2014 Articles
Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring
The impact of projected Arctic sea ice loss on the stratosphere is investigated using the Whole Atmosphere Community Climate Model (WACCM), a state-of-the-art coupled chemistry climate model. Two 91-year simulations are conducted: one with a repeating seasonal cycle of Arctic sea ice for the late twentieth-century, taken from the fully coupled WACCM historical run; the other with Arctic sea ice for the late twenty-first century, obtained from the fully coupled WACCM RCP8.5 run. In response to Arctic sea ice loss, polar cap stratospheric ozone decreases by 13 DU (34 DU at the North Pole) in spring, confirming the results of Scinocca et al (2009 Geophys. Res. Lett. 36 L24701). The ozone loss is dynamically initiated in March by a suppression of upward-propagating planetary waves, possibly related to the destructive interference between the forced wave number 1 and its climatology. The diminished upward wave propagation, in turn, weakens the Brewer–Dobson circulation at high latitudes, strengthens the polar vortex, and cools the polar stratosphere. The ozone reduction persists until the polar vortex breaks down in late spring.
Geographic Areas
Subjects
Files
- ioppolvani.pdf application/pdf 966 KB Download File
Also Published In
- Title
- Environmental Research Letters
- DOI
- https://doi.org/10.1088/1748-9326/9/8/084016
More About This Work
- Academic Units
- Lamont-Doherty Earth Observatory
- Earth and Environmental Sciences
- Applied Physics and Applied Mathematics
- Ocean and Climate Physics
- Publisher
- IOP Publishing
- Published Here
- February 24, 2016