). This follows from Proposition 14.1, provided

∆ ≤ R1. (14.2.4)

The next auxiliary lemma makes precise the intuition that whenever there exists a descent direction, the

step size parameter ∆ is sufficiently small, a trust-region step will decrease the objective.
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Lemma 14.3 For any z ∈ Γ, suppose there exists a vector δ with ‖δ‖ ≤ ∆ such that

=(δ∗z) = 0 and f(z + δ) ≤ f(z)− d,

for a certain d > 0. Then the trust-region subproblem (14.1.1) returns a point δ? with ‖δ?‖ ≤ ∆ and

f(z + δ?) ≤ f(z)− d+
2

3
Lh∆3.

Proof See Section 18.4 on Page 182.

The next proposition says when ∆ is chosen properly, a trust-region step from a point with negative local

curvature decreases the function value by a concrete amount.

Proposition 14.4 (Function Value Decrease in Negative Curvature RegionR1) Suppose the current it-

erate z(r) ∈ R1 ∩ Γ, and our trust-region size satisfies

∆ ≤ 1

400Lh
‖x‖2 . (14.2.5)

Then an optimizer δ? to (14.1.1) leads to z(r+1) = z(r) + δ? that obeys

f(z(r+1))− f(z(r)) ≤ −d1
.
= − 1

400
∆2 ‖x‖2 . (14.2.6)

Proof See Section 18.5 on Page 182.

The next proposition shows that when ∆ is chosen properly, a trust-region step from a point with strong

gradient decreases the objective by a concrete amount.

Proposition 14.5 (Function Value Decrease in Large Gradient RegionR2) Suppose our current iterate

z(r) ∈ (Rz2 ∪Rh2 ) ∩Rc1 ∩ Γ, and our trust-region size satisfies

∆ ≤ min

 ‖x‖3
8000Lg

,

√
3 ‖x‖3

16000Lh

 . (14.2.7)

Then an optimizer δ? to (14.1.1) leads to z(r+1) = z(r) + δ? that obeys

f(z(r+1))− f(z(r)) ≤ −d2
.
= − 1

4000
∆ ‖x‖3 . (14.2.8)

Proof See Section 18.6 on Page 183.

Now, we argue about R3, in which the behavior of the algorithm is more complicated. For the region

R3 \ R′3, the restricted strong convexity in radial directions around X as established in Proposition 13.6
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implies that the gradient at any point in R3 \ R′3 is nonzero. Thus, one can treat this as another strong

gradient region, and carry out essentially the same argument as in Proposition 14.5.

Proposition 14.6 (Function Value Decrease inR3 \ R′3) Suppose our current iterate z(r) ∈ R3 \ R′3, and

our trust-region size satisfies

∆ ≤ min

{
‖x‖4

160LhLg
,

√
3

320

‖x‖2
Lh

}
. (14.2.9)

Then an optimizer δ? to (14.1.1) leads to z(r+1) = z(r) + δ? that obeys

f(z(r+1))− f(z(r)) ≤ −d3
.
= − 1

80Lh
∆ ‖x‖4 . (14.2.10)

Proof See Section 18.7 on Page 184.

Our next several propositions show that when the iterate sequence finally moves intoR′3, it can be divided

into two ordered phases, either of which can be absent: first, constrained steps in which the constraint of the

trust-region subproblem is active, and second, unconstrained steps in which the trust-region constraint is

inactive. The next proposition shows that when ∆ is chosen properly, a constrained step inR′3 decreases the

objective by a concrete amount.

Proposition 14.7 Suppose our current iterate z(r) ∈ R′3, and the trust-region subproblem takes a constrained

step, i.e., the optimizer to (14.1.1) satisfies ‖δ?‖ = ∆. We have the δ? leads to

f(z(r+1))− f(z(r)) ≤ −d4
.
= −m

2
H∆2

4MH
. (14.2.11)

provided that

∆ ≤ m2
H/(4MHLh). (14.2.12)

HeremH andMH are as defined in Lemma 14.2.

Proof See Section 18.8 on Page 185.

The next proposition shows that when ∆ is properly tuned, an unconstrained step in R′3 dramatically

reduces the norm of the gradient.
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Proposition 14.8 (Quadratic Convergence of the Norm of the Gradient) Suppose our current iterate z(r) ∈

R′3, and the trust-region subproblem takes an unconstrained step, i.e., the unique optimizer to (14.1.1) satisfies

‖δ?‖ < ∆. We have the δ? leads to z(r+1) = z(r) + δ? that obeys

‖∇f(z(r+1))‖ ≤ 1

m2
H

(Lh +
32

‖x‖MH)‖∇f(z(r))‖2, (14.2.13)

provided

∆ ≤ ‖x‖ /10. (14.2.14)

HereMH andmH are as defined in Lemma 14.2.

Proof See Section 18.9 on Page 186.

The next proposition shows that when ∆ is properly tuned, as soon as an unconstrainedR′3 step is taken,

all future iterations take unconstrained R′3 steps. Moreover, the sequence converges quadratically to the

target set X .

Proposition 14.9 (Quadratic Convergence of the Iterates inR′3) Suppose the trust-region algorithm starts

to take an unconstrained step inR′3 at z(r) for a certain r ∈ N. Then all future steps will be unconstrained steps

inR′3, and ∥∥∥h(z(r+r′))
∥∥∥ ≤ 4

√
2m2

H

‖x‖2
(
Lh +

32

‖x‖MH

)−1

2−2r
′

(14.2.15)

for all integers r′ ≥ 1, provided that

∆ ≤ min

‖x‖10
,

mH ‖x‖2

MH

√
40
√

2Lh(Lh + 32MH/ ‖x‖)
,

m3
H√

2M2
H(Lh + 32MH/ ‖x‖)

 . (14.2.16)

Proof See Section 18.10 on Page 189.

Now we are ready to piece together the above technical propositions to prove our main algorithmic

theorem.

Theorem 14.10 (TRM Convergence) Supposem ≥ Cn log3 n for a sufficiently large constant C. Then with

probability at least 1 − cam−1, the trust-region algorithm with an arbitrary initialization z(0) ∈ CBn(R0),
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with R0 = 3( 1
m

∑m
k=1 y

2
k)1/2, will return a solution that is ε-close to the target set X in

cb

∆2 ‖x‖2
f(z(0)) + log log(

cc ‖x‖
ε

) (14.2.17)

steps, provided that

∆ ≤ cd(n7/2 log7/2m)−1 ‖x‖ . (14.2.18)

Here ca through cd are positive absolute constants.

Proof Whenm ≥ C1n log3 n for a sufficiently large constant C1, the assumption of Theorem 13.2 is satisfied.

Moreover, with probability at least 1− c2m−1, the following estimates hold:

Lf = C3n
5/2 log5/2m ‖x‖3 , Lg = C3n

2 log2m ‖x‖2 , Lh = C3n
3/2 log3/2m ‖x‖ ,

mH = 22/25 ‖x‖2 , MH = 9/2 ‖x‖2

for a certain positive absolute constant C3. From the technical lemmas and propositions in Section 14.2.2, it

can be verified that when

∆ ≤ c4(n7/2 log7/2m)−1 ‖x‖ ,

for a positive absolute constant c4, all requirements on ∆ are satisfied.

Write RA .
= Γ \ R′3, where Γ

.
= CBn(R1) with R1 = 3

√
n logmR0. Then a step in Γ is either a RA or

constrainedR′3 step that reduces the objective value by a concrete amount, or an unconstrainedR′3 step with

all subsequent steps being unconstrainedR′3. From discussion in Section 14.2.1, for an arbitrary initialization

z(0) ∈ Γ, our choice of R1 ensures that w.h.p. the sublevel set Π
.
=
{
z : f(z) ≤ f(z(0))

}
is contained in

Γ. Moreover, R′3 is also contained in Γ. RA and constrained R′3 steps reduce the objective function, and

therefore cannot cause the iterate sequence to leave Π. SoRA and constrainedR′3 steps stay within Γ. Since

unconstrainedR′3 steps stay withinR′3, they also stay within Γ, and the iterate sequence as a whole does not

leave Γ.

In fact, the previous argument implies a generic iterate sequence consists of two phases: the first phase

that takes consecutiveRA or constrainedR′3 steps, and the second phase that takes consecutive unconstrained

R′3 steps. Either of the two can be absent depending on the initialization and parameter setting for the TRM

algorithm.
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By Proposition 14.4, 14.5, 14.6, and 14.7, from z(0) it takes at most

f(z(0))/min(d1, d2, d3, d4)

steps for the iterate sequence to start take consecutive unconstrainedR′3 step, or to stops on the target set X .

In the former case, by Proposition 14.9, the sequence then takes at most

log log

(
4
√

2m2
H

(Lh + 32MH/ ‖x‖) ‖x‖2 ε

)

more steps to reach an ε-close point to the target set X .

In sum, the number of iterations to obtain an ε-close solution to the target set X can be grossly bounded

by

#Iter ≤ f(z(0))

min {d1, d2, d3, d4}
+ log log

(
4
√

2m2
H

(Lh + 32MH/ ‖x‖) ‖x‖2 ε

)
.

Using our previous estimates ofmH ,MH , and LH , and taking min{d1, d2, d3, d4} = c5∆2 ‖x‖2, we arrive at

the claimed result.
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Chapter 15

Numerical Simulations

A theory can be proved by experiment; but no path leads from

experiment to the birth of a theory.

Albert Einstein

In this chapter, we investigate experimentally the number of measurementsm required to ensure that

f(z) is well-structured, in the sense of our theorems. This entails solving large instances of f(z). To this end,

we deploy the modified Manopt package.

We fix n = 1, 000 and vary the ratiom/n from 4 to 10. For eachm, we generate a fixed instance: a fixed

Figure 15.1: (Left) Recovery performance for GPRwhen optimizing (12.1.1) with the TRM.With n = 1000 andm varying,
we consider a fixed problem instance for each m, and run the TRM algorithm 25 times from independently random
initializations. The empirical recovery probability is a test of whether the benign geometric structure holds. (Right) A
small “artistic” Columbia University campus image we use for comparing TRM and gradient descent.

signal x, and a fixed set of complex Gaussian vectors. We run the TRM algorithm 25 times for each problem
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instance, with independent random initializations. Successfully recovery is declared if at termination the

optimization variable z∞ satisfies

εRel
.
= ‖z∞ − xeiφ(z∞)‖/ ‖x‖ ≤ 10−3.

The recovery probability is empirically estimated from the 25 repetitions for eachm. Intuitively, when the

recovery probability is below one, there are spurious local minimizers. In this case, the number of samples

m is not large enough to ensure the finite-sample function landscape f(z) to be qualitatively the same as the

asymptotic version Ea[f(z)]. Figure 15.1 shows the recovery performance. It seems that m = 7n samples

may be sufficient to ensure the geometric property holds.1 On the other hand, m = 6n is not sufficient,

whereas in theory it is known 4n samples are enough to guarantee measurement injectivity for complex

signals [BCE06].2

We now briefly compare TRM and gradient descent in terms of running time. We take a small (n = 80×47)

image of Columbia University campus (Figure 15.1 (Right)), and make m = 5n log n complex Gaussian

measurements. The TRM solver is the same as above, and the gradient descent solver is one with backtracking

line search. We repeat the experiment 10 times, with independently generated random measurements and

initializations each time. On average, the TRM solver returns a solution with εRel ≤ 10−4 in about 2600

seconds, while the gradient descent solver produces a solution with εRel ∼ 10−2 in about 6400 seconds. The

point here is not to exhaustively benchmark the two – they both involve many implementation details and

tuning parameters and they have very different memory requirements. It is just to suggest that second-order

methods can be implemented in a practical manner for large-scale GPR problems.3

1This prescription should be taken with a grain of salt, as here we have only tested a single fixed n.
2Numerics in [CC15] suggest that under the same measurement model,m = 5n is sufficient for efficient recovery. Our requirement

on control of the whole function landscape and hence “initialization-free" algorithm may need the additional complexity.
3The main limitation in this experiment was not the TRM solver, but the need to store the vectors a1, . . .am. For other measurement

models, such as the coded diffraction model [CLS15a], “matrix-free” calculation is possible, and storage is no longer a bottleneck.
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Chapter 16

Discussion

The best way to predict the future is to invent it.

Allan Kay

In this work, we provide a complete geometric characterization of the nonconvex formulation (12.1.1) for

the GPR problem. The benign geometric structure allows us to design a second-order trust-region algorithm

that efficiently finds a global minimizer of (12.1.1), without special initialization. We close the main body of

this work by discussing possible extensions and relevant open problems.

Sample complexity and measurement schemes. Our result (Theorem 13.2 and Theorem 14.10) indicates

that m ≥ C1n log3 n samples are sufficient to guarantee the favorable geometric property and efficient

recovery, while our simulations suggested that C2n log n or even C3n is enough. For efficient recovery only,

m ≥ C4n are known to be sufficient [CC15] (and uniformly for all signals; see also [CLS15b]). It is interesting

to see if the gaps can be closed. Our current analysis pertains to i.i.d. Gaussian measurements only, which

are not practical. It is important to extend the geometric analysis to more practical measurement schemes,

such as t-designs [GKK13] and masked Fourier transform measurements [CLS15a]. A preliminary study of

the low-dimensional function landscape for the latter scheme produces very positive result; see Figure 16.1.

Sparse phase retrieval. A special case of GPR is when the underlying signal x is known to be sparse, which

can be considered as a quadratic compressed sensing problem [OYVS13, OYDS13, OYDS12, LV13, JOH13,

SBE14]. Since x is sparse, the lifted matrix X = xx∗ is sparse and has rank one. Thus, existing convex

relaxation methods [OYVS13, OYDS13, LV13, JOH13] formulated it as a simultaneously low-rank and sparse
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Figure 16.1: Function landscape of (12.1.1) for x = [1; 0] andm→∞ for the masked Fourier transform measurements
(coded diffraction model [CLS15a]). The landscape is qualitatively similar to that for the Gaussian model (Figure 12.2).

recovery problem. For the latter problem, however, known convex relaxations are suboptimal [OJF+12,

MHWG14]. Let k be the number of nonzeros in the target signal. [LV13, JOH13] showed that natural convex

relaxations require C5k
2 log n samples for correct recovery, instead of the optimal order O(k log(n/k)). A

similar gap is also observed with certain nonconvex methods [CLM15]. It is tempting to ask whether novel

nonconvex formulations and analogous geometric analysis as taken here could shed light on this problem.

Other structured nonconvex problems. We have mentioned recent surge of works on provable nonconvex

heuristics [JNS13,Har14,HW14,NNS+14, JN14, SL14, JO14,WCCL15, SRO15, ZL15, TBSR15, CW15,AGJ14a,

AGJ14b,AJSN15,GHJY15,QSW14,HSSS15,AAJ+13,AGM13,AAN13,ABGM14,AGMM15, SQW15a, YCS13,

SA14c, LWB13, LJ15, LLJB15, EW15, Bou16, JJKN15]. While the initialization plus local refinement analy-

ses generally produce interesting theoretical results, they do not explain certain empirical successes that

do not rely on special initializations. The geometric structure and analysis we work with in our recent

work [SQW15a, SQW15b] (see also [GHJY15] and [AG16]) seem promising in this regard. It is interesting to

consider whether analogous geometric structure exists for other practical problems.
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Chapter 17

Proofs of Technical Results for Function

Landscape

The idea of concentration of measure (which was discovered by V.

Milman) is arguably one of the great ideas of analysis in our times.

While its impact on Probability is only a small part of the whole picture,

this impact should not be ignored.

Micheal Talagrand, in A new look at independence

17.1 Auxiliary lemmas

Lemma 17.1 For the function f(z) : Cn 7→ R defined in (12.1.1), we have

E [f(z)] = ‖x‖4 + ‖z‖4 − ‖x‖2 ‖z‖2 − |x∗z|2 , (17.1.1)

∇E [f(z)] =

∇zE [f(z)]

∇zE [f(z)]

 =


(

2 ‖z‖2 I − ‖x‖2 I − xx∗
)
z(

2 ‖z‖2 I − ‖x‖2 I − xx∗
)
z

 , (17.1.2)

∇2E [f(z)] =

2zz∗ − xx∗ +
(

2 ‖z‖2 − ‖x‖2
)
I 2zz>

2zz∗ 2zz> − xx> +
(

2 ‖z‖2 − ‖x‖2
)
I

 . (17.1.3)
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Proof By definition (12.1.1), notice that

E [f(z)] =
1

2
Ea∼CN (n)

[(
|〈a,x〉|2 − |〈a, z〉|2

)2
]

=
1

2
Ea∼CN (n)

[
|〈a,x〉|4

]
+

1

2
Ea∼CN (n)

[
|〈a, z〉|4

]
− Ea∼CN (n)

[
|〈a,x〉|2 |〈a, z〉|2

]
.

We now evaluate the three terms separately. Note that the law CN (n) is invariant to unitary transform. Thus,

Ea∼CN (n)

[
|〈a,x〉|4

]
= Ea∼CN (n)

[
|〈a, e1〉|4

]
‖x‖4 = Ea∼N (0,1/2)+i N (0,1/2)

[
|a|4
]
‖x‖4 = 2 ‖x‖4 .

Similarly, we also obtain Ea∼CN
[
|〈a, z〉|4

]
= 2 ‖z‖4. Now for the cross term,

Ea∼CN (n)

[
|〈a,x〉|2 |〈a, z〉|2

]
= Ea∼CN (n)

[
|〈a, e1〉|2

∣∣〈a, s1eiφ1e1 + s2eiφ2e2

〉∣∣2] ‖x‖2 ‖z‖2 [where s2
1 + s2

2 = 1]

= Ea∼CN (n)

[
|a1|2

∣∣s1a1eiφ1 + s2a2eiφ2
∣∣2] ‖x‖2 ‖z‖2

= Ea∼CN (n)

[
|a1|2

(
s2

1 |a1|2 + s2
2 |a2|2

)]
‖x‖2 ‖z‖2

=
(
1 + s2

1

)
‖x‖2 ‖z‖2 = ‖x‖2 ‖z‖2 + |x∗z|2 .

Gathering the above results, we obtain (17.1.1). By takingWirtinger derivative (12.5.2) with respect to (17.1.1),

we obtain the Wirtinger gradient and Hessian in (17.1.2), (17.1.3) as desired.

Lemma 17.2 For a ∼ CN (n) and any fixed vector v ∈ Cn, it holds that

E
[
|a∗v|2 aa∗

]
= vv∗ + ‖v‖2 I, and E

[
(a∗v)

2
aa>

]
= 2vv>.

Proof Observe that for i 6= j,

e∗iE
[
|a∗v|2 aa∗

]
ej =

∑
q,`

E
[
a(q)a(`)v(q)v(`)a(i)a(j)

]
= E

[
|a(i)|2 |a(j)|2

]
v(i)v(j) = v(i)v(j).

Similarly,

e∗iE
[
|a∗v|2 aa∗

]
ei =

∑
q,`

E
[
a(q)a(`)v(q)v(`) |a(i)|2

]
= E

[
|a(i)|4 |v(i)|2

]
+
∑
q 6=i

E
[
|a(q)|2 |v(q)|2 |a(i)|2

]
= |v(i)|2 + ‖v‖2 .

Similar calculation yields the second expectation.
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Lemma 17.3 Let a1, . . . ,am be i.i.d. copies of a ∼ CN (n). For any δ ∈ (0, 1) and any v ∈ Cn, when

m ≥ C(δ)n log n, we have that with probability at least 1− caδ−2m−1 − cb exp
(
−ccδ2m/ logm

)
∥∥∥∥∥ 1

m

m∑
k=1

|a∗kv|2 aka∗k −
(
vv∗ + ‖v‖2 I

)∥∥∥∥∥ ≤ δ ‖v‖2 ,∥∥∥∥∥ 1

m

m∑
k=1

(a∗kv)
2
aka

>
k − 2vv>

∥∥∥∥∥ ≤ δ ‖v‖2 .
Here C(δ) is a constant depending on δ and ca, cb and cc are positive absolute constants.

Proof We work out the results on 1
m

∑m
k=1 |a∗kv|

2
aka

∗
k first. By the unitary invariance of the Gaussian

measure and rescaling, it is enough to consider v = e1. We partition each vector ak as ak = [ak(1); ãk] and

upper bound the target quantity as:∥∥∥∥∥∥∥
1

m

m∑
k=1

|ak(1)|2
|ak(1)|2 ak(1)ã∗k

ak(1)ãk ãkã
∗
k

− (e1e
∗
1 + I)

∥∥∥∥∥∥∥
≤
∣∣∣∣∣ 1

m

m∑
k=1

(
|ak(1)|4 − 2

)∣∣∣∣∣ +

∥∥∥∥∥∥∥
1

m

m∑
k=1

|ak(1)|2
 0 ak(1)ã∗k

ak(1)ãk 0


∥∥∥∥∥∥∥

+

∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2 (ãiã
∗
k − In−1)

∥∥∥∥∥ +

∣∣∣∣∣ 1

m

m∑
k=1

(
|ak(1)|2 − 1

)∣∣∣∣∣ .
By Chebyshev’s inequality, we have with probability at least 1− c1δ−2m−1,∣∣∣∣∣ 1

m

m∑
k=1

(
|ak(1)|4 − 2

)∣∣∣∣∣ ≤ δ

4
and

∣∣∣∣∣ 1

m

m∑
k=1

(
|ak(1)|2 − 1

)∣∣∣∣∣ ≤ δ

4
.

To bound the second term, we note that∥∥∥∥∥∥∥
1

m

m∑
k=1

|ak(1)|2
 0 ak(1)ã∗k

ak(1)ãk 0


∥∥∥∥∥∥∥ =

∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2 ak(1)ã∗k

∥∥∥∥∥
= sup
w∈Cn−1:‖w‖=1

1

m

m∑
k=1

|ak(1)|2 ak(1)ã∗kw.

For all w and all k ∈ [m] , ã∗kw is distributed as CN (1) that is independent of the {ak(1)} sequence. So for

one realization of {ak(1)}, the Hoeffding-type inequality of Lemma A.4 implies

P

[
1

m

m∑
k=1

|ak(1)|2 ak(1)ã∗kw > t

]
≤ e exp

(
− c2m

2t2∑m
k=1 |ak(1)|6

)
,

for any w with ‖w‖ = 1 and any t > 0. Taking t = δ/8, together with a union bound on a 1/2-net on the
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sphere, we obtain

P

[∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2 ak(1)ã∗k

∥∥∥∥∥ > δ/4

]
≤ e exp

(
− c2m

2δ2

64
∑m
k=1 |ak(1)|6

+ 12(n− 1)

)
.

Now an application of Chebyshev’s inequality gives that
∑m
k=1 |ak(1)|6 ≤ 20m with probability at least

1− c3m−1. Substituting this into the above, we conclude that wheneverm ≥ C4δ
−2n for some sufficiently

large C4, ∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2 ak(1)ã∗k

∥∥∥∥∥ ≤ δ/4
with probability at least 1− c3m−1 − exp

(
−c5δ2m

)
.

To bound the third term, we note that∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2 (ãkã
∗
k − In−1)

∥∥∥∥∥ = sup
w∈Cn−1:‖w‖=1

1

m

m∑
k=1

|ak(1)|2
(
|ã∗kw|2 − 1

)
.

For all fixed w and all k ∈ [m], ã∗kw ∼ CN (1). Thus, |ã∗kw|
2 − 1 is centered sub-exponential. So for one

realization of {ak(1)}, Bernstein’s inequality (Lemma A.5) implies

P

[
1

m

m∑
k=1

|ak(1)|2
(
|ã∗kw|2 − 1

)
> t

]
≤ 2 exp

(
−c6 min

(
t2

c27
∑m
k=1 |ak(1)|4

,
t

c7 maxi∈[m] |ak(1)|2

))

for any fixedw with ‖w‖ = 1 and any t > 0. Taking t = δ/8, together with a union bound on a 1/2-net on

the sphere, we obtain

P

[∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2
(
ãkãk

∗ − In−1

)∥∥∥∥∥ > δ

4

]

≤ 2 exp

(
−c6 min

(
m2δ2/64

c27
∑m
k=1 |ak(1)|4

,
mδ/8

c7 maxi∈[m] |ak(1)|2

)
+ 12(n− 1)

)
.

Chebyshev’s inequality and the union bound give that

m∑
k=1

|ak(1)|4 ≤ 10m, and max
i∈[m]

|ak(1)|2 ≤ 10 logm

hold with probability at least 1− c8m−1−m−4. To conclude, whenm ≥ C9(δ)δ−2n log n for some sufficiently

large constant C9(δ), ∥∥∥∥∥ 1

m

m∑
k=1

|ak(1)|2
(
ãkãk

∗ − In−1

)∥∥∥∥∥ ≤ δ

4

with probability at least 1− c8m−1 −m−4 − 2 exp
(
−c10δ

2m/ logm
)
.
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Collecting the above bounds and probabilities yields the claimed results. Similar arguments prove the

claim on 1
m

∑m
k=1 (a∗kv)aka

>
k also, completing the proof.

Lemma 17.4 Let a1, . . . ,am be i.i.d. copies of a ∼ CN (n). For any δ ∈ (0, 1), whenm ≥ C(δ)n log n, it holds

with probability at least 1− c′ exp (−c(δ)m)− c′′m−n that

1

m

m∑
k=1

|a∗kz|2 |a∗kw|2 ≥ (1− δ)
(
‖w‖2 ‖z‖2 + |w∗z|2

)
for all z,w ∈ Cn,

1

m

m∑
k=1

[<(a∗kz)(w∗ak)]
2 ≥ (1− δ)

(
1

2
‖z‖2 ‖w‖2 +

3

2
[<z∗w]2 − 1

2
[=z∗w]2

)
for all z,w ∈ Cn.

Here C(δ) and c(δ) are constants depending on δ and c′ and c′′ are positive absolute constants.

Proof By Lemma 17.2, E
[
|a∗w|2 |a∗z|2

]
= ‖w‖2 ‖z‖2 + |w∗z|2. By homogeneity, it is enough to prove the

result for all w, z ∈ CSn−1. For a pair of fixed w, z ∈ CSn−1, Lemma A.6 implies that for any δ ∈ (0, 1),

m∑
k=1

|a∗kw|2 |a∗kz|2 ≥
(

1− δ

2

)
m
(

1 + |w∗z|2
)

with probability at least 1− exp(−c1δ2m). For a certain ε ∈ (0, 1) to be fixed later and an ε-net N1
ε ×N2

ε that

covers CSn−1 × CSn−1, we have that the event

E0 .
=

{
m∑
k=1

|a∗kw|2 |a∗kz|2 ≥
(

1− δ

2

)
m
(

1 + |w∗z|2
)
∀ w, z ∈ N1

ε ×N2
ε

}

holds with probability at least 1− exp
(
−c1δ2m+ 4n log(3/ε)

)
by a simple union bound. Now conditioned

on E0, we have for every z ∈ CSn−1 can be written as z = z0 + e for certain z0 ∈ N1
ε and e with ‖e‖ ≤ ε;

similarly w = w0 + ζ for w0 ∈ N2
ε and ‖ζ‖ ≤ ε. For the function g(w, z)

.
=
∑m
k=1 |a∗kz|

2 |a∗kw|
2, with high

probability, ∥∥∥∥ ∂g∂w
∥∥∥∥ =

∥∥∥∥∥
m∑
k=1

|a∗kz|2w∗akak
∥∥∥∥∥ ≤ ‖z‖2 ‖w‖

∥∥∥∥∥
m∑
k=1

‖ak‖2 aka∗k

∥∥∥∥∥ ≤ 10mn
√

logm,

∥∥∥∥ ∂g∂z
∥∥∥∥ =

∥∥∥∥∥
m∑
k=1

|a∗kw|2 z∗akak
∥∥∥∥∥ ≤ ‖w‖2 ‖z‖

∥∥∥∥∥
m∑
k=1

‖ak‖2 aka∗k

∥∥∥∥∥ ≤ 10mn
√

logm,

as maxk∈[m] ‖ak‖2 ≤ 5n logm with probability at least 1− c2m−n, and ‖
∑m
k=1 aka

∗
k‖ ≤ 2m with probability

at least 1− exp(−c3m). Thus,

m∑
k=1

|a∗kz|2 |a∗kw|2 ≥
(

1− δ

3

)
m− 40εmn logm+

(
1− δ

3

)
m
(
|w∗0z0|2 − 4ε

)
.

Taking ε = c4(δ)/(n logm) for a sufficiently small c4(δ) > 0, we obtain that with probability at least 1 −
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exp
(
−c1δ2m+ 4n log(3n logm/c4(δ))

)
− c5m−n,

m∑
k=1

|a∗kz|2 |a∗kw|2 ≥
(

1− 2

3
δ

)
m
(

1 + |w∗0z0|2
)
.

which, together with continuity of the function (w, z) 7→ |w∗z|2, implies

m∑
k=1

|a∗kz|2 |a∗kw|2 ≥ (1− δ)m
(

1 + |w∗z|2
)
.

It is enough to takem ≥ C6δ
−2n log n to ensure the desired event happens with high probability.

To show the second inequality, first notice that E [<(a∗kz)(w∗ak)]
2

= 1
2 ‖z‖

2 ‖w‖2 + 3
2 [<z∗w]2− 1

2 [=z∗w]2.

The argument then proceeds to apply the discretization trick as above.

17.2 Proof of Proposition 13.3

Proof Direct calculation shows that xeiφ(z)

xe−iφ(z)


∗

∇2f(z)

 xeiφ(z)

xe−iφ(z)


=

1

m

m∑
k=1

(
4 |a∗kz|2 |a∗kx|2 − 2 |a∗kx|4 + 2<

[
(a∗kz)

2
(x∗ak)

2
e−2iφ(z)

])
=

1

m

m∑
k=1

(
2 |a∗kz|2 |a∗kx|2 − 2 |a∗kx|4

)
+

1

m

m∑
k=1

(
2 |a∗kz|2 |a∗kx|2 + 2<

[
(a∗kz)

2
(x∗ak)

2
e−2iφ(z)

])
.

Lemma 17.3 implies that whenm ≥ C1n log n, with high probability,

2

m

m∑
k=1

|a∗kx|2 |a∗kz|2 ≤ 2 |x∗z|2 +
401

200
‖x‖2 ‖z‖2 .

On the other hand, by Lemma A.6, we have that

2

m

m∑
k=1

|a∗kx|4 ≥
399

100
‖x‖4

holds with probability at least 1− exp(−c2m). For the second summation, we have

1

m

m∑
k=1

(
2 |a∗kz|2 |a∗kx|2 + 2<

[
(a∗kz)

2
(x∗ak)

2
e−2iφ(z)

])
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=

z
z


∗

∇2f(xeiφ(z))

z
z

 ≤
z
z


∗

∇2E
[
f(xeiφ(z))

]z
z

+
1

200
‖x‖2 ‖z‖2 ≤ 6 |x∗z|2 +

401

200
‖x‖2 ‖z‖2 ,

with high probability, providedm ≥ C3n log n, according to Lemma 17.3.

Collecting the above estimates, we have that whenm ≥ C4n log n for a sufficiently large constant C4, with

high probability, xeiφ(z)

xe−iφ(z)


∗

∇2f(z)

 xeiφ(z)

xe−iφ(z)

 ≤ 401

100
‖x‖2 ‖z‖2 + 8 |x∗z|2 − 399

100
‖x‖4 ≤ − 1

100
‖x‖4

for all z ∈ R1. Dividing both sides of the above by ‖x‖2 gives the claimed results.

17.3 Proof of Proposition 13.4

Proof Note that

z∗∇zf(z) =
1

m

m∑
k=1

|a∗kz|4 −
1

m

m∑
k=1

|a∗kx|2 |a∗kz|2 .

By Lemma 17.4, whenm ≥ C1n log n for some sufficiently large C1, with high probability,

1

m

m∑
k=1

|a∗kz|4 ≥
199

100
‖z‖4

for all z ∈ Cn. On the other hand, Lemma 17.3 implies that whenm ≥ C2n log n for some sufficiently large

C2, with high probability,

1

m

m∑
k=1

|a∗kx|2 |a∗kz|2 ≤ |x∗z|2 +
1001

1000
‖x‖2 ‖z‖2 .

for all z ∈ Cn. Combining the above estimates, we have that when m ≥ max(C1, C2)n log n, with high

probability,

z∗∇zf(z) ≥ 199

100
‖z‖4 − 1001

1000
‖x‖2 ‖z‖2 − |x∗z|2 ≥ 1

500
‖x‖2 ‖z‖2

for all z ∈ Rz2 , as desired.
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17.4 Proof of Proposition 13.5

Proof We abbreviate φ(z) as φ below. Note that

(z − xeiφ)∗∇zf(z) =
1

m

m∑
k=1

|a∗kz|2 (z − xeiφ)∗aka
∗
kz −

1

m

m∑
k=1

|a∗kx|2 (z − xeiφ)∗aka
∗
kz.

We first bound the second term. By Lemma 17.3, when m ≥ C1n log n for a sufficiently large constant C1,

with high probability, for all z ∈ Cn,

<
(

1

m

m∑
k=1

|a∗kx|2 (z − xeiφ)∗aka
∗
kz

)

= <
(

(z − xeiφ)∗(‖x‖2 I + xx∗)z
)

+ <
(
(z − xeiφ)∗∆z

)
(for a certain ∆ with ‖∆‖ ≤ ‖x‖2 /100)

≤ ‖x‖2 ‖z‖2 + |x∗z|2 − 2 ‖x‖2 |x∗z|+ 1

1000
‖x‖2

∥∥z − xeiφ
∥∥ ‖z‖ .

To bound the first term, for a fixed τ to be determined later, define:

S(z)
.
=

1

m

m∑
k=1

|a∗kz|2<
(
(z − xeiφ)∗aka

∗
kz
)
,

S1(z)
.
=

1

m

m∑
k=1

|a∗kz|2<
(
(z − xeiφ)∗aka

∗
kz
)
1|a∗kx|≤τ

S2(z)
.
=

1

m

m∑
k=1

|a∗kz|2<
(
(z − xeiφ)∗aka

∗
kz
)
1|a∗kx|≤τ1|a∗kz|≤τ .

Obviously S1(z) ≥ S2(z) for all z as

S1(z)− S2(z) =
1

m

m∑
k=1

|a∗kz|2<
(
(z − xeiθ)∗aka

∗
kz
)
1|a∗kx|≤τ1|a∗kz|>τ

≥ 1

m

m∑
k=1

|a∗kz|2
(
|a∗kz|2 − |a∗kx| |a∗kz|

)
1|a∗kx|≤τ1|a∗kz|>τ ≥ 0.

Now for an ε ∈ (0, ‖x‖) to be fixed later, consider an ε-netNε for the ball CBn(‖x‖), with |Nε| ≤ (3 ‖x‖ /ε)2n.

On the complement of the event
{

maxk∈[m] |a∗kx| > τ
}
, we have for any t > 0 that

P [S(z)− E [S(z)] < −t, ∀ z ∈ Nε]

≤ |Nε|P [S(z)− E [S(z)] < −t]

≤ |Nε|P [ S1(z)− E [S1(z)] < −t+ |E [S1(z)]− E [S(z)]| ] .
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Because S1(z) ≥ S2(z) as shown above,

P [ S1(z)− E [S1(z)] < −t+ |E [S1(z)]− E [S(z)]| ]

≤ P [ S2(z)− E [S2(z)] < −t+ |E [S1(z)]− E [S(z)]|+ |E [S1(z)]− E [S2(z)]| ] .

Thus, the unconditional probability can be bounded as

P [S(z)− E [S(z)] < −t, ∀ z ∈ Nε]

≤ |Nε|P [ S2(z)− E [S2(z)] < −t+ |E [S1(z)]− E [S(z)]|+ |E [S1(z)]− E [S2(z)]| ]

+ P
[

max
k∈[m]

|a∗kx| > τ

]
.

Taking τ =
√

10 logm ‖x‖, we obtain

P
[

max
k∈[m]

|a∗kx| > τ

]
≤ m exp

(
−10 logm

2

)
≤ m−4,

|E [S1(z)]− E [S(z)]| ≤
√
E
[
|a∗z|6 |a∗ (z − xeiφ)|2

]√
P [|a∗x| > τ ] ≤ 4

√
3m−5/2 ‖z‖3

∥∥z − xeiφ
∥∥ ,

|E [S1(z)]− E [S2(z)]| ≤
√

E
[
|a∗z|6 |a∗ (z − xeiφ)|2 1|a∗x|≤τ

]√
P [|a∗z| > τ ]

≤ 4
√

3m−5/2 ‖z‖3
∥∥z − xeiφ

∥∥ ,
where we have used ‖z‖ ≤ ‖x‖ to simplify the last inequality. Now we used the moment-control Bernstein’s

inequality (Lemma A.1) to get a bound for probability on deviation of S2(z). To this end, we have

E
[
|a∗z|6

∣∣a∗(z − xeiφ)
∣∣2 1|a∗x|≤τ1|a∗z|≤τ] ≤ τ2E

[
|a∗z|4

∣∣a∗(z − xeiφ)
∣∣2]

≤ 240 logm ‖x‖2 ‖z‖4
∥∥z − xeiφ

∥∥2

E
[
|a∗z|3p

∣∣a∗(z − xeiφ)
∣∣p 1|a∗x|≤τ1|a∗z|≤τ] ≤ τ2pE

[
|a∗z|p

∣∣a∗(z − xeiφ)
∣∣p]

≤
(

10 logm ‖x‖2
)p
p! ‖z‖p

∥∥z − xeiφ
∥∥p ,

where the second inequality holds for any integer p ≥ 3. Hence one can take

σ2 = 240 log2m ‖x‖4 ‖z‖2
∥∥z − xeiφ

∥∥2
,

R = 10 logm ‖x‖2 ‖z‖
∥∥z − xeiφ

∥∥
in Lemma A.1, and

t =
1

1000
‖x‖2 ‖z‖

∥∥z − xeiφ
∥∥
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in the deviation inequality of S2(z) to obtain

P
[
S2(z)− E [S2(z)] < − 1

200
‖x‖2 ‖z‖

∥∥z − xeiφ
∥∥] ≤ exp

(
− c2m

log2m

)
,

where we have used the fact ‖z‖ ≤ ‖x‖ and assumed 4
√

3m−5/2 ≤ 1/200 to simplify the probability. Thus,

with probability at least 1−m−4 − exp
(
−c2m/ log2m+ 2n log(3 ‖x‖ /ε)

)
, it holds that

S(z) ≥ 2 ‖z‖4 − 2 ‖z‖2 |x∗z| − 1

1000
‖x‖2 ‖z‖

∥∥z − xeiφ
∥∥ ∀ z ∈ Nε. (17.4.1)

Moreover, for any z, z′ ∈ Rh2 , we have

|S(z)− S(z′)|

≤ 1

m

m∑
k=1

∣∣∣|a∗kz|2 − |a∗kz′|2∣∣∣ |h∗(z)aka
∗
kz|+

1

m

m∑
k=1

|a∗kz′|
2 |h∗(z)aka

∗
kz − h∗(z′)aka∗kz′|

≤ 4 max
k∈[m]

‖ak‖4 ‖x‖3 ‖z − z′‖ + 5 max
k∈[m]

‖ak‖4 ‖x‖3 ‖z − z′‖

≤ 90n2 log2m ‖x‖3 ‖z − z′‖ ,

as maxk∈[m] ‖ak‖4 ≤ 10n2 log2m with probability at least 1− c3m−n, and 11 ‖x‖ /20 ≤ ‖z‖ ≤ ‖x‖, and also

‖xeiφ(z) − xeiφ(z′)‖ ≤ 2 ‖z − z′‖ for z, z′ ∈ Rh2 . Every z ∈ Rh2 can be written as z = z′ + e, with z′ ∈ Nε
and ‖e‖ ≤ ε. Thus,

S(z) ≥ S(z′)− 90n2 log2m ‖x‖3 ε

≥ 2 ‖z′‖4 − 2 ‖z′‖2 |x∗z′| − 1

1000
‖x‖2 ‖z′‖

∥∥z′ − xeiφ
∥∥ − 90n2 log2m ‖x‖3 ε

≥ 2 ‖z‖4 − 2 ‖z‖2 |x∗z| − 1

1000
‖x‖2 ‖z‖

∥∥z − xeiφ
∥∥ − 11ε ‖x‖3 − 90n2 log2m ‖x‖3 ε,

where the additional 11ε ‖x‖3 term in the third line is to account for the change from z′ to z, which has been

simplified by assumptions that 11/20 · ‖x‖ ≤ ‖z‖ ≤ ‖x‖ and that ε ≤ ‖x‖. Choosing ε = ‖x‖ /(c5n2 log2m)

for a sufficiently large c5 > 0 and additionally using dist(z, X) ≥ ‖x‖ /3, we obtain that

S(z) ≥ 2 ‖z‖4 − 2 ‖z‖2<
(
x∗ze−iφ

)
− 1

500
‖x‖2 ‖z‖

∥∥z − xeiφ
∥∥ (17.4.2)

for all z ∈ Rh2 , with probability at least 1− c6m−1 − c7 exp
(
−c2m/ log2m+ c9n log(C8n logm)

)
.

Combining the above estimates, when m ≥ C10n log3 n for sufficiently large constant C10, with high
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probability,

<
(
(z − xeiφ)∗∇zf(z)

)
≥ 1

1000
‖x‖2 ‖z‖

∥∥z − xeiφ
∥∥

for all z ∈ Rh2 , as claimed.

17.5 Proof of Proposition 13.6

Proof It is enough to prove that for all unit vectors g that are geometrically orthogonal to ix, i.e., g ∈ T .
=

{z : = (z∗x) = 0, ‖z‖ = 1} and all t ∈ [0, ‖x‖ /
√

7], the following holds:g
g


∗

∇2f(x+ tg)

g
g

 ≥ 1

4
‖x‖2 .

Direct calculation showsg
g


∗

∇2f(x+ tg)

g
g


=

1

m

m∑
k=1

4 |a∗k(x+ tg)|2 |a∗kg|2 − 2 |a∗kx|2 |a∗kg|2 + 2<
[
(ta∗kg + a∗kx)2(g∗ak)2

]
≥ 1

m

m∑
k=1

4 |a∗k(x+ tg)|2 |a∗kg|2 − 2 |a∗kx|2 |a∗kg|2 + 4 [<(ta∗kg + a∗kx)(g∗ak)]
2 − 2 |(ta∗kg + a∗kx)(g∗ak)|2

≥ 1

m

m∑
k=1

2 |a∗k(x+ tg)|2 |a∗kg|2 − 2 |a∗kx|2 |a∗kg|2 + 4 [<(ta∗kg + a∗kx)(g∗ak)]
2
.

Lemma 17.4 implies whenm ≥ C1n log n for sufficiently large constant C1, with high probability,

1

m

m∑
k=1

2 |a∗k(x+ tg)|2 |a∗kg|2 ≥
199

100
|(x+ tg)∗g|2 +

199

100
‖x+ tg‖2 ‖g‖2 (17.5.1)

for all g ∈ Cn and all t ∈ [0, ‖x‖ /
√

7]. Lemma 17.3 implies that when m ≥ C2n log n for sufficiently large

constant C2, with high probability,

1

m

m∑
k=1

2 |a∗kx|2 |a∗kg|2 ≤
201

100
|x∗g|2 +

201

100
‖x‖2 ‖g‖2 (17.5.2)
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for all g ∈ Cn. Moreover, Lemma 17.4 implies whenm ≥ C3n log n for sufficiently large constant C3, with

high probability,

4

m

m∑
k=1

[<(ta∗kg + a∗kx)(g∗ak)]
2 ≥ 2 ‖x+ tg‖2 ‖g‖2 + 6 |(x+ g)∗g|2 − 1

400
‖x‖2 ‖g‖2

for all g ∈ T , where we have used that =(g∗x) = 0 =⇒ =(x+ g)∗g = 0 to simplify the results.

Collecting the above estimates, we obtain that whenm ≥ C4n log n, with high probability,g
g


∗

∇2f(x+ tg)

g
g


≥
(

399

100
‖x+ tg‖2 − 161

80
‖x‖2

)
+

(
799

100
|(x+ tg)∗g|2 − 201

100
|x∗g|2

)
=

791

400
‖x‖2 +

598

100
|x∗g|2 +

1198

100
t2 +

2396

100
t<(x∗g).

To provide a lower bound for the above, we let <(x∗g) = x∗g = λ ‖x‖ with λ ∈ [−1, 1] and t = η ‖x‖ with

η ∈ [0, 1/
√

7]. Then

598

100
|x∗g|2 +

1198

100
t2 +

2396

100
t<(x∗g) = ‖x‖2

(
598

100
λ2 +

1198

100
η2 +

2396

100
λη

)
.
= ‖x‖2 φ(λ, η).

For any fixed η, it is easy to see that minimizer occurs when λ = − 599
299η. Plugging this into φ(λ, η), one

obtains φ(λ, η) ≥ − 241
20 η

2 ≥ − 241
140 . Thus,g

g


∗

∇2f(x+ tg)

g
g

 ≥ (791

400
− 241

140

)
‖x‖2 ≥ 1

4
‖x‖2 ,

as claimed.

17.6 Proof of Proposition 13.7

Proof For convenience, we will define a relaxedRh2 region

Rh′2
.
=

{
z : < (〈h(z),∇zE [f ]〉) ≥ 1

250
‖x‖2 ‖z‖ ‖h(z)‖ , ‖z‖ ≤ ‖x‖

}
⊃ Rh2

and try to show that R1 ∪ Rz2 ∪ Rh
′

2 ∪ R3 = Cn. In the end, we will discuss how this implies the claimed

result.

We will first divide Cn into several (overlapping) regions, and show that each such region is a subset of
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R1 ∪Rz2 ∪Rh
′

2 ∪R3.

CoverRa .
=
{
z : |x∗z| ≤ 1

2 ‖x‖ ‖z‖
}
: In this case, when ‖z‖2 ≤ 398

601 ‖x‖
2,

8 |x∗z|2 +
401

100
‖x‖2 ‖z‖2 ≤ 601

100
‖x‖2 ‖z‖2 ≤ 398

100
‖x‖4 .

On the other hand, when ‖z‖2 ≥ 626
995 ‖x‖

2,

501

500
‖x‖2 ‖z‖2 + |x∗z|2 ≤ 313

250
‖x‖2 ‖z‖2 ≤ 199

100
‖z‖4 .

Since 398
601 >

626
995 , we conclude thatRa ⊂ R1 ∪Rz2 .

CoverRb .=
{
z : |x∗z| ≥ 1

2 ‖x‖ ‖z‖ , ‖z‖ ≤ 57
100 ‖x‖

}
: In this case,

8 |x∗z|2 +
401

100
‖x‖2 ‖z‖2 ≤ 1201

100
‖x‖2 ‖z‖2 ≤ 398

100
‖x‖4 .

SoRb is covered byR1.

CoverRc .=
{
z : 1

2 ‖x‖ ‖z‖ ≤ |x∗z| ≤ 99
100 ‖x‖ ‖z‖ , ‖z‖ ≥ 11

20 ‖x‖
}
: We show this region is covered byRz2

andRh′2 . First, for any z ∈ Rc, when ‖z‖ ≥
√

1983
1990 ‖x‖,

501

500
‖x‖2 ‖z‖2 + |x∗z|2 ≤ 1983

1000
‖x‖2 ‖z‖2 ≤ 199

100
‖z‖4 ,

implying that Rc ∩
{
z : ‖z‖ ≥

√
1983
1990 ‖x‖

}
⊂ Rz2 . Next we suppose ‖z‖ = λ ‖x‖ and |x∗z| = η ‖x‖ ‖z‖,

where λ ∈ [ 11
20 ,
√

1984
1990 ] and η ∈ [ 1

2 ,
99
100 ], and show the rest ofRc is covered byRh′2 . To this end, it is enough

to verify that

2
(
‖x‖2 − ‖z‖2

)
|x∗z|+ 2 ‖z‖4 − ‖x‖2 ‖z‖2 − |x∗z|2 − 1

250
‖x‖2 ‖z‖

√
‖x‖2 + ‖z‖2 − 2 |x∗z| ≥ 0

over this subregion. Writing the left as a function of λ, η and eliminating ‖x‖ and ‖z‖, it is enough to show

h(λ, η)
.
= 2(1− λ2)η + 2λ3 − λ− η2λ− 1

250

√
1 + λ2 − 2ηλ ≥ 0,

which is implied by

p(λ, η)
.
= 2(1− λ2)η + 2λ3 − λ− η2λ ≥ 49

10000
,

as 1
250

√
1 + λ2 − 2ηλ < 49/10000. LetHp be the Hessian matrix of this bivariate function, it is easy to verify

that det(Hp) = −4(η+λ)2−36λ2 < 0 for all valid (λ, η). Thus, theminimizermust occur on the boundary. For
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any fixed λ, 2(1−λ2)η− η2λ is minimized at either η = 99/100 or η = 1/2. When η = 99/100, p is minimized

at λ = (4 · 0.99 +
√

40 · 0.992 + 24)/12 <
√

1984/1990, giving p ≥ 0.019; when η = 1/2, p is minimized when

λ = (4 · 0.5 +
√

40 · 0.52 + 24/12) = (2 +
√

34)/12, giving p ≥ 0.3. Overall, p ≥ 0.019 > 49/10000, as desired.

CoverRd .
=
{
z : 99

100 ‖x‖ ‖z‖ ≤ |x∗z| ≤ ‖x‖ ‖z‖ , ‖z‖ ≥ 11
20 ‖x‖

}
: We show that this region is covered by

Rz2 ,R3, andRh
′

2 together. First, for any z ∈ Rd, when ‖z‖ ≥
√

1001
995 ‖x‖,

501

500
‖x‖2 ‖z‖2 + |x∗z|2 ≤ 1001

500
‖x‖2 ‖z‖2 ≤ 199

100
‖z‖4 .

SoRd ∩
{
z : ‖z‖ ≥

√
1001
995 ‖x‖

}
⊂ Rz2 . Next, we show that any z ∈ Rd with ‖z‖ ≤ 24/25 · ‖x‖ is contained

inRh′2 . Similar to the above argument forRc, it is enough to show

p(λ, η)
.
= 2(1− λ2)η + 2λ3 − λ− η2λ ≥ 0.00185,

as 1
250

√
1 + λ2 − 2ηλ < 0.00185 in this case. Since the Hessian is again always indefinite, we check the

optimal value for η = 99/100 and η = 1 and do the comparison. It can be verified p ≥ 0.00627 > 0.00185 in

this case. So Rd ∩
{
z : ‖z‖ ≤ 24

25 ‖x‖
}
⊂ Rh′2 . Finally, we consider the case 23

25 ‖x‖ ≤ ‖z‖ ≤
√

1005
995 ‖x‖. A

λ, η argument as above leads to

‖h(z)‖2 = ‖x‖2 + ‖z‖2 − 2 |x∗z| < 1

7
‖x‖2 ,

implying thatRd ∩
{
z : 23

25 ‖x‖ ≤ ‖z‖ ≤
√

1005
995 ‖x‖

}
⊂ R3.

In summary, now we obtain that Cn = Ra ∪ Rb ∪ Rc ∪ Rd ⊂ R1 ∪ Rz2 ∪ Rh
′

2 ∪ R3. Observe that Rh′

is only used to cover Rc ∪ Rd, which is in turn a subset of {z : ‖z‖ ≥ 11 ‖x‖ /20}. Thus, Cn = R1 ∪ Rz2 ∪

(Rh′2 ∩ {z : ‖z‖ ≥ 11 ‖x‖ /20}) ∪R3. Moreover, by the definition ofR3,

R1 ∪Rz2 ∪ (Rh′2 ∩ {z : ‖z‖ ≥ 11 ‖x‖ /20}) ∪R3

⊂ R1 ∪Rz2 ∪ (Rh′2 ∩ {z : ‖z‖ ≥ 11 ‖x‖ /20} ∩ Rc3) ∪R3

⊂ R1 ∪Rz2 ∪Rh2 ∪R3 ⊂ Cn,

implying the claimed coverage.
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Chapter 18

Proofs of Technical Results for

Trust-Region Algorithm

I have tried to avoid long numerical computations, thereby following

Riemann’s postulate that proofs should be given through ideas and not

voluminous computations.

David Hilbert

18.1 Auxiliary lemmas

Lemma 18.1 Whenm ≥ Cn for a sufficiently large C, it holds with probability at least 1− ca exp(−cbm) that

1

m

m∑
k=1

∣∣∣|a∗kz|2 − |a∗kw|2∣∣∣ ≤ 3

2
‖z −w‖ (‖z‖ + ‖w‖)

for all z,w ∈ Cn. Here C, ca, cb are positive absolute constants.

Proof Lemma 3.1 in [CSV13] has shown thatwhenm ≥ C1n, it holdswith probability at least 1−c2 exp(−c3m)

that

1

m

m∑
k=1

∣∣∣|a∗kz|2 − |a∗kw|2∣∣∣ ≤ 3

2
√

2
‖zz∗ −ww∗‖∗

for all z and w, where ‖·‖∗ is the nuclear norm that sums up singular values. The claims follows from

‖zz∗ −ww∗‖∗ ≤
√

2 ‖zz∗ −ww∗‖ ≤
√

2 ‖z −w‖ (‖z‖ + ‖w‖),
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completing the proof.

Lemma 18.2 Whenm ≥ Cn log n, with probability at least 1− cam−1 − cb exp (−ccm/ logm),

∥∥∇2f(xeiψ)− E
[
∇2f(xeiψ)

]∥∥ ≤ 1

100
‖x‖2

for all ψ ∈ [0, 2π). Here C, ca to cc are positive absolute constants.

Proof By Lemma 17.3, we have that

∥∥∇2f(xeiψ)− E
[
∇2f(xeiψ)

]∥∥
≤
∥∥∥∥∥ 1

m

m∑
k=1

|a∗kx|2 akak −
(
‖x‖2 I + xx∗

)∥∥∥∥∥ +

∥∥∥∥∥ 1

m

m∑
k=1

(a∗kx)2aka
>
k ei2ψ − 2xx>ei2ψ

∥∥∥∥∥
≤ 1

200
‖x‖2 +

1

200
‖x‖2 ≤ 1

100
‖x‖2

holds with high probability whenm ≥ C1n log n for a sufficiently large C1.

18.2 Proof of Lemma 14.1

Proof For any z, z′ ∈ Γ′, we have

|f(z)− f(z′)| = 1

2m

∣∣∣∣∣
m∑
k=1

|a∗kz|4 − |a∗kz′|
4 − 2

m∑
k=1

|a∗kx|2 (|a∗kz|2 − |a∗kz′|
2
)

∣∣∣∣∣
≤ 1

2m

m∑
k=1

(|a∗kz|2 + |a∗kz′|
2
)
∣∣∣|a∗kz|2 − |a∗kz′|2∣∣∣+

1

m

m∑
k=1

|a∗kx|2
∣∣∣|a∗kz|2 − |a∗kz′|2∣∣∣

≤ 4R2
1 ‖A‖2`1→`2 ·

3

2
· 4R1 ‖z − z′‖ + 2 ‖A‖2`1→`2 ‖x‖

2 · 3

2
· 4R1 ‖z − z′‖

≤ (24R3
1 ‖A‖2`1→`2 + 12 ‖A‖2`1→`2 ‖x‖

2
R1) ‖z − z′‖ ,

where in the third line we invoked results of Lemma 18.1, and hence the derived inequality holds with high

probability whenm ≥ C1n. Similarly, for the gradient,

‖∇f(z)−∇f(z′)‖

=

√
2

m

∥∥∥∥∥
m∑
k=1

(
|a∗kz|2 − |a∗kx|2

)
aka

∗
kz −

m∑
k=1

(
|a∗kz′|

2 − |a∗kx|2
)
aka

∗
kz
′
∥∥∥∥∥

≤
√

2

m

m∑
k=1

∥∥∥(|a∗kz|2 − |a∗kz′|
2
)aka

∗
kz
∥∥∥ +
√

2

∥∥∥∥∥ 1

m

m∑
k=1

aka
∗
k |a∗kz′|

2

∥∥∥∥∥ ‖z − z′‖
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+
√

2

∥∥∥∥∥ 1

m

m∑
k=1

aka
∗
k |a∗kx|2

∥∥∥∥∥ ‖z − z′‖
≤
√

2 ‖A‖2`1→`2 · 2R1 ·
3

2
· 4R1 ‖z − z′‖ + (8

√
2 ‖A‖2`1→`2 R2

1 + 2
√

2 ‖A‖2`1→`2 ‖x‖
2
) ‖z − z′‖

≤ (20
√

2 ‖A‖2`1→`2 R2
1 + 2

√
2 ‖A‖2`1→`2 ‖x‖

2
) ‖z − z′‖ ,

where from the second to the third inequality we used the fact
∥∥ 1
m

∑m
k=1 aka

∗
k

∥∥ ≤ 2 with probability at least

1− exp(−c2m). Similarly for the Hessian,

∥∥∇2f(z)−∇2f(z′)
∥∥

= sup
‖w‖=1

∣∣∣∣∣∣∣
1

2

w
w


∗ (
∇2f(z)−∇2f(z′)

)w
w


∣∣∣∣∣∣∣

≤ sup
‖w‖=1

2

∥∥∥∥∥ 1

m

m∑
k=1

(|a∗kz|2 − |a∗kz′|
2
) |a∗kw|2

∥∥∥∥∥ +

∥∥∥∥∥ 1

m

m∑
k=1

<((a∗kz)2 − (a∗kz
′)2)(w∗ak)2

∥∥∥∥∥
≤ 2 ‖A‖2`1→`2 ·

3

2
· 4R1 ‖z − z′‖ + ‖A‖2`1→`2 · 4R1 · ‖z − z′‖ · 2

≤ 16 ‖A‖2`1→`2 R1 ‖z − z′‖ ,

where to obtain the third inequality we used that 1
m ‖A∗‖

2 ≤ 2 with probability at least 1− exp(−c3m) when

m ≥ C4n for a sufficiently large constant C4.

Since R0 ≤ 10 ‖x‖ with probability at least 1− exp(−c5m) whenm ≥ C6n, by definition of R1, we have

R1 ≤ 30(n logm)1/2 ‖x‖ with high probability. Substituting this estimate into the above bounds yields the

claimed results.

18.3 Proof of Lemma 14.2

Proof For the upper bound, we have that for all z ∈ R′3,

‖H(z)‖ ≤
∥∥∇2f(z)

∥∥ ≤ ∥∥∥∇2f(xeiφ(z))
∥∥∥ + Lh ‖h(z)‖

≤
∥∥∥∇2f(xeiφ(z))− E

[
∇2f(xeiφ(z))

]∥∥∥ +
∥∥∥E [∇2f(xeiφ(z))

]∥∥∥ +
1

10
‖x‖2

≤ 1

100
‖x‖2 + 4 ‖x‖2 +

1

10
‖x‖2 ≤ 9

2
‖x‖2 ,
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where to obtain the third line we applied Lemma 18.2. To show the lower bound for all z ∈ R′3, it is equivalent

to show that

1

2

w
w


∗

∇2f(z)

w
w

 ≥ mH , ∀ ‖w‖ = 1 with =(w∗z) = 0, and ∀ z ∈ R′3.

By Lemma 14.1 and Lemma 18.2, with high probability, we have

1

2

w
w


∗

∇2f(z)

w
w

 ≥ 1

2

w
w


∗

∇2f(xeiφ(z))

w
w

− Lh ‖h(z)‖ ‖w‖2

≥ 1

2

w
w


∗

E
[
∇2f(xeiφ(z))

]w
w

− ( 1

10
+

1

100

)
‖x‖2

=

(
1− 1

100
− 1

10

)
‖x‖2 + |w∗x|2 + 2<

(
(w∗xeiφ(z))2

)
≥ 89

100
‖x‖2 + <

(
(w∗xeiφ(z))2

)
.

Since = (w∗z) = 0, we have <
(
(w∗z)2

)
= |w∗z|2. Thus,

<
(

(w∗xeiφ(z))2
)

= <
(
(w∗z −w∗h(z))2

)
= |w∗z|2 + <

(
(w∗h)2

)
− 2< ((w∗h(z))(w∗z))

≥ |w∗z|2 − ‖w‖2 ‖h(z)‖2 − 2 ‖w‖2 ‖h(z)‖ ‖z‖

≥ − 1

100L2
h

‖x‖4 − 2

10Lh
‖x‖2

(
‖x‖ +

1

10Lh
‖x‖2

)
≥ − 1

100
‖x‖2 ,

where we obtained the last inequality based on the fact that Lh
.
= 480(n logm)1/2 ‖A‖2`1→`2 ‖x‖ ≥ 150 ‖x‖

whenever ‖A‖2`1→`2 ≥ 1; this holds with high probability when m ≥ C1n for large enough constant C1.

Together we obtain

1

2

w
w


∗

∇2f(z)

w
w

 ≥ 89

100
‖x‖2 − 1

100
‖x‖2 ≥ 22

25
‖x‖2 ,

as desired.
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18.4 Proof of Lemma 14.3

Proof In view of Lemma C.3, we have

f(z + δ?) ≤ f̂(δ?; z) + 1
3Lh∆3

≤ f̂(δ; z) + 1
3Lh∆3

≤ f(z + δ) + 2
3Lh∆3

≤ f(z)− d+ 2
3Lh∆3,

as desired.

18.5 Proof of Proposition 14.4

Proof In view of Proposition 13.3, consider direction δ .
= xeiφ(z)/ ‖x‖. Obviously, vectors of the form tσδ

are feasible for (14.1.1) for any t ∈ [0,∆] and σ .
= − sign([δ∗, δ

∗
]∇f(z(r))). By Lemma C.2, we obtain

f(z(r) + tσδ) = f(z(r)) + tσ

δ
δ


∗

∇f(z(r)) + t2
∫ 1

0

(1− s)

δ
δ


∗

∇2f(z(r) + σstδ)

δ
δ

 ds

≤ f(z(r)) +
t2

2

δ
δ


∗

∇2f(z(r))

δ
δ


+ t2

∫ 1

0

(1− s)

δ
δ


∗ [
∇2f(z(r) + σstδ)−∇2f(z(r))

]δ
δ

 ds

≤ f(z(r)) +
t2

2

δ
δ


∗

∇2f(z(r))

δ
δ

+
Lh
3
t3.

Thus, we have

f(z(r) + tσδ)− f(z(r)) ≤ − 1

200
t2 ‖x‖2 +

Lh
3
t3.

Taking t = ∆ and applying Lemma 14.3, we have

f(z(r+1))− f(z(r)) ≤ − 1

200
∆2 ‖x‖2 +

Lh
3

∆3 +
2

3
Lh∆3 ≤ − 1

200
∆2 ‖x‖2 + Lh∆3 ≤ − 1

400
‖x‖2 ∆2,
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where we obtain the very last inequality using the assumption that ∆ ≤ ‖x‖2 /(400Lh), completing the proof.

18.6 Proof of Proposition 14.5

Proof We take

δ =


−z(r)/

∥∥z(r)
∥∥ z(r) ∈ Rz2

−h(z(r))/
∥∥h(z(r))

∥∥ z(r) ∈ Rh2
.

Obviously vectors of the form tδ is feasible for (14.1.1) for any t ∈ [0,∆]. By Lemma C.2, we have

f(z(r) + tδ) = f(z(r)) + t

∫ 1

0

δ
δ


∗

∇f(z(r) + stδ) ds

= f(z(r)) + t

δ
δ


∗

∇f(x(r)) + t

∫ 1

0

δ
δ


∗ [
∇f(z(r) + stδ)−∇f(z(r))

]
ds

≤ f(z(r)) + t

δ
δ


∗

∇f(z(r)) + t2Lg.

By Proposition 13.4 and Proposition 13.5, we have

f(z(r) + tδ)− f(z(r)) ≤ − 1

1000
t ‖x‖2 ‖z(r)‖+ t2Lg.

Since {z : ‖z‖ ≤ ‖x‖ /2} ⊂ R1, z(r) of interest here satisfies ‖z(r)‖ ≥ ‖x‖ /2. Thus,

f(z(r) + tδ)− f(z(r)) ≤ − 1

2000
t ‖x‖3 + t2Lg.

Combining the above with Lemma 14.3, we obtain

f(z(r+1))− f(z(r)) ≤ − 1

2000
∆ ‖x‖3 + ∆2Lg +

2

3
Lh∆3 ≤ − 1

4000
∆ ‖x‖3 ,

provided

∆ ≤ min

 ‖x‖3
8000Lg

,

√
3 ‖x‖3

16000Lh

 ,

as desired.
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18.7 Proof of Proposition 14.6

Proof By Proposition 13.6 and the integral form of Taylor’s theorem in Lemma C.2, we have that for any g

satisfying =(g∗x) = 0 and ‖g‖ = 1 and any t ∈ [0, ‖x‖ /
√

7],

f(x+ tg) = f(x) + t

g
g


∗

∇f(x) + t2
∫ 1

0

(1− s)

g
g


∗

∇2f(x+ stg)

g
g

 ds

≥ f(x) + t

g
g


∗

∇f(x) +
1

8
‖x‖2 t2.

Similarly, we have

f(x) ≥ f(x+ tg)− t

g
g


∗

∇f(x+ tg) +
1

8
‖x‖2 t2.

Combining the above two inequalities, we obtain

t

g
g


∗

(∇f(x+ tg)−∇f(x)) ≥ 1

4
‖x‖2 t2 =⇒

g
g


∗

∇f(x+ tg) ≥ 1

4
‖x‖2 t ≥ 1

40Lh
‖x‖4 ,

where to obtain the very last bound we have used the fact minz∈R3\R′3 ‖h(z)‖ ≥ ‖x‖2 /(10Lh) due to (14.2.3).

This implies that for all z ∈ R3 \ R′3, h(z)

h(z)


∗

∇f(z) ≥ 1

40Lh
‖x‖4 . (18.7.1)

The rest arguments are very similar to that of Proposition 14.5. Take δ = −h(z(r))/
∥∥h(z(r))

∥∥ and it can

checked vectors of the form tδ for t ∈ [0,∆] are feasible for (14.1.1). By Lemma C.2, we have

f(z(r) + tδ) = f(z(r)) + t

∫ 1

0

δ
δ


∗

∇f(z(r) + stδ) ds

= f(z(r)) + t

δ
δ


∗

∇f(x(r)) + t

∫ 1

0

δ
δ


∗ [
∇f(z(r) + stδ)−∇f(z(r))

]
ds

≤ f(z(r)) + t

δ
δ


∗

∇f(z(r)) + t2Lg
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≤ f(z(r))− 1

40Lh
t ‖x‖4 + t2Lg,

where to obtain the last line we have used (18.7.1). Combining the above with Lemma 14.3, we obtain

f(z(r+1))− f(z(r)) ≤ − 1

40Lh
∆ ‖x‖4 + ∆2Lg +

2

3
Lh∆3 ≤ − 1

80Lh
∆ ‖x‖4 ,

provided

∆ ≤ min

{
‖x‖4

160LhLg
,

√
3

320

‖x‖2
Lh

}
,

as desired.

18.8 Proof of Proposition 14.7

Proof If we identify Cn with R2n, it can be easily verified that the orthoprojectors of a vector w onto z and

its orthogonal complement are

Pz(w) =
<(z∗w)z

‖z‖2
, and Pz⊥(w) = w − <(z∗w)z

‖z‖2
.

Now at any point z(r) ∈ R′3, consider a feasible direction of the form δ
.
= −tP(iz(r))⊥∇z(r)f(z(r)) (0 ≤ t ≤

∆/‖P(iz(r))⊥∇z(r)f(z(r))‖) to the trust-region subproblem (14.1.1). The local quadratic approximation obeys

f̂(δ; z(r)) = f(z(r)) +

δ
δ


∗

∇f(z(r)) +
1

2

δ
δ


∗

∇2f(z(r))

δ
δ


≤ f(z(r))− 2t

∥∥∥P(iz(r))⊥∇z(r)f(z(r))
∥∥∥2

+ t2MH

∥∥∥P(iz(r))⊥∇z(r)f(z(r))
∥∥∥2

= f(z(r))− 2t

(
1− MH

2
t

)∥∥∥P(iz(r))⊥∇z(r)f(z(r))
∥∥∥2

,

whereMH is as defined in Lemma 14.2. Taking t = min{M−1
H ,∆/‖P(iz(r))⊥∇z(r)f(z(r))‖}, we have

f̂(δ; z(r))− f(z(r)) ≤ −min{M−1
H ,∆/‖P(iz(r))⊥∇z(r)f(z(r))‖}

∥∥∥P(iz(r))⊥∇z(r)f(z(r))
∥∥∥2

.

Let U be an orthogonal (in geometric sense) basis for the space
{
w : =(w∗z(r)) = 0

}
. In view of the trans-

formed gradient and Hessian in (14.1.3), it is easy to see∥∥∥P(iz(r))⊥∇z(r)f(z(r))
∥∥∥ =

1√
2

∥∥∥g(z(r))
∥∥∥ ,
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where g(z(r)) is the transformed gradient. To lower bound
∥∥P(iz(r))⊥∇z(r)f(z(r))

∥∥, recall the step is con-

strained, we have

∆ ≤
∥∥∥H−1(z(r))g(z(r))

∥∥∥ ≤ ∥∥∥H−1(z(r))
∥∥∥ ∥∥∥g(z(r))

∥∥∥ ≤ 1

λmin(H(z(r)))

∥∥∥g(z(r))
∥∥∥ .

By Lemma 14.2, λmin(H(z(r))) ≥ mH . Thus,∥∥∥g(z(r))
∥∥∥ ≥ mH∆.

Hence we have

f̂(δ; z(r))− f(z(r)) ≤ −min

{
m2
H∆2

2MH
,

∆2mH√
2

}
≤ −m

2
H∆2

2MH
,

where the last simplification is due to thatMH ≥ mH . By Lemma C.3, we have

f(z(r) + δ)− f(z(r)) ≤ −m
2
H∆2

2MH
+
Lh
3

∆3.

Therefore, for z(r+1) = z(r) + δ?, Lemma 14.3 implies that

f(z(r+1))− f(z(r)) ≤ −m
2
H∆2

2MH
+ Lh∆3.

The claimed result follows provided ∆ ≤ m2
H/(4MHLh), completing the proof.

18.9 Proof of Proposition 14.8

Before proceeding, we note one important fact that is useful below. For any z, we have

Piz∇zf(z) =
<((iz)∗∇zf(z))

‖z‖2
iz = 0.

Thus, ifU(z) is an (geometrically) orthonormal basis constructed for the space {w : =(w∗z) = 0} (as defined

around (14.1.3)), it is easy to verify thatU
U


U
U


∗

∇f(z) = 2∇f(z). (18.9.1)

We next prove Proposition 14.8.

Proof Throughout the proof, wewrite g(r),H(r) andU (r) short for g(z(r)),H(z(r)) andU(z(r)), respectively.

Given an orthonormal basis U (r) for
{
w : =(w∗z(r)) = 0

}
, the unconstrained optimality condition of the
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trust region method implies that

H(r)ξ? + g(r) = 0⇐⇒

U (r)

U (r)


∗

∇2f(z(r))

U (r)

U (r)

 ξ? +

U (r)

U (r)


∗

∇f(z(r)) = 0.

Thus, we have

‖∇f(z(r+1))‖

=
1

2

∥∥∥∥∥∥∥
U (r+1)

U (r+1)


U (r+1)

U (r+1)


∗

∇f(z(r+1))

∥∥∥∥∥∥∥
=

1

2

∥∥∥∥∥∥∥
U (r+1)

U (r+1)


U (r+1)

U (r+1)


∗

∇f(z(r+1))−

U (r)

U (r)


U (r)

U (r)


∗∇2f(z(r))

U (r)

U (r)

 ξ? +∇f(z(r))


∥∥∥∥∥∥∥

≤ 1

2

∥∥∥∥∥∥∥
U (r+1)

U (r+1)


U (r+1)

U (r+1)


∗ ∇f(z(r+1))−∇f(z(r))−∇2f(z(r))

U (r)

U (r)

 ξ?

∥∥∥∥∥∥∥

+
1

2

∥∥∥∥∥∥∥

U (r+1)

U (r+1)


U (r+1)

U (r+1)


∗

−

U (r)

U (r)


U (r)

U (r)


∗
∇2f(z(r))

U (r)

U (r)

 ξ? +∇f(z(r))


∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∇f(z(r+1))−∇f(z(r))−∇2f(z(r))

U (r)

U (r)

 ξ?
∥∥∥∥∥∥∥

+
1

2

∥∥∥∥∥∥∥
U (r+1)

U (r+1)


U (r+1)

U (r+1)


∗

−

U (r)

U (r)


U (r)

U (r)


∗∥∥∥∥∥∥∥
∥∥∥∥∥∥∥∇2f(z(r))

U (r)

U (r)

 ξ? +∇f(z(r))

∥∥∥∥∥∥∥ .
By Taylor’s theorem and Lipschitz property in Lemma 14.1, we have∥∥∥∥∥∥∥∇f(z(r+1))−∇f(z(r))−∇2f(z(r))

U (r)

U (r)

 ξ?
∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
∫ 1

0

∇2f(z(r) + t

U (r)

U (r)

 ξ?)−∇2f(z(r))


U (r)

U (r)

 ξ? dt
∥∥∥∥∥∥∥

≤‖ξ?‖
∫ 1

0

∥∥∥∥∥∥∥∇2f(z(r) + t

U (r)

U (r)

 ξ?)−∇2f(z(r))

∥∥∥∥∥∥∥ dt

≤1

2
Lh ‖ξ?‖2 . (18.9.2)



CHAPTER 18. PROOFS OF TECHNICAL RESULTS FOR TRUST-REGION ALGORITHM 188

Moreover,

∥∥∥∇f(z(r))
∥∥∥ =

1√
2

∥∥∥∥∥∥∥
U (r)

U (r)


∗

∇f(z(r))

∥∥∥∥∥∥∥
=

1√
2

∥∥∥∥∥∥∥−
U (r)

U (r)


∗

∇2f(z(r))

U (r)

U (r)

 ξ?
∥∥∥∥∥∥∥ ≤
√

2
∥∥∥∇2f(z(r))

∥∥∥ ‖ξ?‖ ,
where to obtain the second equality we have used the optimality condition discussed at start of the proof.

Thus, using the result above, we obtain∥∥∥∥∥∥∥∇2f(z(r))

U (r)

U (r)

 ξ? +∇f(z(r))

∥∥∥∥∥∥∥ ≤ 2
√

2
∥∥∥∇2f(z(r))

∥∥∥ ‖ξ?‖ . (18.9.3)

On the other hand,∥∥∥∥∥∥∥
U (r+1)

U (r+1)


U (r+1)

U (r+1)


∗

−

U (r)

U (r)


U (r)

U (r)


∗∥∥∥∥∥∥∥

≤
∥∥∥U (r+1)(U (r+1))∗ −U (r)(U (r))∗

∥∥∥ +
∥∥∥U (r+1)(U (r+1))> −U (r)(U (r))>

∥∥∥ .
WriteU (r+1) = U

(r+1)
< + iU

(r+1)
= , whereU (r+1)

< andU (r+1)
= collect respectively entrywise real and imaginary

parts of U (r+1). It is not difficult to verify that V (r+1) .
= [U

(r+1)
< ;U

(r+1)
= ] ∈ R2n×(2n−1) is an orthonormal

matrix. We also define V (r) accordingly. Thus,∥∥∥U (r+1)(U (r+1))∗ −U (r)(U (r))∗
∥∥∥ =

∥∥∥[I, iI]
(
V (r+1)(V (r+1))> − V (r)(V (r))>

)
[I,−iI]>

∥∥∥
≤ 2

∥∥∥V (r+1)(V (r+1))> − V (r)(V (r))>
∥∥∥

≤ 2
√

2
∥∥∥V (r+1)(V (r+1))> − V (r)(V (r))>

∥∥∥
R
,

where from the second to the third line we translate the complex operator norm to the real operator norm.

Similarly, we also get∥∥∥U (r+1)(U (r+1))> −U (r)(U (r))>
∥∥∥ ≤ 2

√
2
∥∥∥V (r+1)(V (r+1))> − V (r)(V (r))>

∥∥∥
R
.

Since iz(r) is the normal vector of the space generated by U (r), [−z(r)
= ; z

(r)
< ] is the corresponding normal

vector of V (r). By Lemma B.13, the largest principal angle θ1 between the subspaces designated by V (r+1)

and V (r) are the angle between their normal vectors a .
= [−z(r)

= ; z
(r)
< ] and b .

= [−z(r+1)
= ; z

(r+1)
< ]. Here we
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have decomposed z(r+1) and z(r) into real and imaginary parts. Similarly we define c .
= [−(δ?)=; (δ?)<]. By

the law of cosines,

cos θ1 =
‖a‖2 + ‖b‖2 − ‖c‖2

2 ‖a‖ ‖b‖ ≥ 1− ‖c‖2
2 ‖a‖ ‖b‖ = 1− ‖ξ?‖2

2
∥∥z(r)

∥∥ ∥∥z(r+1)
∥∥ .

Since
∥∥z(r)

∥∥ ≥ minz∈R3 ‖z‖ ≥ (1− 1/
√

7) ‖x‖ ≥ 3 ‖x‖ /5, and
∥∥z(r+1)

∥∥ ≥ ∥∥z(r)
∥∥ −∆ ≥ ‖x‖ /2 provided

∆ ≤ ‖x‖ /10,

we obtain that

cos θ1 ≥ 1− 5

3 ‖x‖2
‖ξ?‖2 .

Thus, by Lemma B.13 again,

∥∥∥V (r+1)(V (r+1))> − V (r)(V (r))>
∥∥∥
R

=
√

1− cos2 θ1

≤
√

10

3 ‖x‖2
‖δ?‖2 +

25

9 ‖x‖4
‖ξ?‖4 ≤

2

‖x‖ ‖ξ?‖ , (18.9.4)

where we used the assumption ∆ ≤ ‖x‖ /10 again to obtain the last inequality.

Collecting the above results, we obtain∥∥∥∇f(z(r+1))
∥∥∥ ≤ (1

2
Lh +

16

‖x‖MH

)
‖ξ?‖2 . (18.9.5)

Invoking the optimality condition again, we obtain

‖ξ?‖2 =
∥∥∥(H(r))−1g(r)

∥∥∥2

≤ 1

m2
H

∥∥∥g(r)
∥∥∥2

=
2

m2
H

∥∥∥∇f(z(r))
∥∥∥2

. (18.9.6)

Here (H(r))−1 is well-defined because Lemma 14.2 shows that
∥∥H(r)

∥∥ ≥ mH for all z(r) ∈ R′3. Combining

the last two estimates, we complete the proof.

18.10 Proof of Proposition 14.9

Proof Throughout the proof, wewrite g(r),H(r) andU (r) short for g(z(r)),H(z(r)) andU(z(r)), respectively.

We first show z(r+1) stays in R′3. From proof of Proposition 14.6, we know that for all z ∈ R3, the
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following estimate holds:

‖∇f(z)‖ ≥ 1

4
√

2
‖x‖2 ‖h(z)‖ .

From Proposition 14.8, we know that

‖∇f(z(r+1))‖ ≤ 1

m2
H

(
Lh +

32

‖x‖MH

)
‖∇f(z(r))‖2

provided ∆ ≤ ‖x‖ /10. Moreover,

‖∇f(z(r))‖2 =
1

2

∥∥∥g(r)
∥∥∥2

≤M2
H

∥∥∥(H(r))−1g(r)
∥∥∥2

≤M2
H∆2,

where the last inequality followed because step r is unconstrained. Combining the above estimates, we obtain

that

‖∇f(z(r+1))‖ ≤ 1

m2
H

(
Lh +

32

‖x‖MH

)
M2
H∆2.

Thus, ∥∥∥h(z(r+1))
∥∥∥ ≤ 4

√
2

‖x‖2
‖∇f(z(r+1))‖ ≤ 4

√
2

m2
H ‖x‖

2

(
Lh +

32

‖x‖MH

)
M2
H∆2.

So, provided

4
√

2

m2
H ‖x‖

2

(
Lh +

32

‖x‖MH

)
M2
H∆2 ≤ 1

10Lh
‖x‖2 ,

z(r+1) stays inR′3.

Next we show the next step will also be an unconstrained step when ∆ is sufficiently small. We have

‖(H(r+1))−1g(r+1)‖

≤ 1

mH
‖g(r+1)‖ =

√
2

mH
‖∇f(z(r+1))‖

≤
√

2

m3
H

(
Lh +

32

‖x‖MH)

)
‖∇f(z(r))‖2 =

1√
2m3

H

(
Lh +

32

‖x‖MH

)
‖g(r)‖2

≤ M2
H√

2m3
H

(
Lh +

32

‖x‖MH

)
‖(H(r))−1g(r)‖2 ≤ M2

H√
2m3

H

(
Lh +

32

‖x‖MH

)
∆2,

where we again applied results of Proposition 14.8 to obtain the third line, and applied the optimality

condition to obtain the fourth line. Thus, whenever

M2
H√

2m3
H

(
Lh +

32

‖x‖MH

)
∆ < 1,
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the transformed trust-region subproblem has its minimizer ξ(r+1) with ‖ξ(r+1)‖ < ∆. This implies the

minimizer δ(r+1) to the original trust-region subproblem satisfies δ(r+1) < ∆, as ‖δr+1‖ = ‖ξ(r+1)‖. Thus,

under the above condition the (r + 1)-th step is also unconstrained.

Repeating the above arguments for all future steps implies that all future steps will be constrained within

R′3.

We next provide an explicit estimate for the rate of convergence in terms of distance of the iterate to the

target set X . Again by Proposition 14.8,

‖∇f(z(r+r′))‖ ≤ m2
H

(
Lh +

32

‖x‖MH

)−1(
1

m2
H

(
Lh +

32

‖x‖MH

)∥∥∥∇f(z(r))
∥∥∥)2r

′

≤ m2
H

(
Lh +

32

‖x‖MH

)−1
(

1√
2m2

H

(
Lh +

32

‖x‖MH

)∥∥∥g(r)
∥∥∥)2r

′

≤ m2
H

(
Lh +

32

‖x‖MH

)−1
(

MH√
2m2

H

(
Lh +

32

‖x‖MH

)
∆

)2r
′

.

Thus, provided

MH√
2m2

H

(
Lh +

32

‖x‖MH

)
∆ ≤ 1

2
,

we have ∥∥∥h(z(r+r′))
∥∥∥ ≤ 4

√
2

‖x‖2
‖∇f(z(r+r′))‖ ≤ 4

√
2m2

H

‖x‖2
(
Lh +

32

‖x‖MH

)−1

2−2r
′

,

as claimed.
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Part IV

Discussion
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Chapter 19

Other Problems in the X Family

All truths are easy to understand once they are discovered; the point is

to discover them.

Galileo Galilei

In this chapter, we describe two more practical examples that also lie in the X family. They are worked

out by other authors, and both arise from signal processing and machine learning applications.

19.1 Orthogonal tensor decomposition

Tensors can be thought of as high-order (i.e., multi-dimensional) arrays, of which matrices are 2-nd order

examples. Here we shall focus on 4-th order tensors. If T ∈ Rn4 is a 4-th order tensor, we use Ti,j,k,` to denote

its (i, j, k, `)-th entry. Tensors can be constructed from generalized outer products. Let ⊗ denote the normal

outer product, such at [u⊗ v]i,j = uivj . We define un⊗4 as

[
un
⊗4
]
i,j,k,`

.
= uiujuku`.

Here we are especially interested in 4-th order tensors T ∈ Rn4 of the form

T =

r∑
i=1

λiu
⊗4
i , with u>i uj = δij ,∀ i, j ∈ [r], (19.1.1)

which are called orthogonally decomposable tensors. The reason for this name is that not all tensors can be written

in this form, even if they are symmetric: Ti,j,k,` = Tπ(i,j,k,`) for any permutation π and any set i, j, k, ` ∈ [n]

[KB09, HL13]. The proper inclusion of orthogonally decomposable tensors in symmetric tensors stands in
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contrast to the matrix case: symmetric matrices are all orthogonally decomposable by spectral theory. The

reason for focusing attention on this restricted class is that a number of problems involving learning latent

variable models in machine learning can be cast as decomposition of such tensors:

Given T in form (19.1.1), find the numbers λi’s and components ui’s (up to sign and permutation).

Examples include learning mixture of Gaussians, independent component analysis (ICA), hidden Markov

models, and so on; see [AGH+14] and the references therein.

Here we further restrict ourselves to the case λi = 1 for all i and r = n. Before we present two formulations

for the decomposition problem, we need to understand how tensors acting on vectors. For T in form (19.1.1)

with λi = 1 for all i, its action on vectors x,y, z,w ∈ Rn is defined as

T (x,y, z,w)
.
=
∑
i∈[n]

(u>i x)(u>i y)(u>i z)(u>i w). (19.1.2)

Recall the familiar Rayleigh quotient formulation for eigen-decomposition of symmetric matrices. A natural

analog for the orthogonal tensor decomposition problem is

minimize f(v)
.
= −T (v,v,v,v) = −

n∑
i=1

(u>i v)4 subject to ‖v‖2 = 1. (19.1.3)

[GHJY15] showed (Section C.1.) 1 that f(v) in the above formulation has ±ui’s as its only local and also

global minimizers, and the function f is (7/n, 1/poly(n), 3, 1/poly(n))-ridable over Sn−1. Once one of the

component is obtained, one can apply deflation to obtain the others, similar to the matrix case.

The deflation trick is however very delicate and noise sensitive to deploy for tensors, as compared to the

matrix case. Empirically, obtaining all the components in one shot is preferred. This motivates the second

formulation, which is less intuitive to grasp:

minimize g(v1, . . . ,vn)
.
=
∑
i 6=j
T (vi,vi,vj ,vj) =

∑
i 6=j

∑
k∈[n]

(u>k vi)
2(u>k vj)

2,

subject to ‖vk‖ = 1 ∀k ∈ [n].

It is obvious that g(v1, . . . ,vn) ≥ 0 and the optimal value is 0. One might expect that an explicit orthogonality

constraint be enforced to ensure vi’s be mutually orthogonal, which is mysteriously missing here. This can

be intuitively understood from the “contrast” terms:
∑
k∈[n](u

>
k vi)

2(u>k vj)
2, which is 0 only when vi is

1[GHJY15] has not used the manifold language as we use here, but resorted to Lagrange multiplier and optimality of the Lagrangian
function. For the two decomposition formulations we discussed here, one can verify that the gradient and Hessian they defined are
exactly the Riemannian gradient and Hessian of the respective manifolds.



CHAPTER 19. OTHER PROBLEMS IN THE X FAMILY 195

orthogonal to vj . The object {U ∈ Rn×r : ‖ui‖ = 1 ∀i} is called the oblique manifold, which is a product space

of multiple spheres. [GHJY15] showed all local minimizers of g are equivalent (i.e., signed permuted) copies

of [a1, . . . ,an]. Moreover, g is (1/poly(n), 1/poly(n), 1, 1/poly(n))-ridable.

19.2 Noisy phase synchronization and community detection

Phase synchronization concerns recovery of unit-modulus complex scalars from their relative phases. More

precisely, recovering an unknown vector z ∈ Cn1 with

Cn1
.
= {z ∈ Cn : |z1| = · · · = |zn| = 1} ,

from noisy measurements of the form Cij = zizj + ∆ij . This is a special version of the class of problems

concerning recovery of elements from a group: given gig−1
j + ∆ij for all i, j ∈ [n] (n possibly infinite), where

all gi’s belong to a known compact group G, recover all gi’s. Another notable example is when G is SO(3)

and the problem is called angular synchronization. This class of problems stem from applications in signal

processing, communications, computer vision, scientific imaging; see [BBS14, BCS15] for pointers.

Phase synchronization is interesting when the noise is nonzero yet controlled, which demands robust

solution schemes. Turning to the optimization approach, a natural formulation (if one assumes a Gaussian

noise model) is

minimizex∈Cn1 ‖xx
∗ −C‖2F ,

where we have collected Cij into a matrix C. Assuming the noise is Hermitian (i.e., ∆ij = ∆ji), the above

formulation is equivalent to

minimizex∈Cn1 −x
∗Cx. (19.2.1)

In words, the optimization problem tries to maximize a quadratic form over products of one-dimensional

circles, which is known to be NP-hard in general (Proposition 3.5 in [ZH06]). Interestingly, for the phase

synchronization model, i.e., C = zz∗ + ∆ with Hermitian noise matrix ∆, [Bou16] recently showed that

(Theorem 4) when the noise ∆ is bounded in mild sense,

second-order necessary condition for optimality is also sufficient, and the global minimizers

recover z (up to a global phase offset).

Particularly, this holds w.h.p. when the noise is i.i.d. complex Gaussians with small variance (Lemma 5). To
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understand the above statement, recall that second-order necessary condition asks for vanishing gradient

and positive semidefinite Hessian at a point. The above statement asserts that such condition is sufficient to

guarantee global optimality. In other words, at any critical points other than these verifying the condition

have indefinite Hessians. Thus, [Bou16] has effectively showed that when ∆ is appropriately bounded,

the function −x∗Cx over Cn1 is a “qualitative” X function2, and the global minimizers recover z

(up to a global phase offset).

The real counterpart of phase synchronization is called synchronization over Z2, i.e., z ∈ {1,−1}n. In this

case, an analogous formulation to (19.2.1) appears to be a hard combinatorial problem (think of MAX-CUT).

Interestingly, [BBV16] showed certain nonconvex relaxation has a benign geometric structure. Specifically,

applying the usual SDP lifting idea leads to

minimizeX∈Rn×n −〈X,C〉 Xii = 1,∀ i, X � 0, rank(X) = 1.

Dropping the rank constraint results in a convex program (SDP), which is expensive to solve for large n. The

Burer-Monteiro factorization approach [BM03, BM05] suggests substitutingX = WW> forW ∈ Rn×p for

1 ≤ p� n such that the above relaxation is reformulated as

minimizeW∈Rn×p − tr
(
W>CW

) ∥∥wi
∥∥ = 1 ∀ i. (19.2.2)

Classic results [Sha82, Bar95, Pat98] on this says problem (19.2.2) has the same optimal value as the SDP

relaxation when p is large enough (p ∼ Θ(
√
n)). Moreover, when p is set to be this scale, rank-deficient local

optimizers are also global [BM05]. Surprisingly, [BBV16] showed (Theorem 4) that even p = 2, for the Z2

synchronization problem with small noise (i.e., small ∆), formulation (19.2.2) obeys

all points verifying the second-order necessary condition are global minimizers, and any global

minimizerW? obeysW?W
>
? = zz>.

By analogous argument to the complex case, this implies:

the function− tr
(
W>CW

)
over the obliquemanifold

{
W ∈ Rn×2 : ‖wi‖ = 1 ∀i ∈ [n]

}
is a qual-

itative X function.

2Strictly speaking, our definition ofX functions requires the function to be locally strongly convex around the local/global minimizers,
while the Hessian being positive semidefinite is weaker than that. No matter whether their result can be strengthened in this respect,
we note that we impose the strong convexity assumption instead of just convexity is for the sake of deriving concrete convergence rates
for optimization algorithms. One can relax the requirement when talking of the qualitative aspect of the structure. Similar comment
applies to the ensuing discussion of the real version also.
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A similar result was derived in [BBV16] for the two-block community detection problem under the stochastic

block model (Theorem 6).3

3Both [BBV16] and [Mon16] also contain results that characterize local optimizers in terms of their correlation with the optimizer
under less stringent/general conditions on the noise.
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Chapter 20

Future Directions

There is a general principle that a stupid man can ask such questions to

which one hundred wise men would not be able to answer. In

accordance with this principle I shall formulate some problems.

Vladimir Arnold

To ask the right question is harder than to answer it.

Georg Cantor

This thesis has been centered around the (twice continuously differentiable) X functions, for which all

local minimizers are global, and around any saddle point there is a negative directional curvature. In other

words, second-order necessary condition is also sufficient for testing global optimality. The benignX structure

allows iterative methods that can escape from ridable saddles (and local maximizers) to convergence to a

global minimizer, from arbitrary initializations. Among several choices, we have focused on the second-order

trust-region method as proof of concept.

We have motivated the X structure with the classic Rayleigh quotient formulation for matrix eigenvector

problem. To demonstrate the practical relevance and versatility of the structure, we have worked out two

practical problems in great detail: complete (sparse) dictionary learning and generalized phase retrieval. In

each case, we have showed a natural nonconvex formulation of the problem has the X structure with concrete

parameters. These quantities have facilitated our development of polynomial-time convergence results for the

trust-region methods adapted to each problem. TheX structure and the resulting convergence result together

have produced remarkably novel computational guarantees for both problems. Towards the end, we described
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two additional problems, orthogonal tensor decompositions and noisy phase synchronization/community

detection, that admit nonconvex formulations with the X structure also.

It comes as a surprise that the X structure arises from dramatically diverse applications, reminiscent of

convexity that dominates modeling and computation across numerous applied disciplines. The similarity

goes beyond the superficial prevalence: (1) No spurious minimizers. For both convex and X functions, all

local minimizers are also global. (2) Optimality condition. For convex functions, the first-order necessary

condition is sufficient for optimality; for X functions, the second-order necessary condition is sufficient

for optimality. (3) Optimization method. Restricted to twice continuously differentiable functions, first-

order gradient descent and second-order trust-region method can serve as conceptual generic methods for

optimizing convex and X functions, respectively (assuming proper parameter tuning and no pressure on

finite-time convergence rate). So a grand question to answer is

to what extent one can develop a theoretical and computational framework for X functions,

parallel to convex analysis and optimization.

From practical examples we have worked out, it seems that separation of structure verification and algorithm

design falls out naturally, thanks to the versatility of the (Riemannian) trust-region method (and recent

attempts to provide generic convergence results thereof [BAC16]). So the central task is the analysis part,

or structure verification. The success of convex analysis builds heavily on operation rules that preserve

convexity, from which one can identify and construct new convex functions easily. However, it is easy to see

for X functions, even the simple summation rule that is highly desirable fails badly. Thus, it is a standing

challenge to identify practically relevant operation rules that preserve X -ness, or to elucidate the right

expectation/limitation in this regard.

An intertwined question to the above is when the X structure arises for particular physical problems.

Generally this may be an ambitious or even wrong question to ask, because fixing one target solution, one

can reverse-engineer infinitely many smooth functions with arbitrarily complex landscapes that have the

target solution as its unique global minimizer. In fact, for the GPR problem we studied in Part III, under the

same measurement model, a different formulation as studied in [CC15] evidently has many spurious local

minimizers – possessing the X structure is out of question (see Figure 20.1, and compare it to Figure 12.2).

It seems valuable to narrow down the scope and ponder on the practical problems covered in this thesis

that admit nonconvex formulations with the X structure. They all concern recovery of structured signals up

to intrinsic symmetries (i.e., signs, permutations, scales, global complex phase, etc). These symmetries acting



CHAPTER 20. FUTURE DIRECTIONS 200

Figure 20.1: Function landscape of the GPR problem with the logarithm Poisson maximum likelihood objective. As in
Figure 12.2, the measurements are i.i.d. real Gaussians and the target signal x = [1; 0] andm→∞. The objective is now
f(z) = −

∑m
k=1(y

2
k log(|a∗kz|2)− |a∗kz|2), which is the logarithm of the Poisson maximum likelihood. (Left) the function

landscape; (Right) the same function imposed on the domain and visualized as an image. It is evident that the function
landscape is very rugged and there are numerous spurious local minimizers.

on the target signals induce discrete or nonconvex target sets in the signal space. Unless the symmetries are

explicitly broken, convex formulations in the original space tend to produce undesired global optimizers and

hence fail in recovery. Thus, the intrinsic symmetries favor nonconvex modeling. Recall that X -ness comprises

two essential aspects: all local minimizers are global and all saddle points are ridable. For the former, it

seems a first reasonable concern should be if the target signal is indeed a local minimizer, better still, if

the function is locally convex around the target – which may not be totally unexpected when reasonable

structure promoters are in use. What helps prevent the presence of spurious local minimizers may be hard to

gauge, however, as we illustrated above with the GPR problem. For the latter ridability, both symmetries

and randomness/genericness of the input data could play roles. Intuitively, symmetries in the space tend to

cause the connecting landscape to bend down, producing negative curvatures. Moreover, recent advances in

understanding random functions on manifolds (e.g., [AA+13]) prescribe that saddles of random functions

(under certain randomness models) with enough smoothness tend to be ridable when the function value

is remote from the optimum. Thus, signal structures, symmetries, and randomness/genericness of input data are

relevant to the X structure. For recovery of structured signals, verifying local correctness (i.e., recovery as a

local minimizer) is a sensible first step to take.

In view of the above discussion, striving to complete the theoretical and computational framework for X

functions now seems premature, if not impossible. We believe a most fruitful/pragmatic way to go in the

intermediate term is focusing on practical problems where nonconvex optimization is inevitable or desirable.
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We discuss several concrete problems below.

For representation learning, one can easily write overcomplete dictionary learning into the form (3.1.1).

To constrain the structure of the dictionary, however, one needs to work with more complicated manifolds

than the sphere. Modulo the technical depth, the analytic ideas developed around the X structure likely

generalize. Another central thread in this line, the empirical success of training deep neural networks, seems

largely mysterious. Before we can completely decipher what happens underneath, understanding training

neural networks with one hidden layer of nonlinearity (e.g., [JSA15]) seems a quite reasonable cutting point.

Relevant problems, such as blind deconvolution (see, e.g., [LWB13]) and convolutional dictionary learning

(see, e.g., [ZKTF10, BEL13]), can also be studied under the current framework.

Most tensor problems seem to ask no alternative but nonconvex approaches, as most convexity magics

fail [HL13]. To date, even the most basic low-rank tensor recovery problems are still far poorly understood,

as compared to the matrix counterparts [MHWG14, SRT15]. A first meaningful step would be looking at

the super-structured tensors (say, low-rank “positive definite” tensors) and see how far one can carry on the

gradient-descant idea, emulating similar study on positive low-rankmatrices [TBSR15, ZL15,WWS15, CW15].

The completion problem arises naturally in applications, such as when modeling relations, multivariate

measurements, and so on.

An important class of nonconvex problems are discrete optimization problems. Currently, the most

powerful solutions to discrete problems such as clustering, community detection, submodular minimization

are SDP-based convex relaxations that face significant scalability problem. It is interesting to how extensive

the Burer-Monteiro factorization approach [BM03, BM05] can yield provable results, in the line of recent

efforts [Bou16, BBV16]. Another thread would be considering natural analogs of gradient descent algorithms

on the discrete setting and see if insights from the continuous domain can help understand practical and

powerful combinatorial algorithms (e.g., on submodular minimization [CJK14]).

An alternative approach to provable nonconvex recovery starts with certain problem-dependent initial-

izations that are hopefully already close to the target and proceeds with local convergence arguments. This

strategy has been deployed on a number of problems and proves very effective and powerful (see relevant

discussions in Section 3.4 and 12.4) 1. For many practical problems of interest, however, it is often nontrivial

to come up with effective initializations. Moreover, this approach has not explained why initialization-free

nonconvex algorithms work well in practice. It is tempting to ask to what extent we can remove the need for

1The current author maintains a webpage dedicated to provable nonconvex algorithms to practical problems: http://sunju.org/
research/nonconvex/. Most of the papers listed there actually take this “initialization plus local refinement” approach.

http://sunju.org/research/nonconvex/
http://sunju.org/research/nonconvex/
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special initializations based on similar global geometric considerations we undertake here.

Moving beyond ridable saddles, practical nonconvex problems may possess saddles that are shaped by

high-order derivatives, when the second-order derivatives vanish in certain directions. Identifying tractable

cases and designing practical algorithms to escape from these saddles and find global optimizer is of great

interest; see [AG16] for a step towards this direction. Also in view of the recent performance guarantees for

first-order methods [GHJY15, LSJR16], it is natural to ask to what extent similar results can be established for

higher-order structured non-ridable saddles.
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Appendix A

Concentration Inequalities

Various quantities involved in this thesis are probabilistic in nature; establishing their properties relies heavily

on the fact that under technical conditions they do not deviate much from their expectations. The latter

fact is formalized as concentration inequalities. In this chapter, we record concentration inequalities we use

frequently in this thesis; systematic treatment of concentration inequalities can be found in, e.g., [BLM13],

and [Tro15b] which deals with especially matrix-valued random variables.

Lemma A.1 (Moment-Control Bernstein’s Inequality for Scalar RVs, Theorem 2.10 of [FR13]) LetX1,

. . . , Xp be i.i.d. real-valued random variables. Suppose that there exist positive numbers R and σ2 such that

E [|Xk|m] ≤ m!

2
σ2Rm−2, for all integers m ≥ 2.

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(
− pt2

2σ2 + 2Rt

)
. (A.0.1)

Lemma A.2 (Moment-Control Bernstein’s Inequality for Matrix RVs, Theorem 6.2 of [Tro12]) LetX1,

. . . ,Xp be i.i.d. d× d random, symmetric matrices. Suppose there exist positive numbers R and σ2 such that

E [Xm
k ] � m!

2
σ2Rm−2I and− E [Xm

k ] � m!

2
σ2Rm−2I , for all integersm ≥ 2.

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [‖S − E [S]‖ ≥ t] ≤ 2d exp

(
− pt2

2σ2 + 2Rt

)
. (A.0.2)
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Proving this lemma requires some modification to the original proof of Theorem 6.2 in [Tro12]. We record

it here for the sake of completeness.

Proof Let us define Sp =
∑p
k=1Xk, by Proposition 3.1 of [Tro12], we have

P [λmax (Sp − E [Sp]) ≥ t] ≤ inf
t>0

e−θtE [tr exp (θSp − θE [Sp])] , (A.0.3)

To proceed, notice that

E [tr exp (θSp − θE [Sp])]

= ESp−1
EXp

[tr exp (θ (Sp−1 − E [Sp−1]) + θXp − θE [Xp])]

≤ ESp−1

[
tr exp

(
θ(Sp−1 − E [Sp−1]) + log

(
E
[
eθXp

])
− θE [Xp]

)]
≤ ESp−1

[
tr exp

(
θ(Sp−1 − E [Sp−1]) + E

[
eθXp

]
− I − θE [Xp]

)]
= ESp−1

[
tr exp

(
θ(Sp−1 − E [Sp−1]) +

∞∑
`=2

θ`E
[
X`
k

]
`!

)]

where at the third line we have used the result of Corollary 3.3 of [Tro12], i.e., E [tr exp (H +X)] ≤

tr exp
(
H + log

(
E
[
eX
]))

for any fixedH and random, symmetricX , at the fourth we have used the fact

that logX �X − I for anyX � 0 (as log u ≤ u− 1 for any u > 0 and transfer rule applies here), and the last

line relies on exchange of infinite summation and expectation, justified asXp has a bounded spectral radius.

By repeating the argument backwards forXp−1, · · · ,X1, we get

E [tr exp (θSp − θE [Sp])]

≤ tr exp

(
p

∞∑
`=2

θ`E
[
X`
k

]
`!

)
≤ tr exp

(
p

p∑
`=2

θ`σ2R`−2

2
I

)

≤ d
∥∥∥∥∥exp

(
p

p∑
`=2

θ`σ2R`−2

2
I

)∥∥∥∥∥ ≤ d exp

(
pθ2σ2

2(1− θR)

)
, (A.0.4)

where we used the fact that E [Xm
i ] � m!

2 σ
2Rm−2I in (A.0.2) and restrict θ < 1

R . Combining the results in

(A.0.3) and (A.0.4), we have

P [λmax (Sp − E [Sp]) ≥ t] ≤ d inf
θ<1/R

exp

(
pθ2σ2

2(1− θR)
− θt

)
(A.0.5)

by taking θ = t/(pσ2 +Rt) < 1/R, we obtain

P [λmax (Sp − E [Sp]) ≥ t] ≤ d exp

(
− t2

2pσ2 + 2Rt

)
. (A.0.6)
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ConsideringX ′k = −Xk and repeating the above argument, we can similarly obtain

P [λmin (Sp − E [Sp]) ≤ −t] ≤ d exp

(
− t2

2pσ2 + 2Rt

)
. (A.0.7)

Putting the above bounds together, we have

P
[
‖Sp − E [Sp]‖ ≥ t

]
≤ 2d exp

(
− t2

2pσ2 + 2Rt

)
. (A.0.8)

We obtain the claimed bound by substituting Sp = pS and simplifying the resulting expressions.

Corollary A.3 (Moment-Control Bernstein’s Inequality for Vector RVs) Let x1, . . . ,xp ∈ Rd be i.i.d.

random vectors. Suppose there exist some positive number R and σ2 such that

E [‖xk‖m] ≤ m!

2
σ2Rm−2, for all integersm ≥ 2.

Let s = 1
p

∑p
k=1 xk, then for any t > 0, it holds that

P [‖s− E [s]‖ ≥ t] ≤ 2(d+ 1) exp

(
− pt2

2σ2 + 2Rt

)
. (A.0.9)

Proof To obtain the result, we apply the matrix Bernstein inequality in Lemma A.2 to a suitable embedding

of the random vectors {xk}pk=1. For any k ∈ [p], define the symmetric matrix

Xk =

 0 x∗k

xk 0

 ∈ R(d+1)×(d+1).

Then it holds that

X2`+1
k = ‖xk‖2`2

 0 x∗k

xk 0

 , X2`+2
k = ‖xk‖2`

 ‖xk‖2 0

0 xkx
∗
k

 , for all integers ` ≥ 0.

Using the fact that

xkx
∗
k � ‖xk‖2 I, ‖Xk‖ =

√
‖X2

k‖ = ‖xk‖ =⇒ −‖xk‖ I �Xk � ‖xk‖ I,

and combining the above expressions forX2`+1
k andX2`+2

k , we obtain

E [Xm
k ] ,−E [Xm

k ] � E [‖xk‖m2 ] I � m!

2
σ2Rm−2I, for all integersm ≥ 2, (A.0.10)
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Let S = 1
p

∑p
k=1Xk, noting that

‖S − E [S]‖ = ‖s− E [s]‖ , (A.0.11)

and applying Lemma A.2, we complete the proof.

Lemma A.4 (Hoeffding-type Inequality, Proposition 5.10 of [Ver12]) Let X1, · · · , XN be independent

centered sub-Gaussian random variables, and letK = maxi ‖Xi‖ψ2
, where the sub-Gaussian norm

‖Xi‖ψ2

.
= sup

p≥1
p−1/2 (E [|X|p])1/p

. (A.0.12)

Then for every b = [b1; · · · ; bN ] ∈ CN and every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
k=1

bkXk

∣∣∣∣∣ ≥ t
)
≤ e exp

(
− ct2

K2 ‖b‖22

)
. (A.0.13)

Here c is a universal constant.

Lemma A.5 (Bernstein-type Inequality, Proposition 5.17 of [Ver12]) LetX1, · · · , XN be independent cen-

tered sub-exponetial random variables, and letK = maxi ‖Xi‖ψ1
, where the sub-exponential norm

‖Xi‖ψ1

.
= sup

p≥1
p−1 (E [|X|p])1/p

. (A.0.14)

Then for every b = [b1; · · · ; bN ] ∈ CN and every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
k=1

bkXk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cmin

(
t2

K2 ‖b‖22
,

t

K ‖b‖∞

))
. (A.0.15)

Here c is a universal constant.

Lemma A.6 (Subgaussian Lower Tail for Nonnegative RV’s, Problem 2.9 of [BLM13]) LetX1, . . . ,XN

be i.i.d. copies of the nonnegative random variable X with finite second moment. Then it holds that

P

[
1

N

N∑
i=1

(Xi − E [Xi]) < −t
]
≤ exp

(
−Nt

2

2σ2

)
for any t > 0, where σ2 = E

[
X2
]
.

Proof For any λ > 0, we have

logE
[
e−λ(X−E[X])

]
= λE [X] + logE

[
e−λX

]
≤ λE [X] + E

[
e−λX

]
− 1,
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where the last inequality holds thanks to log u ≤ u−1 for all u > 0. Moreover, using the fact eu ≤ 1+u+u2/2

for all u ≤ 0, we obtain

logE
[
e−λ(X−E[X])

]
≤ 1

2
λ2E

[
X2
]
⇐⇒ E

[
e−λ(X−E[X])

]
≤ exp

(
1

2
λ2E

[
X2
])

.

Thus, by the usual exponential transform trick, we obtain that for any t > 0,

P

[
N∑
i=1

(Xi − E [Xi]) < −t
]
≤ exp

(
−λt+Nλ2E

[
X2
]
/2
)
.

Taking λ = t/(Nσ2) and making change of variable for t give the claimed result.
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Appendix B

Auxillary Results for Sparse Dictionary

Learning

In this chapter, we record supporting calculations and technical results for proofs of Part II.

B.1 Technical tools and basic facts
Lemma B.1 (Derivates and Lipschitz Properties of hµ (z)) For the sparsity surrogate

hµ (z) = µ log (cosh (z/µ)) ,

the first two derivatives are

ḣµ(z) = tanh

(
z

µ

)
, ḧµ(z) =

1

µ

[
1− tanh2

(
z

µ

)]
. (B.1.1)

Also, for any z > 0, we have

1

2

(
1− exp

(
−2z

µ

))
≤ tanh

(
z

µ

)
≤ 1− exp

(
−2z

µ

)
, (B.1.2)

exp

(
−2z

µ

)
≤ 1− tanh2

(
z

µ

)
≤ 4 exp

(
−2z

µ

)
. (B.1.3)

Moreover, for any z, z′ ∈ R, we have∣∣∣ḣµ(z)− ḣµ(z′)
∣∣∣ ≤ 1

µ
|z − z′| ,

∣∣∣ḧµ(z)− ḧµ(z′)
∣∣∣ ≤ 2

µ2
|z − z′| (B.1.4)
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Lemma B.2 (Chebyshev’s Association Inequality) Let X denote a real-valued random variable, and f, g :

R 7→ R nondecreasing (nonincreasing) functions of X with E [f (X)] <∞ and E [g (X)] <∞. Then

E [f (X) g (X)] ≥ E [f (X)]E [g (X)] . (B.1.5)

If f is nondecreasing (nonincreasing) and g is nonincreasing (nondecreasing), we have

E [f (X) g (X)] ≤ E [f (X)]E [g (X)] . (B.1.6)

Proof Consider Y , an independent copy of X . Then it is easy to see

E [(f (X)− f (Y )) (g (X)− g (Y ))] ≥ 0.

Expanding the expectation and noticing E [f (X) g (Y )] = E [f (Y ) g (X)] = E [f (X)]E [g (X)] and also

E [f (X) g (X)] = E [f (Y ) g (Y )] yields the result. Similarly, we can prove the second one.

This lemma implies the following lemma.

Lemma B.3 (Harris’ Inequality, [Har60], see also Theorem 2.15 of [BLM13]) LetX1, . . . , Xn be indepen-

dent, real-valued random variables and f, g : Rn 7→ R be nonincreasing (nondecreasing) w.r.t. any one variable

while fixing the others. Define a random vectorX = (X1, · · · , Xn) ∈ Rn, then we have

E [f (X) g (X)] ≥ E [f (X)]E [g (X)] . (B.1.7)

Similarly, if f is nondecreasing (nonincreasing) and g is nonincreasing (nondecreasing) coordinatewise in the

above sense, we have

E [f (X) g (X)] ≤ E [f (X)]E [g (X)] . (B.1.8)

Proof Again, it suffices to prove the first equality, which can be shown by induction. For n = 1, it reduces to

Lemma B.2. Suppose the claim is true for anym < n. Since both g and f are nondecreasing functions in Xn

given X̂ = (X1, · · · , Xn−1), then

E [f (X) g (X)] = E
[
E
[
f(X)g(X) | X̂

]]
≥ E

[
E
[
f(X) | X̂

]
E
[
g(X) | X̂

]]
Now, it follows by independence that f ′

(
X̂
)

= E
[
f(X) | X̂

]
and g′

(
X̂
)

= E
[
g(X) | X̂

]
are both nonde-
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creasing functions, then by the induction hypothesis, we have

E [f (X) g (X)] ≥ E
[
f ′
(
X̂
)]

E
[
g′
(
X̂
)]

= E [f(X)]E [g(X)] ,

as desired.

Lemma B.4 (Differentiation under the Integral Sign) Consider a function F : Rn × R 7→ R such that
∂F (x,s)
∂s is well defined and measurable over U × (0, t0) for some open subset U ⊂ Rn and some t0 > 0. For any

probability measure µ on Rn and any t ∈ (0, t0) such that
∫ t

0

∫
U

∣∣∣∂F (x,s)
∂s

∣∣∣ µ (dx) ds <∞, it holds that

d

dt

∫
U
F (x, t)µ (dx) =

∫
U

∂F (x, t)

∂t
µ (dx) , or d

dt
Ex [F (x, t)1U ] = Ex

[
∂F (x, t)

∂t
1U

]
. (B.1.9)

Proof We have ∫
U

∂F (x, t)

∂t
µ (dx) =

d

dt

∫ t

0

∫
U

∂F (x, s)

∂s
µ (dx) ds

=
d

dt

∫
U

∫ t

0

∂F (x, s)

∂s
ds µ (dx)

=
d

dt

∫
U

(F (x, t)− F (x, 0)) µ (dx)

=
d

dt

∫
U
F (x, t) µ (dx) ,

where we have used the fundamental theorem of calculus for the first and third equalities, and measure-

theoretic Fubini’s theorem (see, e.g., Theorem 2.37 of [Fol99]) for the second equality (as justified by our

integrability assumption).

Lemma B.5 (Gaussian Tail Estimates) Let X ∼ N (0, 1) and Φ (x) be CDF of X . For any x ≥ 0, we have

the following estimates for Φc (x)
.
= 1− Φ (x):(

1

x
− 1

x3

)
exp

(
−x2/2

)
√

2π
≤ Φc (x) ≤

(
1

x
− 1

x3
+

3

x5

)
exp

(
−x2/2

)
√

2π
, (Type I) (B.1.10)

x

x2 + 1

exp
(
−x2/2

)
√

2π
≤ Φc (x) ≤ 1

x

exp
(
−x2/2

)
√

2π
, (Type II) (B.1.11)

√
x2 + 4− x

2

exp
(
−x2/2

)
√

2π
≤ Φc (x) ≤

(√
2 + x2 − x

) exp
(
−x2/2

)
√

2π
(Type III). (B.1.12)

Proof Type I bounds can be obtained by integration by parts with proper truncations. Type II upper bound

can again be obtained via integration by parts, and the lower bound can be obtained via considering the

function f (x)
.
= Φc (x)− x

x2+1

exp(−x2/2)√
2π

and noticing it is always nonnegative. Type III bounds arementioned

in [Due10] and reproduced by the systematic approach developed therein (Section 2).
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Lemma B.6 (Moments of the Gaussian Random Variables) IfX ∼ N
(
0, σ2

)
, then it holds for all integer

p ≥ 1 that

E [|X|p] = σp (p− 1)!!

[√
2

π
1p odd + 1p even

]
≤ σp (p− 1)!!. (B.1.13)

Lemma B.7 (Moments of the χ2 Random Variables) If X ∼ χ2 (n), then it holds for all integer p ≥ 1,

E [Xp] = 2p
Γ (p+ n/2)

Γ (n/2)
=

p∏
k=1

(n+ 2k − 2) ≤ p!

2
(2n)

p
. (B.1.14)

Lemma B.8 (Moments of the χ Random Variables) If X ∼ χ (n), then it holds for all integer p ≥ 1,

E [Xp] = 2p/2
Γ (p/2 + n/2)

Γ (n/2)
≤ p!np/2. (B.1.15)

Lemma B.9 (Integral Form of Taylor’s Theorem) Let f(x) : Rn 7→ R be a twice continuously differentiable

function, then for any direction y ∈ Rn, we have

f(x+ ty) = f(x) + t

∫ 1

0

〈∇f(x+ sty),y〉 ds, (B.1.16)

f(x+ ty) = f(x) + t 〈∇f(x),y〉+ t2
∫ 1

0

(1− s)
〈
∇2f(x+ sty)y,y

〉
ds. (B.1.17)

Proof By the fundamental theorem of calculus, since f is continuous differentiable, it is obvious that

f(x+ ty) = f(x) +

∫ t

0

〈∇f(x+ τy),y〉 dτ. (B.1.18)

If f is twice continuously differentiable, by using integral by parts, we obtain

f(x+ ty) = f(x) + [(τ − t) 〈∇f(x+ τy),y〉]|t0 −
∫ t

0

(τ − t) d 〈∇f(x+ τy),y〉

= f(x) + t 〈∇f(x+ τy),y〉+

∫ t

0

(t− τ)
〈
∇2f(x+ τy)y,y

〉
dτ. (B.1.19)

By a change of variable τ = st (0 ≤ s ≤ 1) for (B.1.18) and (B.1.19), we get the desired results.

B.2 Auxiliary results

B.2.1 Integrals
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Lemma B.10 Let X ∼ N (0, σ2
X) and Y ∼ N (0, σ2

Y ) be independent random variables and

Φc (t)
.
=

1√
2π

∫ ∞
t

exp
(
−x2/2

)
dx

be the complementary cumulative distribution function of the standard normal. For any a > 0, we have

E [X1X>0] =
σX√
2π
, (B.2.1)

E [exp (−aX)X1X>0] =
σX√
2π
− aσ2

X exp

(
a2σ2

X

2

)
Φc (aσX) , (B.2.2)

E [exp (−aX)1X>0] = exp

(
a2σ2

X

2

)
Φc (aσX) , (B.2.3)

E
[
exp (−a(X + Y ))X2

1X+Y >0

]
= σ2

X

(
1 + a2σ2

X

)
exp

(
a2σ2

X + a2σ2
Y

2

)
Φc
(
a
√
σ2
X + σ2

Y

)
− aσ4

X√
2π
√
σ2
X + σ2

Y

, (B.2.4)

E [exp (−a(X + Y ))XY 1X+Y >0] = a2σ2
Xσ

2
Y exp

(
a2σ2

X + a2σ2
Y

2

)
Φc
(
a
√
σ2
X + σ2

Y

)
− aσ2

Xσ
2
Y√

2π
√
σ2
X + σ2

Y

, (B.2.5)

E [tanh (aX)X] = aσ2
XE

[
1− tanh2 (aX)

]
, (B.2.6)

E [tanh (a(X + Y ))X] = aσ2
XE

[
1− tanh2 (a(X + Y ))

]
. (B.2.7)

Proof Equalities (B.2.1), (B.2.2), (B.2.3), (B.2.4) and (B.2.5) can be obtained by direct integrations. Equalities

(B.2.6) and (B.2.7) can be derived using integration by part.

B.2.2 Proof of Lemma 9.1

Proof Indeed 1
(1+βt)2

=
∑∞
k=0(−1)k(k + 1)βktk, as

∞∑
k=0

(−1)k(k + 1)βktk =

∞∑
k=0

(−βt)k +

∞∑
k=0

k(−βt)k =
1

1 + βt
+

−βt
(1 + βt)2

=
1

(1 + βt)2
.

The magnitude of the coefficient vector is

‖b‖`1 =

∞∑
k=0

βk(1 + k) =

∞∑
k=0

βk +

∞∑
k=0

kβk =
1

1− β +
β

(1− β)2
=

1

(1− β)2
= T.

Observing that 1
(1+βt)2

> 1
(1+t)2

for t ∈ [0, 1] when 0 < β < 1, we obtain

‖p− f‖L1[0,1] =

∫ 1

0

|p(t)− f(t)| dt =

∫ 1

0

[
1

(1 + βt)2
− 1

(1 + t)2

]
dt =

1− β
2(1 + β)

≤ 1

2
√
T
. (B.2.8)
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Moreover, we have

‖f − p‖L∞[0,1] = max
t∈[0,1]

p(t)− f(t) = max
t∈[0,1]

t(1− β) (2 + t(1 + β))

(1 + t)2(1 + βt)2
≤ 1− β =

1√
T
. (B.2.9)

Finally, notice that

∞∑
k=0

bk
(1 + k)3

=

∞∑
k=0

(−β)
k

(1 + k)2
=

∞∑
i=0

[
β2i

(1 + 2i)2
− β2i+1

(2i+ 2)2

]

=

∞∑
i=0

β2i (2i+ 2)2 − β(2i+ 1)2

(2i+ 2)2(2i+ 1)2
> 0, (B.2.10)

where at the second equality we have grouped consecutive even-odd pair of summands. In addition, we have

n∑
k=0

bk
(1 + k)3

≤
n∑
k=0

|bk|
(1 + k)3

=

n∑
k=0

βk

(1 + k)2
≤ 1 +

n∑
k=1

1

(1 + k)k
= 2− 1

n+ 1
, (B.2.11)

which converges to 2 when n→∞, completing the proof.

B.2.3 Proof of of Lemma 9.4

Proof The first inequality is obviously true for v = 0. When v 6= 0, we have

E [|v∗z|m] =

n∑
`=0

θ` (1− θ)n−`
∑
J∈([n]

` )

EZ∼N(0,‖vJ ‖2) [|Z|m]

≤
n∑
`=0

θ` (1− θ)n−`
∑
J∈([n]

` )

EZ∼N(0,‖v‖2) [|Z|m]

= EZ∼N(0,‖v‖2) [|Z|m]

n∑
`=0

θ` (1− θ)n−`
(
n

`

)
= EZ∼N(0,‖v‖2) [|Z|m] ,

where the second line relies on the fact ‖vJ ‖ ≤ ‖v‖ and that for a fixed order, central moment of Gaussian is

monotonically increasing w.r.t. its variance. Similarly, to see the second inequality,

E [‖z‖m] =

n∑
`=0

θ` (1− θ)n−`
∑
J∈([n]

` )

E
[∥∥z′J ∥∥m]

≤ E
[
‖z′‖m

] n∑
`=0

θ` (1− θ)n−`
(
n

`

)
= E

[
‖z′‖m

]
,

as desired.
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B.2.4 Proof of Lemma 9.11

Proof Consider one component of X , i.e., Xij = BijVij for i ∈ [n] and j ∈ [p], where Bij ∼ Ber (θ)) and

Vij ∼ N (0, 1). We have

P
[
|Xij | > 4

√
log (np)

]
≤ θP

[
|Vij | > 4

√
log(np)

]
≤ θ exp (−8 log(np)) = θ(np)−8.

And also

P [|Xij | < 1] = 1− θ + θP [|Vij | < 1] ≤ 1− 0.3θ.

Applying a union bound as

P
[
‖X‖∞ ≤ 1 or ‖X‖∞ ≥ 4

√
log (np)

]
≤ (1− 0.3θ)

np
+ npθ (np)

−8 ≤ exp (−0.3θnp) + θ (np)
−7
,

we complete the proof.

B.2.5 Matrix half-inverse perturbation bound

Lemma B.11 SupposeA � 0. Then for any symmetric perturbation matrix ∆ with ‖∆‖ ≤ σmin(A)
2 , it holds

that ∥∥∥(A+ ∆)
−1/2 −A−1/2

∥∥∥ ≤ 2 ‖A‖1/2 ‖∆‖
σ2

min (A)
. (B.2.12)

Proof First note that

∥∥∥(A+ ∆)
−1/2 −A−1/2

∥∥∥ ≤
∥∥∥(A+ ∆)

−1 −A−1
∥∥∥

σ
1/2
min (A−1)

as by our assumptionA+ ∆ � 0 and the fact (Theorem 6.2 in [Hig08]) that∥∥∥X1/2 − Y 1/2
∥∥∥ ≤ ‖X − Y ‖ /(σ1/2

min (X) + σ
1/2
min (Y )

)
for all X,Y � 0

applies. Moreover, using the fact

∥∥∥(X + ∆)
−1 −X−1

∥∥∥ ≤ ∥∥X−1
∥∥ ∥∥X−1∆

∥∥
1− ‖X−1∆‖ ≤

‖∆‖
∥∥X−1

∥∥2

1− ‖X−1‖ ‖∆‖

for nonsingularX and perturbation ∆ with
∥∥X−1

∥∥ ‖∆‖ < 1 (see, e.g., Theorem 2.5 of Chapter III in [SS90]),
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we obtain

1

σ
1/2
min(A−1)

∥∥∥(A+ ∆)
−1 −A−1

∥∥∥ ≤ ‖A‖1/2 ‖∆‖
∥∥A−1

∥∥2

1− ‖A−1‖ ‖∆‖ ≤
2 ‖A‖1/2 ‖∆‖
σ2

min (A)
,

where we have used the fact
∥∥A−1

∥∥ ‖∆‖ ≤ 1/2 to simplify at the last inequality.

B.2.6 BG matrix spectral estimate

Lemma B.12 There exists a positive constant C such that for any θ ∈ (0, 1/2) and n2 > Cn2
1 log n1, the random

matrixX ∈ Rn1×n2 withX ∼i.i.d. BG (θ) obeys∥∥∥∥ 1

n2θ
XX∗ − I

∥∥∥∥ ≤ 10

√
θn1 log n2

n2
(B.2.13)

with probability at least 1− n−8
2 .

Proof Observe that E
[

1
θxkx

∗
k

]
= I for any column xk ofX and so 1

n2θ
XX∗ can be considered as a normalize

sum of independent random matrices. Moreover, for any integerm ≥ 2,

E
[(

1

θ
xkx

∗
k

)m]
=

1

θm
E
[
‖xk‖2m−2

xkx
∗
k

]
.

Now E
[
‖xk‖2m−2

xkx
∗
k

]
is a diagonal matrix (as E

[
‖xk‖2 xk (i)xk (j)

]
= −E

[
‖xk‖2 xk (i)xk (j)

]
for any

i 6= j by symmetry of the distribution) in the form E
[
‖xk‖2m−2

xkx
∗
k

]
= E

[
‖x‖2m−2

x(1)2
]
I for x ∼i.i.d.

BG (θ) with x ∈ Rn1 . Let t2 (x) = ‖x‖2 − x(1)2. Then ifm = 2,

E
[
‖x‖2 x(1)2

]
= E

[
x(1)4

]
+ E

[
t2 (x)

]
E
[
x(1)2

]
= E

[
x(1)4

]
+ (n1 − 1)

(
E
[
x(1)2

])2
= 3θ + (n1 − 1) θ2 ≤ 3n1θ,

where for the last simplification we use the assumption θ ≤ 1/2. Form ≥ 3,

E
[
‖x‖2m−2

x(1)2
]

=

m−1∑
k=0

(
m− 1

k

)
E
[
t2k (x)x(1)2m−2k

]
=

m−1∑
k=0

(
m− 1

k

)
E
[
t2k (x)

]
E
[
x(1)2m−2k

]
≤
m−1∑
k=0

(
m− 1

k

)
EZ∼χ2(n1−1)

[
Zk
]
θEW∼N (0,1)

[
W 2m−2k

]
≤ θ

m−1∑
k=0

(
m− 1

k

)
k!

2
(2n1 − 2)

k
(2m− 2k)!!
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≤ θ2mm!

2

m−1∑
k=0

(
m− 1

k

)
(n1 − 1)

k

≤ m!

2
nm−1

1 2m−1,

where we have used the moment estimates for Gaussian and χ2 random variables from Lemma B.6 and

Lemma B.7, and also θ ≤ 1/2. Taking σ2 = 3n1θ and R = 2n1, and invoking the matrix Bernstein in

Lemma A.2, we obtain

E

[∥∥∥∥∥ 1

pθ

p∑
k=1

xkx
∗
k − I

∥∥∥∥∥ > t

]
≤ exp

(
− n2t

2

6n1θ + 4n1t
+ 2 log n1

)
(B.2.14)

for any t ≥ 0. Taking t = 10
√
θn1 log (n2) /n2 gives the claimed result.

B.2.7 Subspace angles and distance

Lemma B.13 Consider two linear subspaces U , V of dimension k in Rn (k ∈ [n]) spanned by orthonormal bases

U and V , respectively. Suppose π/2 ≥ θ1 ≥ θ2 · · · ≥ θk ≥ 0 are the principal angles between U and V . Then it

holds that

i) minQ∈Ok ‖U − V Q‖ ≤
√

2− 2 cos θ1;

ii) sin θ1 = ‖UU∗ − V V ∗‖;

iii) Let U⊥ and V⊥ be the orthogonal complement of U and V , respectively. Then θ1(U ,V) = θ1(U⊥,V⊥).

Proof Proof to i) is similar to that of II. Theorem 4.11 in [SS90]. For 2k ≤ n, w.l.o.g., we can assume U and V

are the canonical bases for U and V , respectively. Then

min
Q∈Ok

∥∥∥∥∥∥∥∥∥∥


I − ΓQ

−ΣQ

0


∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥


I − Γ

−Σ

0


∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
I − Γ

−Σ


∥∥∥∥∥∥∥ .

Now by definition∥∥∥∥∥∥∥
I − Γ

−Σ


∥∥∥∥∥∥∥

2

= max
‖x‖=1

∥∥∥∥∥∥∥
I − Γ

−Σ

x
∥∥∥∥∥∥∥

2

= max
‖x‖=1

k∑
i=1

(1− cos θi)
2x2
i + sin2 θix

2
i

= max
‖x‖=1

k∑
i=1

(2− 2 cos θi)x
2
i ≤ 2− 2 cos θ1.

Note that the upper bound is achieved by taking x = e1. When 2k > n, by the results from CS decomposition
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(see, e.g., I Theorem 5.2 of [SS90]).

min
Q∈Ok

∥∥∥∥∥∥∥∥∥∥


I 0

0 I

0 0

−


Γ 0

0 I

Σ 0


∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
I − Γ

−Σ


∥∥∥∥∥∥∥ ,

and the same argument then carries through. To prove ii), note the fact that sin θ1 = ‖UU∗ − V V ∗‖ (see,

e.g., Theorem 4.5 and Corollary 4.6 of [SS90]). Obviously one also has

sin θ1 = ‖UU∗ − V V ∗‖ = ‖(I −UU∗)− (I − V V ∗)‖ ,

while I −UU∗ and I − V V ∗ are projectors onto U⊥ and V⊥, respectively. This completes the proof.
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Appendix C

Auxillary Results for Generalized Phase

Retrieval

In this chapter, we record supporting calculations and technical results for proofs of Part III.

Lemma C.1 (Even Moments of Complex Gaussian) For a ∼ CN (1), it holds that

E
[
|a|2p

]
= p! ∀ p ∈ N.

Proof Write a = x+ iy, then x, y ∼i.i.d. N (0, 1/2). Thus,

E
[
|a|2p

]
= Ex,y

[(
x2 + y2

)p]
=

1

2p
Ez∼χ2(2) [zp] =

1

2p
2pp! = p!,

as claimed.

Lemma C.2 (Integral Form of Taylor’s Theorem) Consider any continuous function f(z) : Cn 7→ R with

continuous first- and second-order Wirtinger derivatives. For any δ ∈ Cn and scalar t ∈ R, we have

f(z + tδ) = f(z) + t

∫ 1

0

δ
δ


∗

∇f(z + stδ) ds,

f(z + tδ) = f(z) + t

δ
δ


∗

∇f(z) + t2
∫ 1

0

(1− s)

δ
δ


∗

∇2f(z + stδ)

δ
δ

 ds.



APPENDIX C. AUXILLARY RESULTS FOR GENERALIZED PHASE RETRIEVAL 234

Proof Since f is continuous differentiable, by the fundamental theorem of calculus,

f(z + tδ) = f(z) +

∫ t

0

δ
δ


∗

∇f(z + τδ) dτ.

Moreover, by integral by part, we obtain

f(z + tδ) = f(z) +

(τ − t)

δ
δ


∗

∇f(z + τδ)


∣∣∣∣∣∣∣
t

0

−
∫ t

0

(τ − t) d


δ
δ


∗

∇f(z + τδ)


= f(x) + t

δ
δ


∗

∇f(z) +

∫ t

0

(t− τ)

δ
δ


∗

∇2f(z + τδ)

δ
δ

 dτ.
Change of variable τ = st(0 ≤ s ≤ 1) gives the claimed result.

Lemma C.3 (Error of Quadratic Approximation) Consider any continuous function f(z) : Cn 7→ R with

continuous first- and second-order Wirtinger derivatives. Suppose its Hessian∇2f(z) is Lh-Lipschitz. Then the

second-order approximation

f̂(δ; z) = f(z) +

δ
δ


∗

∇f(z) +
1

2

δ
δ


∗

∇2f(z)

δ
δ


around each point z obeys ∣∣∣f(z + δ)− f̂(δ; z)

∣∣∣ ≤ 1

3
Lh ‖δ‖3 .

Proof By integral form of Taylor’s theorem in Lemma C.2,

∣∣∣f(z + δ)− f̂(δ; z)
∣∣∣ =

∣∣∣∣∣∣∣
∫ 1

0

(1− τ)

δ
δ


∗ [
∇2f(x+ τδ)−∇2f(x)

] δ
δ

 dτ

∣∣∣∣∣∣∣
≤ 2 ‖δ‖2

∫ 1

0

(1− τ)
∥∥∇2f(x+ τδ)−∇2f(x)

∥∥ dτ

≤ 2Lh ‖δ‖3
∫ 1

0

(1− τ)τ dτ =
Lh
3
‖δ‖3 ,

as desired.
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Lemma C.4 (Spectrum of Complex Gaussian Matrices) Let X be an n1 × n2 (n1 > n2) matrices with

i.i.d. CN entries. Then,

√
n1 −

√
n2 ≤ E [σmin(X)] ≤ E [σmax(X)] ≤ √n1 +

√
n2.

Moreover, for each t ≥ 0, it holds with probability at least 1− 2 exp
(
−t2

)
that

√
n1 −

√
n2 − t ≤ σmin(X) ≤ σmax(X) ≤ √n1 +

√
n2 + t.
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